Introduction Geophysics Lab

Derivation of Spherical Snell’s Law for radial symmetric velocity model $v(r)$

1. Assume a spherical earth where velocity is only a function of radius $v(r)$. Assume a ray that is incident at the top of the first spherical layer with an angle of incidence (Θ_1). Use the angles and layer velocities defined in the chalkboard figure. You should rewrite your derivation two or more times to get a clean, erudite, logical, and ‘pretty’ derivation.

 a) Do a derivation of $f(\Theta_1) = \Theta_2$
 b) Do a derivation of $f(\Theta_1) = \Theta_3$

2. Assume a spherical earth with four velocity layers ($v_1=2$, $v_2=3$, $v_3=4$, $v_4=5$ km/s) where the interfaces are at $r_1=400$, $r_2=300$, $r_3=200$ km. Use the angles and values as defined for the chalkboard figure. Assume the angle of incidence at the top of the first layer is $\Theta_1 = 10°$.

 Algebraically (no numbers) derive the equation
 a) $\Theta_2 (\Theta_1)$
 b) $\Theta_3 (\Theta_2)$
 c) $\Theta_4 (\Theta_3)$

 Now, substitute in the appropriate values for the variables into the three equations above (a-c) and find the angles. The correct answer is that $\Theta_4 = 60.1°$.

 d) Calculate value of equation (a).
 e) Calculate value of equation (b).
 f) Calculate value of equation (c).