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Mon.  Mar. 19, 2018

• Exam and Semester Avg. Grades

• Radar  (Ch. 6)  Part 1

• Reading:  Finish Ch. 6, Start Ch. 7 (Radar)

Also:  For lab on Wed., jump ahead and read 
part of Ch. 8 (pg. 281-287) on Multispectral 
Classification, especially Fig. 8-31 & 8-32.
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Radar 

• Broken up into Ch. 6 (theory) and Ch. 7 (applications)

• It will be on Final Exam but not on Midterm, since we won't 
have time for Radar homework

• Once again the radar INSTRUMENTS Sabins describes are 
old and obsolete, but the theory/techniques still apply



3

Midterm Exam Results

• Median 82,  Average 77
• Review #4, #6, #9, and #11



4

Semester Averages

• End-of-semester averages will probably be slightly lower, 
since they will include final exam, and exam grades are on 
average a little lower than lab+homework.
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Radar Advantages

• Penetrates clouds
– Especially important for tropics and high latitudes (sea ice)
– Venus, Titan, subsurface of Mars

• Penetrates to “moderate” depth in surface
(varies with wavelength)

• Can obtain information on ~cm to ~m scale structure
– Longer wavelength ~matches structure size
– Can use polarization information

• Interferometry can measure ~cm scale motion
– Motion on faults, subsidence, glaciers

• Can sense moisture content in soils
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Radarsat-2:  
North end of 

Sermilik fjord, 
Greenland

RGB = (HH, V V, HV)
25km x 50km
25m resolution

Fenrisgletscher glacier

Fjord, with different
types of sea ice and
leads (open water)
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Radarsat-2:  
Iqaluit community

Frobisher Bay, Baffin Island

RGB = (HH, V V, HV)
25km x 28km
8m resolution

Community, Airfield

Striations,
typical of glaciated terrain

Bay mostly ice covered, 
but large tidal variations
open up leads
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Venus, Magellan Spacecraft:  Craters
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Venus, Magellan Spacecraft: Pancake Domes

• Pancake domes formed from very viscous lava
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Venus, Magellan Spacecraft: Corona

From Stofan et al.  1997 in Venus II
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Active System

• Provide source of EM radiation you observe

• Send brief pulse (or sometimes “chirp”)
• Control wavelength (frequency) and polarization of signal sent

• Observe some or all of following parameters of returned signal
– Delay time of returned pulse(s): Gives distance of source
– Direction from which signal returns:   May determine “azimuthal spatial 

resolution”
– Strength of returned signal:  How well does target reflect signal?
– Wavelength (Doppler) shift of returned signal:   Speed of target

• In “side scan radar” can also be used to provide enhanced azimuthal resolution 
– Polarization of returned signal:  Scattering of light within target
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Common Wavelengths
Name Wavelength (cm) Frequency (GHz)

K 0.8 – 2.4 40.0 – 12.5

X (3 cm) 2.4 – 3.8 12.5 – 8.0

C (6 cm) 3.8 – 7.5 8.0 – 4.0

S (8 cm, 12.6 cm) 7.5 – 15.0 4.0 – 2.0

L (23.5 cm, 25 cm) 15.0 – 30.0 2.0 – 1.0

P (68 cm) 30.0 – 100.0 1.0 – 0.3

ν=
c
λ
=

3×108  m/s
λ
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Radar Overview

• Unusual geometry  (often viewed “from side”)
• Unusual scattering mechanisms

• Highlights
• Shadows
• Diffuse surface
• Corner reflectors
• Specular 

(smooth) surface

Sabins  Fig. 6-3
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Radar Typical Scene
• Highlights:  Near side of mtn.

• Shadows:  Far side of mtn.

• Diffuse surface:  Forest

• Corner reflectors:  Bridge

• Specular (smooth) surface:  
Lake

Sabins  Fig. 6-4
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Radar Resolution:  Real Antenna
• Crosstrack = RANGE resolution:  

Set by pulse length
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Radar Resolution:  Real Antenna
• “Radial” resolution: 

r = ct / 2= c/2

For 0.1 s pulse
 r = 3108 m/s  0.110-6 s / 2    = 15 m

• Crosstrack = RANGE resolution:
in horizontal direction
Rr = ( c) / (2 cos(γ) )

15 m / cos(35o) = 18.3 m
15 m / cos(50o) =  23.3 m

• Along-track – AZMUTHAL Resolution
– Real Aperture – set by angular width of antenna 

pattern
  /D
– Ra = S * (0.7 /D)          

S = slant range  D = antenna length

• Synthetic aperture – related to Doppler resolution
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Radar Resolution:  Synthetic Antenna

• Two different kinds of 
“synthetic aperture synthesis”

• Use “Doppler Effect”

• Record and “electrically” 
combine signals from radar at 
different positions to make 
longer effective antenna
– Need “phase” information, so 

doesn’t work with visible light
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Scattering Geometry

• Amount of energy sent back to receiver depends on:
– incidence angle
– degree of scattering in target
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Stealth Aircraft avoid right angles

Sabins
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Look direction also important in geology

Sabins Fig.  6-12  pg. 187
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Multiple Reasons for Dark or Bright Returns

• Dark Returns
– Flat surface of high reflectance (energy reflects away)
– Areas sloping away from flight path are shadowed
– Area of low reflectance (energy is absorbed)

• Bright Returns
– Flat surface of high reflectance perpendicular to beam
– Strong dihedral angle reflectors (multiple reflections)
– Rough areas of high reflectance

• Will return to “Radar Returns” after covering geometry
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Shadowing

Shadowing occurs because 
tall objects do not allow the 
low-angle radar beam to 
illuminate the area on steep 
slopes facing away from the 
flight path.

