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1 Why is it called “Linear Algebra”?

Linear algebra is the study of linear functions/equations. A linear equation is one in which each
term is either a constant or the product of a constant and the first power of a single variable. A
linear function is one which obeys the two properties f(x) + f(y) = f(x + y) and f(αx) = αf(x).
These equations can always be written in the form

ax3 + bx2 + cx1 + x0 = 0

If an equation cannot be written in this form, it is not linear.
The name “linear” comes from the two variable case x2 + x1 + c = 0, because the set of all

solutions to this equation forms a line. In general, the solution to an nth order linear equation is a
hyperplane of dimension n− 1.

2 What is a Matrix?

A matrix is simply a function. We are used to the notation y = f(x), where the input x is operated
on by the function f to produce a value y. A matrix is just one particular type of function. The
notation used is Fx = y, where F is the matrix, but generally captial letters at the beginning of
the alphabet are used to represent matrices, so you will often see Ax = b instead.

2.1 Input and Output

A matrix is a function that takes a vector as input and produces a new vector as output. The input
and output vectors are constrained to be a particular size, given by the number of columns and
number of rows of the matrix, respectively. The size of a matrix is stated as m x n (read “m by
n”), where m is the number of rows, and n is the number of columns.

2.1.1 Example

A 4x3 matrix takes vectors of length 3 as input and produces vectors of length 4.

3 Definitions

3.1 Linear Independence

The only solution to Ax = 0 is x = 0. Cannot combine any of the vectors with any weights to
obtain 0, ie. vectors are not multiples of each other and can not be formed by any combination of
the other vectors.

3.2 Vector Space

A set of vectors which has defined scalar multiplication and vector addition. A vector space must
contain the zero element so that it is “closed” under addition. This means that if you add two
vectors in the space, the result must also be in the space. This is impossible if it does not contain
0 because if you add a and −a, you get 0.
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3.3 Basis

n independent vectors that span a space exactly n dimensional. If there are n + 1 or more vec-
tors in an n dimensional space, then there are “too many”, which means they cannot be linearly
independent. If there are “not enough” (less than n) vectors, then they cannot span the space.

4 Matrix Terminology

• Minor: The determinant of a submatrix.

• Principal minor: If a minor came from a submatrix where the list of indices of the rows used
is the same as the list of indices of the columns used.

• Leading principal minor: a minor that came from the top left corner of a matrix (a principal
minor where the index list that is shared by rows and colums is 1,2,3,..., k.

• Positive definite: All leading principal minors are positive. This means for any vector x,
xTAx > 0.

• Positive semi-definite: All leading principal minors are positive. This means for any vector x,
xTAx ≥ 0.

• Negative definite: All kth order leading principal minors are negative if k is odd and positive
if k is even. This means for any vector x, xTAx < 0.

• Negative semi-definite: All kth order leading principal minors are negative if k is odd and
positive if k is even. This means for any vector x, xTAx ≤ 0.

5 Gaussian Elimination

5.1 Idea

Convert a matrix into row echelon form using elementary row operations. What this does is find a
different set of equations with the same solution.

The is used to:

• Solve a system of linear equations

• Find the rank of a matrix

• Calculate the inverse of a matrix

A system of equations is very easy to solve after it has been put in row echelon form because
the last equation is immediately a solution (there is only one variable), and each row above it has
only one extra variable. Solving by this process is called back substitution.
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5.2 Definitions

• Row Echelon Form:

– A matrix where the leading coefficient of a row is always strictly to the right of the
leading coefficient of the row above it.

– All nonzero rows are above any rows of all zeros.

• Reduced Row Echelon Form: A row echelon matrix where the leading coefficients of each row
is the only nonzero entry in its column.

5.3 Elementary Row Operations

These actions can be performed on the matrix in any order

• Subtract a multiple of one row from another row.

• Exchange two rows.

• Multiply a row by a scalar.

5.4 Procedure

• Use elementary row operations to produce an echelon matrix (all entries below the diagonal
are 0).

• The first nonzero entry in each row is called a pivot. The number of pivot columns is called
the rank of A.

