Fall, 2015 (only)

					V
Table 1. Summar	y of the hydrauli	c tests done at th Blai	r Wallis Fractured Roc	k Hydrology Research Site	

1Bailer tests at BW3 and BW5Determine relative magnitude of aquifer near-wellbore K_H in select boreholes9/11/20 15From 15 min (BW5) to 5 hours (BW3)BW3: K_H ranges from 2.0E-8 to 1.0E-7 m/s, assuming Re=3Rw to 1000Rw.Slug test sln applied assumptions. The es horizontal isotropic the vertical distance an isotropic K_H is ob	ed with its accompanying estimated K_H is an equivalent c conductiivty averaged over e of the open borehole. Only obtained, even though K_H ic.
2.3E-6 m/s, assuming Re=3Kw to could be anisotropic 1000Rw. The estimated Kw is a <i>near-</i>	
<i>wellbore</i> parameter, due to the short test duration and the small perturbataion (e.g., basically a variable rate injection test at each borehole).	
2Step test at BW4Determine a stable discharge rate for a subsequent constant- rate pumping test in BW4, the deepest well with the highest K _H (from drilling observations). Flow rate was stepped from 3 to 6 pgm using a Redi-Pump.10/2/20 15207 minutes total:BW4: K _H is estimated from the recovery-phase of the drawdown data: 3.7E-6 to 5.7E-6 m/sWe pumped BW4, g drawdown at 3gpm f cloudy with red silts pumping BW4, more parameter, as the volume of rock tested is likely greater than that of Bailer tests. K _H is estimated using Cooper-Jacob analytical sln (lateral flow without vertical leakage nor boundary effect).We pumped BW4, g drawdown at 3gpm f cloudy with red silts pumping BW4, more 	got 2.8 gpm per foot of a for 100 min. Water became ts after 12 min. At 6 gpm ore sediments came out & gged at 121 minute. Stopped attered the recovery phase tored until the elapsed time s 207 min. Collected the which are identified by Brad oken granite & powdery rocks ponse was observed in BW1 and duration of the step test – ring well approximately 50 m
3 Airlift Test Clean up BW1, our $10/20/2$ 2.4 hours airlift BW1: K _H is estimated from the Water rate (discontinue) at BW1 main observation 0.15 test + 50 min of recovery-phase of the drawdown at 1.5 mm for 2.4 hours	tinuous at times) is averaged

			1			
		well for BW4.		monitored WL	data: 4.2E-7 m/s.	not appear to decline with time; At the end of
				recovery.		air-lift test, the water had cleared up
					The estimated K _H is a <i>near-to-</i>	considerably with only a trace of very fine
					further-away from wellbore	brown sediment. Water levels did not change at
					parameter, estiamed with the	observation wells BW-4, BW-2, and BW-5
					Cooper-Jacob sln.	during air-lift at BW-1;
4	Airlift test	BW4 is envisioned	10/21/2	3 hours airlift	BW4: $K_{H}=2.2E-6 \text{ m/s}$	Water rate was continuous at an average rate of
	at BW4	to be a future	015	test $+$ 53 min of		12.5 gpm for 3 hours; recovery data also
		pumping well.		monitored WL	The estimated K _H is a <i>near-to-</i>	obtained; At the end of air-lift test, the water
				recovery	further-away from wellbore	had cleared up considerably with only a trace of
					parameter, estiamed with the	red-brown sand and occasional granite rock
					Cooper-Jacob sln.	fragments. During the airlift test, water level at
						nearby observation well BW-1 rose 0.02 feet
					This is consistent with the earlier	and was unchanged at far field well BW-2. The
					estimate from the first step test on	rise was attributed to either barometric effect
					this well.	(later, this was determined unlikely) or due to
						aquifer poroelastic response to pumping stress.
						The airlift test also appears to have changed the
						hydraulics of BW4 slightly, as a new head
						equilibrium is achieved after WL recovery.
5	Airlift test	BW5 was	10/21/2	2 hours of airlift	BW5: K _H =1.57E-7 m/s	Water rate is around 2~3 gpm for 2 hours; water
	at BW5	envisioned to be	015	+232 min of		rate is continuous and gradually declined with
		both a monitoring		monitored WL	The estimated K _H is a <i>near-to-</i>	time from an initial 3 gpm to a final 2.2 gpm. At
		well for future		recovery	further-away from wellbore	the end of air-lift test, water had cleared up
		pumping test at		-	parameter, estiamed with the	considerably with only a trace of light gray silt
		BW4, and a possible			Cooper-Jacob sln.	(bentonite?) and occasional coarse granite rock
		pumping well itself.			-	fragments. By the end of air-lift test at BW-5,
					This is consistent with the earlier	water levels at observation wells BW-2, BW-1
					estimate made from the Bailer test	and BW-4 had risen 0.01 to 0.02 feet. This is
					assuming a small radius of pressure	likely due to aquifer poroelastic response.
					perturbation.	
						Detailed discussion of the airlift tests was sent
						to the group in late November, 2015.
6	Step test at	Determine a stable	11/16/2	260 minutes	Parameter is not estimated as W	The well efficiency is of interest, as significant
	BŴ4	discharge rate for a	015	total test	L recovery data were not	turbulence can develop in the pumpoing well
		subsequent constant-		duration;	downloaded. We wish not to disturb	when well rate is too high. The turbulent head
		rate pumping test in			the transduers before the subsequent	loss is computed as 17% of the total drawdown
		BW4. Flow rate was		Snow storm	pumping test at the same well.	at 20 gpm discharge rate; the turbulent head

