Fri. Jan. 26, 2018

- Demonstration of QGIS with GPS tracks
- Types of data, simple vector (shapefile) formats
- Map projections, Coordinate Reference Systems
- Demonstration of QGIS with geologic map

Raster vs. Vector Data

- Raster data:
 - An matrix of cells, each of which contains some value
 - Good for:
 - Intensity in an image
 - Radar reflectivity vs. position
 - Height vs. position
 - There is some implicit relationship between row and column index (i, j) and position in space (x, y)
 - If there is a constant scale the relationship is simple and linear
- Vector data:
 - A list of (x, y) coordinates, and often some value specified at that coordinate
 - Good for:
 - Plotting lines in space (roads, rivers, borders, contours, etc)
 - Heights of discrete locations such as mountain peaks
 - Locations of discrete features

Coordinates

- "Geographic" vs. Projected
 - "Geographic" coordinates usually mean (longitude, latitude)
 - Projected coordinates are (x,y) values on some "map"
 The relationship between (x,y) and (long., lat) depends on the type of "projection"
- Datums: Set of assumptions about the shape of the Earth and the location of the reference points which go into determining the coordinates of a given spot on the surface:
 - Would be simple if the earth were a sphere of perfectly known size, but it is not.
 - The same location can have different coordinates in different "datums".
- Coordinate Reference System (CRS): Choice of datum, geographic vs projects values, etc., which are inherent in the location information given with a vector or raster data set.
- On-the-fly projection: The ability of a GIS system to simultaneously display multiple data sets that have different CRS's, without you first having to "reproject" them to a common CRS.

Datums

- Datums: Set of assumptions about the shape of the Earth and the location of the reference ponits which go into determining the coordinates of a given spot on the surface:
 - All this would be simple if the earth were a sphere of perfectly known size, but it isn't.
 - Some of the assumptions:
 - Location of the "prime" meridian (i.e. Greenwich, Paris, etc.)
 - Equatorial and Polar Diameter or Equatorial + Flattening (or some other combination)
 - Non-ellipsoidal terms (usually ignored)
 - Planetographic vs. Planetocentric Latitude (not really part of "Datum" choice, but explanation fits here)
 - NAD27 = North American Datum of 1927 (Used on most printed USGS maps)
 - NAD83 = North American Datum of 1983
 - WGS84 = Wold Geographic System of 1984 (common default for GPS devices -- but they can be switched to use others)
 - Differences between NAD27 and WGS84 "UTM" coordinates are 100's of meters near Laramie -- can be km in places
 - Latitude and Longitude values for a given spot also change with datum -- although typically not as much
 - Changes with time: NAD83 fixed to North American Plate -- WGS84 is a "world average"

Map Projections

- If region covered is large enough, you must consider the curvature of the Earth
- Impossible to display curved surface on flat paper (or computer screen) without some distortion.
- Standard map "projections" define the distortion
 - Can be geometric "projection" or more complicated math formulae
 - "Project" sphere (or ellipsoid) onto a (rolled up) plane (then if necessary unroll plane)
 - Different projections have different advantages/disadvantages
 - Mercator good for navigation because azimuth (compass) directions correct
 - Mercator bad for estimating size of regions exaggerates high latitudes
 - All can be reduced to a pair of formula for converting (latitude, longitude,) = (λ, ϕ) into (x, y)
 - Notation: Lines of latitude = "parallels", Lines of longitude = "meridians"
- John P. Snyder, 1987 "Map Projections A Working Manual"
 - USGS Professional Paper 1395, available on USGS web site

Orthographic Projection

- "True perspective" image as if taken from a very large distance
- "Sub-satellite" location is presented "without distortion"
- Locations towards the "limb" are badly foreshortened

Orthographic projections of Io from different locations 6

Orthographic projection of earth – from location over equator. From Wikipedia

Distortion: "Tissot's Indicatrix"

- "True perspective" image as if taken from a very large distance
- "Sub-satellite" location is presented "without distortion"
- Locations towards the "limb" are badly foreshortened

Tisso't Indicatrix for orthographic projection From Wikipedia Orthographic projections of Io from different locations 7

"Regular" Cylindrical Projections

C. Regular cylindrical (Mercator).

- "Regular" cylindrical projections align cylinder with rotation axis
- Different versions plot latitudes differently
- Only one or two latitudes (usually equator) can be plotted without distortion
 - Equirectangular Plate Carrée (flat square)
 - $x = \phi$, $y = \lambda$ produces 2 x 1 rectangle
 - Simple conversion (useful for computer storage)
 - Mercator
 - Preserves azimuth (compass) directions
 - Can't extent to poles (y would be infinite)
 - Miller
 - Compromise between above two

Distortion in Cylindrical Projections

- In all regular cylindrical projections the horizontal scale becomes "infinitely large" as you approach latitudes \pm 90°
- Plate Carrée keeps the vertical scale constant for all latitudes
 - Different horizontal and vertical scales means shapes and directions are distorted

- Mercator stretches the vertical scale just as much as the horizontal scale as you increase latitude
 - Shapes and directions remain correct (i.e. they are "conformal") but sizes grow infinitely large at high latitudes
- True circles of constant size are "Tissot's Indicatrix", used to indicate amount of distortion

Images from Wikipedia

Transverse Cylindrical Projections

D. Transverse cylindrical (Transverse Mercator).

From our text by Sabins

- Regular cylindrical has distortion at arbitrary latitude.
- Transverse cylindrical projections use a sideways cylinder
 - Line of contact between sphere and cylinder is some (arbitrary) meridian (line of longitude) instead of the equator
- Instead of being distortion free along the equator, it is distortion free along that line of longitude
- Transverse Mercator" maps are transverse cylindrical, with "Mercator-like" projections in the opposite direction
- <u>Universal Transverse Mercator</u> maps are Transverse Mercator, with a set of standard choices for different lines of longitude (zones) and other constants
 - Used for some USGS 7.5 minute quad series
 - Basis for UTM coordinate systems

UTM Zone System

• UTM System has

Image from Wikipedia

- 60 standard longitudes zones 1 60
- 20 standard latitude zones denotes by letters
- UTM coordinates measure "projected" distance N from equator, and E within that zone relative to the zone's standard meridian
 11

Oblique Cylindrical Projections

Figure 8-13 Space Oblique Mercator projection of Landsat images.

From Sabins text

- Oblique cylindrical projections use a contact circle between the sphere and the cylinder which is neither a line of latitude or a line of longitude
 - No distortion along that "great circle"
- Choosing the circle which matched a satellite's orbit plane would be ideal for satellite mapping except the Earth rotates beneath the orbit plane.
- <u>Space Oblique Mercator</u> projections contain additional "fudges" to compensate for the Earth's rotation.
 - Used for Landsat
 - Scale constant over 185-km swath by 170-km length to within 0.015%
- QGIS and other software can convert images to different projections if needed.

Other Projections

- - From Wikipedia

Conical – project onto cone then "unroll" the cone

- Various pseudo-cylindrical projections typically limit the stretching of the horizontal scale as one approaches the poles – as a compromise between distorting shapes and stretching sizes.
- "Sinusoidal" keeps E-W scale constant, preserving area at the expense of shape and angle.