5.5 Example

??? May not be correct Consider the system of equations:

2x+ 4y − 2z = 2

4x+ 9y − 3z = 9

−2x− 3y + 7z = 10

Step 1: r2 = r2 − 2r1 (l2,1 = 2)

2x+ 4y − 2z = 2

0x+ 1y + 1z = 4

−2x− 3y + 7z = 10

Step 2: r3 = r3 − (−r1) (l3,1 = −1)

2x+ 4y − 2z = 2

0x+ 1y + 1z = 4

0x+ y + 5z = 12

6



Step 3: r3 = r3 − (r2) (l3,2 = 1)

2x+ 4y − 2z = 2

0x+ 1y + 1z = 4

0x+ 0y + 4z = 8

On the ith step, both sides of the equation are multiplied by an elimination matrix: EiAx = Eib 1 0 0
−2 1 0
0 0 1

 2 4 −2
4 9 −3
−2 −3 7

x =

 1 0 0
−2 1 0
0 0 1

 2
8
10


So the complete elimination procedure is: E3E2E1Ax = E3E2E1b

1 0 0
0 1 0
0 1 1

 1 0 0
0 1 0
−1 0 1

 1 0 0
−2 1 0
0 0 1

 2 4 −2
4 9 −3
−2 −3 7

x =

1 0 0
0 1 0
0 1 1

 1 0 0
0 1 0
−1 0 1

 1 0 0
−2 1 0
0 0 1

 2
8
10


5.6 When Elimination Breaks

5.6.1 Case 1

x− 2y = 1

3x− 6y = 11

After elimination, we obtain:

x− 2y = 1

0x+ 0y = 8

This can never be true, so there is no solution!

5.6.2 Case 2

x− 2y = 1

3x− 6y = 3

After elimination, we obtain:

x− 2y = 1

0x+ 0y = 0

This is always true no matter the choice of x and y, so there are infinite solutions!!

6 Finding the Inverse (Gauss Jordan Elimination)

Augment the matrix by the an identity matrix. Perform Gaussian elimination, and then continue
to produce zeros above the diagonal as well. This is called reduced row echelon form. Then divide
each row by its pivot. The result is

[A|I]→ [I|A−1]

7



7 Matrix Factorizations

7.1 LU Factorization

A = LU

• L is a Lower triangular matrix

• U is an Upper triangular matrix

During elimination, the factors li,j are exactly the i, jth entries of the matrix L.
With elimination we obtain EA = U . From this we can see that A = E−1U . This is exactly the

LU factorization.

U = EA

L = E−1

Of course if there is more than one elmination step the inverses of the elimination matrices must
be multiplied in reverse order to get back A. That is:

E2E1A = U

L = E1E2

7.1.1 Example

??? May not be correct From the Gaussian elimination example:

A =

 2 4 −2
4 9 −3
−2 −3 7


E = E3E2E1 =

 1 0 0
−2 1 0
−1 −1 1


U = EA =

8 QR Factorization

A = QR

• Q is an orthogonal matrix.

• R is a Right (upper) triangular matrix.

Let A be defined by column vectors:

A = [−→a
−→
b −→c ]

A = QR = [−→q1−→q2−→q3 ]

qT1 a qT1 b qT1 c
0 qT2 b qT2 c
0 0 qT3 c


Q can be found by using the Gram-Schmidt process on the columns of A. Then R = QTA. R is

upper triangular because the dot product with a vector with any of the vectors before it is 0 (they
are orthogonal). The diagonal entries of R are the lengths of a, b, and c, respectively.
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8.1 Example

A =

 1 2 3
−1 0 −3
0 −2 3

 =


1√
2

1√
6

1√
3

− 1√
2

1√
6

1√
3

0 − 2√
6

1√
3


√2

√
2
√

18

0
√

6 −
√

6

0 0
√

3


9 RQ Factorization

A = RQ

The RQ factorization is similar to QR factorization, except the Gram-Schmidt is applied to the
rows of A instead of the columns of A.

10 Special Matrices

10.1 Permutation Matrices

Has the rows of I in any order (ie. each row has exactly one 1, and each column has exactly 1
one). Left multiplying by a permutation matrix re-orders the rows of A, while right multiplying by
a permutation matrix re-orders the columns of A.