	stepped from 10, to 20, to 32 gpm using a 3-inch submersible pump with a maximum capacity of 32 gpm. Note that the pump diameter (and capacity) is limited by the borehole diameter, which is around 3.8 inches in the open interval.		during most of the test.	During the step test, negnlible WL response was observed in BW1 and all other wells. No WL response observed in the Blair Creek staff gauge insalled by Ye.	loss is computed at 69% at 32 gpm discharge rate. The design discharge rate is determined to be 23 pgm for the subsequent pumping test at BW4. Note that any possible drawdown in BW1 during a long-term pumping test at BW4 is proporational to the discharge rate. Thus, if discharge rate is too small, drawdown in BW1 will likely be difficult to see; however, if discharge rate is too large
7 Pumping test at BW	Determine aquifer parameter and interwell hydraulic connectiivty between BW4 and other wells	11/18/2 015 ~ 11/19/2 015	 28 hours; Snow storm during Day 1 of the test. A constant pumping rate was not maintained; later a tub test by the drillers determined that the pump was defective. The pump was sent back to the manufacturer; we expect a resolution by mid January. 	Parameter estimation is largely unsuccessful because the discharge rate was not constant. Although K _H heterogeneity is inferred from the drawdown data in BW4 (see Comments). WL rise was observed in BW-1, which is inteprested as aquifer poroelastic repsonse. Any possible drawdown at BW-1 may have been masked by this WL rise, thus drawdown reaonse in BW1 (<i>i.e.</i> , <i>hyraulic connection bewteen BW1</i> <i>and BW4</i>) cannot be confirmed given the data we have (Figure 1). No WL response observed in the Blair Creek staff gauge insalled by Ye. The creek bed is about 6 m lower from the top of BW4, while the static WL in this and other wells is around 12 m. The saturated zone appears to be 6 m deeper than the creek, suggesting that potentially	 There are 2 straight-line slopes identified from the semi-log time-drawdown data of BW4: Slope 1 from 40 to 400 minutes during which the pump rate declined from 23 to 18 gpm. A later test by drillers determined that the pump was detective. The inferred K_H will reflect near well fracture network. Slope 2 from 400 min to end of the test, where pump rate declined from 18 to 14 gpm but time-drawdown slope steepens. In the absence of T variation, hydraulic boundaries, or fracture closure, slope should have flattened in response to declining Q. Simple explanation is that cone of depression encountered a low K network, thus, as the cone expands, transition from relative high T to relative low T may have been observed. Possible "bottleneck" effect at regional scale, per personal communication with Allen Shapiro at USGS. Note that barometric data were also collected: based on both water pressure and air pressure data, the barometric effect at the boreholes was determined to be negligible. This is likely because the wells are quite shallow. Thus, the observed WL rise is likely due to aquifer poroelastic response to pumping.

		there is either a hydraulic separation or limited hydraulic communication	test was sent to the group around Dec 2, 2015.
		bewteen groundwater and surface	
		water.	

WL is water level, T is transmissibility, and K_H is an average horizontal hydraulic conductivity. "#" denotes the sequeque of tests done. The bold texts indicate the scale of the aquifer investigated by the different tests. With the exception of the Bailer test, water chemistry (pH, conductivity) and suspended sediment content were also meauserd, though they are not reported here.

Figure 1. WL observations in BW4 and BW1 during the step test and long-term (28 hour) pumping test from Nov 16 to Nov 19. Note the slight water level rise in BW-1 in response to pumping in BW4. DTW: depth to water, which is plotted in linear (top) and log scale (bottom). At the Blair site, the aquifer is significantly shallow and connected to the atmosphere thus barometric influences on the measured WL is negligible. Thus, this WL rise is interpreted to be a poroelastic response. Similar poroelastic response is also observed during the earlier, shorter duration airlift tests at the site.

At Blair Wallis, bulk (matrix+fracture) k from small-scale well tests ranges from 1.0E-14 (BW3) to 5.0E-13 (BW4) m². In comparison, Gimmi et al. [1997] estimated a permeability of 10-18 m² for a crystalline rock that lacks fractures at the investigation scale. Using packer tests, Snow [1979] reported bulk permeability at 10-14 m² for most of the fractured crystalline rocks he considered. Caine et al. [2003] similarly estimated a bulk permeability of 10-13 to 10-14 m² for intensively fractured crystalline rock in the Turkey Creek Watershed of the Front Range of Colorado.