Wed. Mar. 28, 2018

e Ch. 8 Digital Image Processing
Remaining topics including
— Image Correction/Calibration
— Digital Filtering
— Principal Component Analysis

* Lab Projects for final two weeks of lab



3 Divisions of Image Processing

* Image Restoration

— Corrects for instrumental “problems”, producing
“true” 1mage

* Image enhancement

— Simple operations to highlight info of interest

* Information extraction
— Convert image into information about surface



Image Restoration

* “Photometric” corrections
— Correct periodic line striping (16 detectors / scan in TM)

— Correct for atmospheric scattering
— Filter random noise (could consider this “enhancement”)

— Calibrate data (book doesn’t discuss this)
* Reflectance for “in-sunlight” images

* Radiance (W m-2 wm-! str-1) for thermal emission

e “Geometric”’ corrections

— Restore line offsets, replace bad lines by interpolation,
correct scan or camera distortions



Image Enhancement

Contrast enhancement

Density slicing

Edge enhancement

Form digital mosaics

Transform (Intensity, Hue, Saturation)
Merge data sets (upcoming lab)

Create synthetic stereo 1images from
topography information or multiple looks



Information Extraction

Image Ratios (to extract composition info.)

Band Depth Ratios (to estimate mineral abundance)
Temperature, thermal inertia modeling

Change detection (to look for variability)
Principle-components analysis

Multispectral classification

More complex math operations such as:
— NDVI (Normalized Digital Vegetation Index)



3 Divisions of Image Processing

* Image Restoration

— Corrects for instrumental “problems”, producing
“true” 1mage

* Image enhancement

— Simple operations to highlight info of interest

* Information extraction
— Convert image into information about surface



A. Original image with banding. B. Restored image.

Figure 8-6 Restoring banding on a Landsat TM image of the Red Sea coast of Yemen.
1o our text by Sabins

* TM really has 16 detectors / band, recording 16 pixels per cross-scan
* Different (and varying) sensitivities of 16 detectors result in repeated “stripe” pattern
*  More prominent in older Landsat data — better corrected in newer data



A. Original image with line offsets. B. Restored image.

Figure 8-7 Restoring offset scan lines. Landsat TM band 4 image of Oxnard, California.

From our text by Sabins

*  Transmission (or mirror scan errors) can shift lines, or groups of them
* Examining location of “linear” features like coastline or roads can provide offsets
* Again — newer Landsat data has fewer problems



Atmospheric Scattering

* Worst at short wavelengths
(TM Band 1)

* Some fraction of light lost

20 I from all regions of image

* “Uniformly” added into all
pixels, producing offset.

Digital numbers for TM band 7

0 | 4 ! | 1 * Percent effect is greatest for
0 20 40 what should be dark
Digital numbers for TM band 1 (shadowed) regions

A. Plot of TM band 7 versus band 1 for an area with shadows.
Offset of the line of least-squares fit along band 1 axis is caused by
atmospheric scattering in that band.

From our text by Sabins



Transmittance

Atmospherlc Absorption
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Geometric Distortions

DISTORTION EVALUATED DISTORTION EYALUATED
FROM TRACKING DATA FROM GROUND CONTROL

* Systematic distortions
usually corrected in
Landsat data before
images released

* Nonsystematic
distortions can remain

SPACECRAFT VELOLITY AQLL VAREATION YAW VARIATION

A. Naonsystematic distortions. Dashed lines indicate shape of distorted image.
Solid lines indigate shape of restored image.
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B. Systemnatic distortions.

Figure B-10 Geometric distortions of Landsat images. From Bemstein
und Femyhough (19735, Figure 3).

From our text by Sabins



Distortion Correction

* Can correct distortion using known

||
an N ?7 shape of regular (linear?) features
/Y < bins
/ﬁf/ / * Fiducial (reseau) marks sometimes
; / /V superposed on original images
/|
Z L/ I Z [ [[]

C. Geometry of distorted image. D. Geometry of restored image.

Figure 8-11 Cross-track distortion and restoration on images.

From our text by Sabins



Typical Intensity Calibration with Modern Cameras

Subtract “dark frame” exposure taken with . —]
shutter closed, Raw _~ Dark
to eliminate electronic offset and also
electrons that “leak™ into the detector pixels
over time.

I Calibrated: .. —]
Flat Dark

Divide image by “flat field” exposure of R=1I
uniform brightness source, to correct for
sensitivity variations among the pixels.