10.1.1 Properties

P T = P−1

10.1.2 Examples

A =

1 2 3
4 5 6
7 8 9

 P =

0 1 0
1 0 0
0 0 1

 PA = AP =

10.2 Projection Matrices

For any subspace, a matrix can be constructed such that when it multiplies any vector, the vector
is taken into the subspace. For a one dimensional subspace (a vector),

P =
aaT

aTa

For a higher dimensional subspace,

P = A(ATA)−1AT

10.2.1 Example

To project any vector on to the vector a =

1
2
2

, left multiply by

P =
aaT

aTa
=

1

9

1
2
2

(1 2 2
)

=
1

9

1 2 1
2 4 4
2 4 4


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10.3 Symmetric Matrices

A symmetric matrix A has the following properties.

• A = AT

• The eigenvalues of A are real.

• The eigenvectors of A are orthonormal. This means that A can be diagonalized with an
orthogonal matrix (A = QΛQT )

10.4 Positive Definite (PD) Matrices

If a matrix A has one of these properties, it has them all. It is called Positive Definite because
xTAx > 0 when x 6= 0.

• A is symmetric.

• All of the eigenvalues are > 0.

• All leading principal minors are > 0.

• All pivots are positive.

det(A) > 0

10.5 Similar Matrices

B is similar to A if it can be written

B = M−1AM

10.5.1 Properties

B and A have the same eigenvalues.

10.6 Orthogonal Matrices

An orthogonal matrix is generally denoted Q.

10.6.1 Properties

• For any shape Q: QTQ = I

• For square Q: QTQ = QQT = I. Only when square is it called an orthogonal matrix (vectors
must also be normalized).

• Multiplication by an orthogonal matrix does not change the length of a vector: ‖Qx‖ = ‖x‖

• det(Q) = ±1

• Dot product of any two columns is 0. This is another way of saying that the columns of Q
are orthogonal.

• Each column is length 1.

10



11 The Four Subspaces

For the following discussion, let A be an m by n matrix.

11.1 Column Space C(A)

• The column space of A is all linear combinations of the columns of A. This is all possible
vectors Ax. The column space can be written

C(A) = Ax = x1A1 + x2A2 + ...+ xnAn

where An is the nth column of A.

• Ax = b is solvable only if b is in C(A).

• Pivot columns are a basis for C(A).

• The column space is a subpace of Rm (C(A) ⊆ Rm).

• After row reduction, the column space is not the same! (C(R) 6= C(A)).

• The dimension of the column space is called the rank.

• The column space is also called the range. With a function y = f(x), the range is all possible
values that y can obtain. The column space is exactly analogous. The range C(A) is the set
of vectors y that y = Ax can obtain.

11.1.1 Example

A =

(
1 2
2 4

)
The columns are not linearly independent, so C(A) is 1 dimensional. It is spanned by

(
1
2

)
.

11.2 Nullspace N(A)

• All solutions to Ax = 0.

• The nullspace is a subspace of Rn (N(A) ⊆ Rn).

• The dimension of the nullspace is called the nullity.

• The nullspace of the row reduced matrix is the same as the nullspace of A (N(R) = N(A)).

11.2.1 Procedure

To find the special solutions(xs): Set one free variable (xf ) at a time to 1 (set the rest to 0) and solve
the system Ax = 0. Each solution is a vector in N(A). We do this to obtain linearly independent
vectors for a basis of the nullspace.
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11.2.2 Example

A =

1 1 2 3
2 2 8 10
3 3 10 13


Perform elimination to obtain:

A =

1 1 2 3
0 0 4 4
0 0 0 0


Pivot variables are x1 and x3 since columns 1 and 3 contain pivots.
Free variables are x2 and x4 since columns 2 and 4 do not contain pivots.
Find Special solutions:
Set x2 = 1, x4 = 0 and solve the system (x1+x2+2x3+3x4 = 0, 4x3+4x4 = 0→ x1+1+2x3+0 =

0, 4x3 + 0 = 0) The result is x3 = 0, x2 = 1. Since x2 is the free variable that was set to 1, this
special vector times any value of x2 is a special solution.

Set x4 = 1, x2 = 0 and solve the system again. This time the result is x3 = −1, x1 = −1. Any
value of x4 times this vector is a special solution.

The special solution is : x2


−1
1
0
0

 + x4


−1
0
−1
1


The nullspace matrix is has the special solutions as its columns: N =


−1 −1
1 0
0 −1
0 1


These vectors are a basis for the nullspace.

11.3 Complete Solution to Ax=b

The complete solution only involves the column space and the nullspace. Geometrically, the solution
to Ax = b is simply a translation of the solution to Ax = 0.