Mt. Rainier
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Distortions of Radar Images: Foreshortening

Foreshortening (like layover) is 
due to the return from the top of 
a tall object coming too soon.
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 Distortions of Radar Images: Layover

Layover is caused by the 
return from the top of 
the peak coming in 
before or at the same 
time as the return from 
the base.
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Two depression angles (i.e. 2 offset passes)
can produce stereo radar
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• Transmit   Receive
– HH     parallel polarized
– HV cross polarized
– VV parallel polarized
– VH cross polarized

• Single reflection:
– Preserves linear polarization
– Reverses clockwise or counterclockwise sense
– Produces stronger return for E in plane of surface

• Multiple oblique reflections (volume scattering)
depolarize returned signal

Polarization Images

From our text by Sabins
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Radarsat-2:  
North end of 

Sermilik fjord, 
Greenland

RGB = (HH, V V, HV)
25km x 50km
25m resolution

Fenrisgletscher glacier

Fjord, with different
types of sea ice and
leads (open water)
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Radar Interacts with 
Volumes

Because of 
substantial 
penetration the 
returns from most 
materials represent 
a volume 
interaction.
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• Normally Range resolution determined by length of pulse:
– Rr = ( c) / (2 cos( ) )   where  = pulse time,  = depression angle
– Occurs because you compare time of pulse return
– Pulses should not overlap (much) to resolve targets

• With interferometry, compare phase of wave, not time of pulse
– Resolution similar to wavelength

Interferometry
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• Can measure distances to a fraction of a 
wavelength

• Often used to measure changes in 
distances between measurements taken at 
two different times
– Earthquake fault motion
– subsidence
– glacier/ice sheet motion

Interferometry

From our text by Sabins
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• Very large eruptions in distant past
• Evidence in magma emplacement underground

Long Valley Caldera

From our text by Sabins
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• Each “fringe” usually a shift of /4
• Not entirely clear from Sabins how this has been processed
• Better examples in lab and later lectures

Long Valley Caldera

From our text by Sabins



  33PALSAR  2007  May 5 vs. June 20 difference.  Contours are LOS (line-of-site) mm 
From “ascending” passes – looking along the rift

Dike injection on Kilauea NE rift zone
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PALSAR  2007  Feb. 28 vs. July 16 difference.  Contours are LOS (line-of-site) mm 
From “descending ” passes – with component perpendicular to rift.  Rift flanks rise and separate.

Dike injection on Kilauea NE rift zone
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• Rayleigh criterion
smooth if h < / (8 sin  )

• Peake and Oliver define  
3 categories:

smooth:           h <  / (25   sin )
rough:              h >  / (4.4  sin )
intermediate:   h between above

Roughness Criteria

From our text by Sabins

X (3 cm) C (6 cm) L (23.5 cm)

Smooth:  h< 0.19 cm 0.37 1.46 cm

Rough:   h> 1.06 cm 2.12 cm 8.31 cm

For  = 40o



36

• Rayleigh criterion
smooth if h < / (8 sin  )

• Peake and Oliver define  
3 categories:

smooth:           h <  / (25   sin )
rough:              h >  / (4.4  sin )
intermediate:   h between above

Roughness Criteria

From our text by Sabins

X (3 cm) C (6 cm) L (23.5 cm)

Smooth:  h< 0.19 cm 0.37 1.46 cm

Rough:   h> 1.06 cm 2.12 cm 8.31 cm

For  = 40o



37

Backscatter Coefficient:  
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Death Valley Alluvial Fans
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Devil's Golf Course
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Roughness at Copper Canyon

Sabins  Fig. 6-36 a  (pg. 206)

X Band  (3.0 cm)
Smooth           < 0.19 cm
Intermediate   0.19  1.06 cm
Rough             > 1.06 cm

h = 12.0 cm – Rough, bright

h = 1.0 cm -- Intermediate

h = 0.2 cm   ~smooth, dark
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Roughness at Copper Canyon

Sabins  Fig. 6-36 
(pg. 206)

                     X (3.0 cm)       L  (23.5 cm)
Smooth        < 0.19 cm          < 1.46 cm
Rough          > 1.06 cm           >8.31 cm

Main difference 
may be lower 
resolution 
of L band data 

( is 8  larger, 
so Ra 8  worse if 
all else is equal)

Also have some 
effect from 
different 
“roughness” limits
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Roughness at Copper Canyon

Sabins  Fig. 6-36 
(pg. 206)
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Dielectric Constant

Sabins  Fig. 6-27

Dielectric Constant:  
  Amount of “polarizability” of medium
   reduces internal E field

Index of refraction n  1/2

At radio (radar) frequencies 
the polar H2O molecules can partially align,
giving large :

   Rock and dry soil:  ~  4 to 8

   Water:                    ~ 80

So a small amount of water changes
index of refraction (and scattering) a lot.
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Moisture and Scattering

Sabins  Fig. 6-28

Using  
Backscatter Coefficient 
to estimate 
soil moisture content
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Radar after rainstorm

Sabins  Fig. 6-29, from Ulaby et al, 1983

Damp soil is much more reflective