Calibrated/ I
where I, is expected signal from

Solar

an albedo=1 surface.

“Non-linear” detectors can require more
complicated corrections

To produce “reflectance”, divide by
expected solar reflected flux from an
albedo=1 surface.



3 Divisions of Image Processing

* Image Restoration

— Corrects for instrumental “problems”, producing
“true” 1mage

* Image Enhancement

— Simple operations to highlight info of interest

* Information Extraction
— Convert image into information about surface



Image Enhancement

Contrast enhancement

Density slicing

Edge enhancement

Form digital mosaics

Transform (Intensity, Hue, Saturation)
Merge data sets

Create synthetic stereo 1images from
topography information or multiple looks



Filtering

Sabins pg. 261

40 60 50 40 50
40 0O 40 90 60
40 60 60 40 50

Replace the 0 and the 90 by the average of
the 9 around that location: 43 and 53

Can implement “threshold” replacement.



Sharpening
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D. Profile of the erhanced data.

Figure 8-16 Nondirectional edge enhancement using a Laplacian filter.

From our text by Sabins
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A. Original image with DNs.

B. Enhanced by the factor 2.0.

C. Enhanced by the factor 5.0.

D. Enhanced by the factor 10.0.

Figure 8-17 Comput images ill i directional edge enh: with
a Laplacian filter and different weighting factors.

4x40 -1x40 -1x40 -1x40 -1x35=5soadd 5
to center pixel

To avoid necessity of adding result to center
value, many people would actually write
kernel as following (i.e. increase center by 1)

0O -1 0
-1 65 -1
0 -1 0

You then just copy result to center pixel.



Edge Detection
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F. Northwest-trending edges enhanced.

G,

Profile A-B of enhanced northwest-trending edges. From our text by Sabins

Figure 8-20 Edge enhancement using a directional filter,



Edge Detection

B. Nondirectional enhancemant.

Sabins Fig. 8-18 (pg. 272)

narthwest-tranding lineaments

Figure 8-18 Edge enhancements of TM images of the Jabal an
Maslah arca. northwest Saudi Arabia



Color Transtformations

Because of properties of eye (three separate sensors for Red, Green, Blue),
it takes 3 numbers to specify perceived properties of light

— Simplest is RGB  (tied closely to how “eye” works)
* R: Intensity in red channel
* G: Intensity in green channel
* B: Intensity in blue channel

— Sabins describes the alternate system [HS (tied closely to how “brain” works)
[: Intensity (i.e. bright vs. dim)

H: Hue (i.e.red vs. yellow vs. green vs. cyan vs. blue vs. magenta)

S: Saturation (i.e. deep red vs. pink or deep blue vs. light blue) — a kind of “Color contrast”

This system is often called HSL (Hue, Saturation, Lightness)

— ENVI supports related systems
* HSV (Hue, Saturation, Value)
* HLS (Hue, Lightness, Saturation)



HSV System

* Hue measured as angle around cylinder
* Saturation measured as distance from central axis (=white)
* Value measured from bottom (black) to top (bright)




Merging color data

Often one has:
— High spatial resolution data in only one band
— Lower spatial resolution data in multiple bands

Often

— Intensity varies rapidly and in complex way because of topography, shadowing, etc.

— Color varies “slowly” because only a limited number of different compositions are present.

* Note: The boundaries between different compositions could still be sharp
but there are not a lot of those boundaries.

Your “eye”, or at least your “brain” is use to observing the above difference.
— It “demands” higher resolution in intensity than it does in color information.

To merge data
— Convert the low resolution color information into HSV or HLS
— Discard the low resolution V or L “intensity” with the high resolution intensity from the single band
— Convert the resulting HSV or HLS data back into RGB to display

To your “eye” it will look like much like a high resolution color image
You may see “artifacts” at places where there are sharp intensity AND color boundaries



Raster vs. Vector Data

* Raster data:

— An matrix of cells, each of which contains some value
* Good for:

— Intensity in an image
— Radar reflectivity vs. position
— Height vs. position
— There 1s some implicit relationship between row and column index (i, j) and position in space
(X, y)

* Ifthere is a constant scale the relationship is simple and linear

* Vector data:

— A list of (x, y) coordinates, and often some value specified at that coordinate
* Good for:

— Plotting lines in space (roads, rivers, borders, contours, etc)
— Heights of discrete locations such as mountain peaks
— Locations of discrete features

* ENVI deals primarily with raster data, but can incorporate vector data from “maps”



3 Divisions of Image Processing

* Image Restoration

— Corrects for instrumental “problems”, producing
“true” 1mage

* Image Enhancement

— Simple operations to highlight info of interest

* Information Extraction
— Convert 1image into information about surface



Multispectral Classification: Cluster Analysis

-

B o ¢ Salton Sea,
* Byeye—
four general

types of
terrain:

— Water
— Agriculture

— Desert
— Mountains

0
| 1 5]
0

A. Landsat image.

From our text by Sabins



Multispectral Classification: Cluster Analysis

Landsat thematic mapper bands

3 4 5 7
H—H = A A

100 * Use bands #2, #3, #4
' — Plot #2, #3, #4 for each pixel

— Look for clusters in data
* 4 clusters with gaps between

— Define 4 ellipsoids:

A
o

Digital numbers

0

0.5 1.0 1.5 2.0

A. Spectral reflectance curv:\slz\;:::gf::;‘:'z bands. The high values ’ If p lxel falls inSide glven CIUSter it ls
in-bapnd1 are caused by selective atmospheric scatten:ng. o ClaSSIﬁed as type 1,2,3,4
25 A * If pixel falls outside ellipsoid it will not
- be classified (unknown or mix)
:';*}‘::é
o * Surface of ellipsoid: Decision boundary
; w"f"%;;u..,, * Volume in ellipsoid: Decision space
1 "..I.&,':
wew ‘ol "™  TMband3 255
A
o A * Note — we can only plot 3 — but
y‘“& """" computer could look for 6-D clusters
%,

using all 6 bands

B. Three-dimensional cluster diagram for classification.

Figure 8-32 Landsat data used to classify image of the Salton Sea
and the Imperial Valley, California.

From our text by Sabins



A. Landsat image.

0

Multispectral Classification: Results
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B. Classification map. A = agriculture, D = desert, M = mountains, W = water,
blank = unclassified.

Figure 8-31 Multispectra] classification of Landsat data for the Salion Sea and the
Imperial Valley, California.

From our text by Sabins



K-Means: Way to determine clustering

Landsat thematic mapper bands

) . , * Unsupervised Classification

ol * [terative cluster analysis technique
* Works best if clusters are “round”, not long and
: skinny.
g Can use other techniques first (like PCA) to get
° around that.
T 1)Divide data into “K™ classes
Wavelength, um . . . . . .
A. Spectral reflectance curves derived from TM bands. The high values (ln ﬁrSt 1terat10n thls aSSIgnment IS “I'aIldOm”)

in band 1 are caused by selective atmospheric scattering.

2)Find “center” of each class in n-dimensional data

=1, space as defined by the “Mean”
ity 2 3)Find distance of each data point (each pixel) from
[ . .
| s center of all the classes and reassign it to the
R closest class
1 MM Il‘:
e, 10 | TMband3 255
P Repeat steps 2 and 3 until either:
ST . :
S . “Few” pixels jump from one class to another
&~ or
B. Three-dimensional cluster diagram for classification. ReaCh Sp eClﬁe d max. number Of lteratIOIlS

Figure 8-32 Landsat data used to classify image of the Salton Sea
and the Imperial Valley, California.

From our text by Sabins



Image Classification:

* Supervised Classification
— Specify “training sites” with ground-truth or specify “type spectra”

* Unsupervised Classification
— Search for statistical regularities in data without additional information

Supervised

Unsupervised

Advantages

|dentifies types of terrain.

Using extra information, can

recognizing subtle differences.

Needs no additional
information.

Disadvantages

Need ground-truth or lab spectra.

Gets confused if additional
unknown classes are present

Doesn’t identify surface type.

Confused by subtle differences.

29



TERRAIN

Thermopolis Example

CATEGORIES Landsat TM Bands
7 7
7 1,23 4 5
100 P ~
e ~N
& e ~
© R ~
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z 3 £ Agriculture ==
— BOt \ _ /e _______
2 gpe\%gion
) et
a '"::"_—--Native Vegetation ~=~.._
- - Water and Shadows- - - . _ _TT"\
ol—= 1 1 1 3 1 1 bl il
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Waveiength, um
Figure 8-34 Reflectance spectra (from TM bands) of terrain cate-
gories shown in Figure 8-33
[ ]
Training Sites

Figure 8-33 Terrain categories and training sites for supervised classification of the
is, Wyoming, subscene. iations for formations are given in Figure 3-8.