Particular solutions(xp):
Set all the free variables to 0 and solve Ax = b.
The complete solution is x = xp + xf1xs1 + ...+ xfnxsn

11.3.1 Example

Taking the same matrix from the nullspace example, we set x2 = x4 = 0 and solve the system.

11.4 Row Space

• The row space is the span of the rows of A. It is identically the column space of AT , so it is
denoted C(AT ). The pivot rows are a basis for the rowspace.

• The rowspace is not changed during row reduction (C(RT ) = C(AT )). This is because we
are simply producing linear combinations of the rows. Since the rowspace is spanned by the
initial rows, it is also spanned by linear combinations of them.
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11.4.1 Connection to the Nullspace

Ax can also be written


r1 ·x
r2 ·x

...
rn ·x

 where rn is the nth row of A. From this we see another interpre-

tation of the nullspace. Ax = 0 only if the dot product of each row with x is 0. That means each
row is orthogonal to x.

11.5 Left Null Space

• N(AT ) ⊆ Rm

• ATy = 0

• Contains the error of the least squares solution.

• Orthogonal to C(A).

11.6 Summary

The number of solutions can be summarized with the following table:

Shape Shape Description Number of Solutions
r = m = n square 1
r = m, r < n short and fat ∞
r < m, r = n tall and skinny 0 or 1
r < m, r < n degenerate 0 or ∞

The relationship of the four subspaces can be summarized with the following table:

Space ⊥ Complement Subspace of Dimension
C(AT ) N(A) Rn r
C(A) N(AT ) Rm r
N(A) C(AT ) Rn n− r
N(AT ) C(A) Rm m− r

12 Least Squares

When Ax = b is not solvable, use ATAx = AT b, which is x = (ATA)−1AT b. This minimizes
‖Ax− b‖2.

This comes from knowing that the minimum error is achieved when the error is orthogonal to
the estimate. We can write

AT (b− Ax̂) = 0

by expanding this, we obtain the equation AT b = ATAx̂. The solution to this is the least squares
solution.

13



12.1 Example

!!!Test

x+ y+z = −2x

x+ y+z = 6

x+ +z = 1

x+ y+z = −2

x+ y+z = 6

x+ +z = 1

Consider the equations:

x1 + 4x2= −2

x1 + 2x2 = 6

2x1 + 3x2 = 1

They are written in matrix form as:

A =

1 4
1 2
2 3

 b =

−2
6
1


We find ATA =

(
6 12
12 29

)
and AT b =

(
6
7

)
.

Therefore the least squares solution is x∗ =

(
3
−1

)
.

13 Gram Schmidt Orthogonalization

Consider three vectors: a, b, and c. The goal is to produce orthonormal vectors which span the
same space as the original vectors. The first orthogonal vector is chosen to be exactly vector a (this
is an arbitrary choice, the procedure can start with any of them). A vector orthogonal to a can be
produced by projecting b onto a and subtracting the result from b. The next orthogonal vector can
be found by subtracting the projection of c onto a and the projection of c onto b from c. These
three vectors are orthogonal, so we simply normalize them to obtain our orthonormal basis.

q̃1 = a

q̃2 = b− projq1b = b− q1q
T
1

qT1 q1
b

q̃3 = c− projq1c− projq2c = c− q1q
T
1

qT1 q1
c− q2q

T
2

qT2 q2
c

q1 =
q̃1
‖q̃1‖

q2 =
q̃2
‖q̃2‖

q3 =
q̃3
‖q̃3‖

14



During these operations, it is convenient to notice that if we compute the actual projection

matrix for each vector, it results in a big matrix multiplication, ie. q2 = b − projq1b = b − q1qT
1

qT
1 q1

b;

the denominator is a scalar. The numerator becomes a 3x3 matrix if we perform (q1q
T
1 )b. However,

if we notice qT1 b is a scalar, this can be performed first, resulting in a vector times a scalar q1(q
T
1 b).

This is clearly much easier.

13.1 Example

Consider the three vectors

a =

 1
−1
0

 b =

 2
0
−2

 c =

 3
−3
3


The solution is:

q̃1 =

 1
−1
0

 q̃2 =

 1
1
−2

 q̃3 =

1
1
1


Where q1 = q̃1√

2
, q2 = q̃2√

6
, and q3 = q̃3√

3
.

14 Determinants

14.1 Idea

• Determinants are a way to determine if a system of linear equations has a unique solution. If
the determinant is 0, the matrix is singular.

• The geometric interpretation is to take a unit cube in Rn and multiply each of its corners by
A. The area of the resulting volume (a parallelepiped) is equal to the determinant of A. In

R2, A =

(
a b
c d

)
brings a square with corners (0,0), (1, 0), (0, 1), (1, 1) to a parallelogram

with corners (0, 0), (a, c), (a+b, c+d), (b, d).

• The determinant function associates a scalar value with a matrix.

14.2 Procedure

14.2.1 2x2

det

([
a b
c d

])
=

∣∣∣∣ a b
c d

∣∣∣∣ = ad− bc

A−1 =
1

det(A)

(
d −b
−c a

)
=

1

ad− bc

(
d −b
−c a

)
14.2.2 3x3

There are two methods:

15



Method 1: Augment a b c a b
d e f e e
g h i g h


Calculate the sum of the products of the right diagonals and then subtract the sum of the

products of the left diagonals.

Method 2: Cofactors

a det

(
e f
h i

)
− b det

(
d f
g i

)
+ c det

(
d e
g h

)

14.3 Rules

1. det(I) = 1

2. Sign of determinant changes when rows are exchanged.

3. Subtracting a multiple of one row from another leaves det unchagned

4. If A is triangular, the product of the diagonal is the determinant. (det(A) = Πiaii)

5. If A is singular, det(A) = 0

6. If A is invertible, det(A) 6= 0

7. det(AB) = det(A) det(B)

8. det(AT ) = det(A)

15 Eigenvalues and Eigenvectors

Eigenvectors are vectors which when multiplied by a matrix do not rotate, but simply are scaled.

Ax = λx

The vector which is not rotated is x and the value λ is the amount that x is stretched when
multiplied by A.

15.1 Procedure

15.1.1 Finding Eigenvalues

Solve Ax = λx,
Ax− λx = (A− λI)x = 0

This is called the characteristic equation. For there to be a non-trivial solution, (A− λI) must not
be invertible. We assume this is true by saying det(A− λI) = 0 and then solving for λ.

15.1.2 Finding Corresponding Eigenvectors

To find the eigenvector corresponding to the ith eigenvalue, solve (A− λiI)x = 0

16



15.2 Properties

• Geometric Multiplicity (GM) = The nullspace of A− λnI is called the eigenspace of λn. The
dimension of the eigenspace is called the geometric multiplicity.

• Algebraic Multiplicity (AM) = The number of times an eigenvalue is repeated as a root of
the characteristic equation.

• If GM < AM , A is not diagonalizable.

• When a matrix is raised to a power n, this is the same as applying the matrix n times.
Therefore, when it acts on an eigenvector v, each application of A stretches v by the associated
eigenvalue. This mean the eigenvectors of An are λn.

15.3 Example

15.4 Repeated Eigenvalues/Generalized Eigenvectors

If the dimension of the nullspace of A− λnI is less than the multiplicity of the eigenvalue, we must
find generalized eigenvectors and the best we can do is A = SJS−1 (we can’t diagonalize the matrix,
we can only write it as a Jordan form).

We find these vectors by solving:

(A− λI)xk = xk−1

where x0 = 0.
This is equivalent to saying

(A− λI)kxk = 0

15.4.1 Example

A =

(
1 1
0 1

)
The eigenvalues of A are λ1 = 1 and λ2 = 1. We find one eigenvector by solving (A− λ1I)x1 =

(A− 1I)x1 = 0. We find the eigenvector x1 =

(
1
0

)
. We then solve (A− λ2I)x2 = (A− 1I)x2 = x1.

We obtain x2 =

(
0
1

)
. This is a generalized eigenvector.

15.5 Properties

• Πiλi = det(A)

•
∑

i λi = trace(A) (The trace is tr(A) =
∑

iAii)

15.6 Diagonalization

Let S be the matrix with the eigenvectors of A as its columns. Λ is the matrix with the eigenvalues
of A on the diagonal.

A = SΛS−1

This is very helpful in raising matrices to powers. If A is in the form A = SΛS−1 then A2 =
SΛS−1SΛS−1 = SΛ2S−1 and in general An = SΛnS−1.