* Supervised classification
— You pick “training sites”
of known character.
* Unsupervised classification

— Program decides on it’s own different

B. TM principal-component color image, Thermopolis, Wyoming. :
PC 2 =red, PC 3 = green, PC 4 = blue. types Of terrain.

— You usually specify # of types, etc.

From our text by Sabins



Thermopolis: Supervised Classification

o AT TR PP F R A
DS xiibaa i £ el 3 YMBOL CLA PER
%ﬂwﬂ@% il © 2= Eheall

- Redbeds 8.4

Sandstone 48.3
- Shale 18.9
: Agriculture 16.2

- Native vegetation 5.2
- Water and shadows 1.9
- Unclassified 1.1

A. Supervised-classification map and explanation.

From our text by Sabins



Thermopolis: Unsupervised Classification

SYMBOL CLASS PERCENT

Redbeds, lower 2.2

Redbeds, upper 11.7

Sandstone 38.2
Shale 22.3
Agriculture, A 6.5

Native vegetation 13.7
Agriculture, B v |

Agriculture, C A

B. Unsupervised-classification map and explanation.

Plate 15 Digital classifications of TM image, Thermopolis, Wyoming.
From our text by Sabins



Principal-components

Original PCA data

4 | T T

" /PCAdatadat’ +

Height (x,)

Statistical method for determining
“different ways” in which data vary

Suppose you measure weight, height for each person in room,
and plot that data.

Most of the variation falls along a single line which could be
described as “big people” vs. “small people”
—  Define 1s eigenvector: bigness =W + H

Smaller variation falls along a line at right angles to this:
—  Define 2nd eigenvector: heaviness = W — H

If you had a third measurement — kg of body-fat, you could
define a 3 eigenvector which distinguished between being
heavy because you were fat, or heavy because you had lots of
muscle.

In general:
yi=apx;tapX;
Y2 =2y X; tay X,

For remote sensing
—  Different measurements X,, X, ... different bands

—  First eigenvector y, might be light rocks vs. dark rocks
—  Second eigenvector might be tan vs. red rocks
—  Third eigenvector might be “clay rich” vs. “clay poor”

Total # of “eigenvectors” equal original # of bands
First eigenvectors explains most of variation
Last eigenvectors may just be “noise”



Thermopoh ™ Dat

R 20 i

m.u'“‘""‘v /Ff/ﬂ $-"J'uf‘ j- ‘m{‘“
4

mt: '
% ) B .1.".?" .

C. All IR color. Bands 4-5-7 = BGR.

A_ Normal color. Bands 1-2-3 = BGR.

From our text by Sabins

6 TM bands (excluding TIR), so expect 6 PC Eigenvectors



A. PC image 1 (88.4 percent). B. PC image 2 (6.6 percent).

From our text by Sabins

* PC Components from Fig. 08.27
* First component is often mostly topography related shading
* Second component is often the dominant “color” differences



Principal-components
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Statistical method for determining
“different ways” in which data vary

Suppose you measure weight, height for each person in room,
and plot that data.

Most of the variation falls along a single line which could be
described as “big people” vs. “small people”
—  Define 1s eigenvector: bigness =W + H

Smaller variation falls along a line at right angles to this:
—  Define 2nd eigenvector: heaviness = W — H

If you had a third measurement — kg of body-fat, you could
define a 3 eigenvector which distinguished between being
heavy because you were fat, or heavy because you had lots of
muscle.

In general:
yi=apx;tapX;
Y2 =2y X; tay X,

For remote sensing
- Different measurements X, X, ... different bands

—  First eigenvector y, might be light rocks vs. dark rocks
—  Second eigenvector might be tan vs. red rocks
—  Third eigenvector might be “clay rich” vs. “clay poor”

Total # of “eigenvectors” equal original # of bands
First eigenvectors explains most of variation
Last eigenvectors may just be “noise”



v

Thermopolis Data

C. PCimage 3 (2.4 percent). E. PC image 5 (0.5 percent).

From our text by Sabins

e 3rd 4t etc. components may be more subtle “color” variations
* Last components are mostly noise, or minor “color” differences