If the matrix cannot be diagonalized, then the SVD must be used.
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15.6.1 Exponential of a Matrix

We wish to find
eAt

Look at the Taylor series expansion of ex around 0.

ex = 1 + x+
1

2
x2 +

1

6
x3 + ...

Substitue x = At to obtain

eAt = I + At+
1

2
(At)2 +

1

6
(At)3 + ...

Substitue the diagonalized version of A (SΛS−1)

eAt = I + SΛS−1t+
1

2
(SΛS−1t)2 + ... = I + tSΛS−1 +

1

2
(tΛ)2SS−1SS−1 + ...

The same series appears again in the middle of the expression.

eAt = SeλtS−1

It’s eigenvalues are eλt.

16 Singular Value Decomposition (SVD)

We want to find an orthogonal matrix that will diagonalize A. This is impossible, so we must find
and orthogonal basis for the column space and an orthogonal basis for the row space. We also want
Av1 = σ1u1 and Av2 = σ2u2, or AV = UΣ.

A = UΣV T

Let A be an m by n matrix.

16.1 U

U is a m by m orthonormal matrix. The columns of U are the eigenvectors of AAT . These are
called the “left singular vectors”. The left singular vectors corresponding to the non-zero singular
values of A (there are r of them) span C(A). The columns of U which correspond to zero singular
values (there are m− r of them) span the left null space of A.

16.2 Sigma

Σ is a m by n diagonal matrix. Σ is the matrix with σi on the diagonal. The eigenvalues of AAT

and ATA are σ2
i . The rank is equal to the number of non-zero singular values.

16.3 V

V is a n by n orthonormal matrix. The columns of V are eigenvectors of ATA. These are called the
“right singular vectors”. The columns of V which correspond to non-zero singular values (there are
r of them) span the row space of A. The right singular values corresponding to the zero singular
values (there are n− r of them) span the N(A).
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16.4 Geometric Interpretation

Let x be a vector. When x is multiplied by V T , this is simply a change of basis, so x is now
represented in a new coordinate system, where the basis vectors are the columns of V . We will call
this resulting vector xv.

When xv is multiplied by Σ, it is scaled in each dimension (now the columns of V ) by the
corresponding singular values of A. We will call this resulting vector xs.

When xs is multiplied by U , it is simply rotated back to the original coordinate system.
??? A takes a vector x and computes the coefficients of x along the input directions v1, ...vn.

The input vector space is Rn because the matrix must be multiplied by an n x Something matrix.
Then it scales the vector by the singular values. Then it writes the vector as a combination of
u1, ..., un.

Uses a different basis for row and column space.

16.5 Mini-Proof

To show that the eigenvalues of AAT and ATA are the singular values of A, start with Av = σu and
ATu = σv. Solve for u in the first equation and substitute into the second to obtain ATAv = σ2v.
You can do the reverse (solve for v in the second equation and substitute into the first) to obtain
AATu = σ2u.

Using this, we can now show that the SVD diagonalizes A. Start with ATAvi = σ2
i vi (from

above). Multiply by vTi : vTi A
TAvi = σ2

i v
T
i vi → ‖Avi‖2 = σ2

i , so ‖Avi‖ = σi. This was from seeing
(vTi A

T )(Avi) is a vector times its transpose. Then again start with ATAvi = σ2
i vi, but now multiply

by A: AATAvi = σ2
iAvi → ui = Avi/σi. This shows that Avi is an eigenvector of AAT .

16.6 Example

A =

(
.96 1.72
2.28 .96

)
= UΣV T =

(
.6 −.8
.8 .6

)(
3 0
0 1

)(
.8 .6
.6 −.8

)T
We can see that the columns of U and V are unit length and mutually orthogonal. ex. .62+.82 =

1 u1 ·u2 = 0

16.7 Solving Linear Equations

17 Summary

Now that we have an introduction to the topic, below is a useful summary that can be used to
quickly answer common question.

17.1 Finding the Rank of a Matrix

• Gaussian elimination.

• If the matrix is square, find the number of non zero eigenvalues.

• If the matrix is not square, find the number of non zero singular values.
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18 Practical Matrix Operations

• Inverse: (AB)−1 = B−1A−1

• Transpose: (AB)T = BTAT

• Derivative: d
dx
Ax = A

• Derivative of quadratic form: d
dx
xTAx = 2Ax
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