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Abstract

Stream–aquifer interaction plays a vital role in the water cycle, and a proper study of

this interaction is needed for understanding groundwater recharge, contaminants

migration, and for managing surface water and groundwater resources. A model‐

based investigation of a field experiment in a riparian zone of the Schwarzbach

river, a tributary of the Rhine River in Germany, was conducted to understand

stream–aquifer interaction under alternative gaining and losing streamflow condi-

tions. An equivalent streambed permeability, estimated by inverting aquifer responses

to flood waves, shows that streambed permeability increased during infiltration of

stream water to aquifer and decreased during exfiltration. Aquifer permeability reali-

zations generated by multiple‐point geostatistics exhibit a high degree of heterogene-

ity and anisotropy. A coupled surface water groundwater flow model was developed

incorporating the time‐varying streambed permeability and heterogeneous aquifer

permeability realizations. The model was able to reproduce varying pressure heads

at two observation wells near the stream over a period of 55 days. A Monte Carlo

analysis was also carried out to simulate groundwater flow, its age distribution, and

the release of a hypothetical wastewater plume into the aquifer from the stream.

Results of this uncertainty analysis suggest (a) stream–aquifer exchange flux during

the infiltration periods was constrained by aquifer permeability; (b) during exfiltration,

this flux was constrained by the reduced streambed permeability; (c) the effect of

temporally variable streambed permeability and aquifer heterogeneity were found

important to improve the accurate capture of the uncertainty; and (d) probabilistic

infiltration paths in the aquifer reveal that such pathways and the associated predic-

tion of the extent of the contaminant plume are highly dependent on aquifer

heterogeneity.
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1 | INTRODUCTION

Surface water–groundwater interaction has received much attention

in recent decades due to its significant impact on the migration of
wileyonlinelibrary.com/journa
contaminants from streams to aquifers and vice versa, thus impacting

drinking water resources. Examples of studies that focus on surface

water–groundwater interaction include bioclogging effects on river

infiltration (Newcomer et al., 2016), temporal variation of streambed
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permeability in flood seasons (Wu et al., 2015), response of surface

water–groundwater exchange flux to varying streamflow (Dudley‐

Southern & Binley, 2015; Fox, Boano, & Arnon, 2014), and migration

of solutes including waste water related contaminants (Engelhardt

et al., 2013; Hammond & Lichtner, 2010; Lasagna, De, & Franchino,

2016; Xie, Cook, & Simmons, 2016). Besides topography and climate,

a key factor that controls surface water–groundwater interaction is

the permeability of both streambed sediments and the aquifer

beneath the stream, which together control the flow pattern and com-

monly displays a high degree of spatial heterogeneity, spanning sev-

eral orders of magnitude (Fleckenstein, Niswonger, & Fogg, 2006;

Sophocleous, 2002; Winter, Harvey, Franke, & Alley, 1998). The per-

meability of streambed sediments can be affected by continuous sed-

iment deposition, remobilization, clogging, and erosion processes,

which can lead to variations of permeability in space and time (Datry,

Lamouroux, Thivin, Descloux, & Baudoin, 2015; Geist & Auerswald,

2007; Pholkern et al., 2015). With the exception of the variability

introduced from chemical reactions, crustal movements, and human

activities, aquifer permeability is commonly considered to be constant

in time and can also display spatial heterogeneity due to spatial vari-

ability of the hydrofacies of different geological media (Comunian

et al., 2016; Fleckenstein et al., 2006; Michael et al., 2010). The varia-

tion of permeability in both space and time may have a profound influ-

ence on surface water–groundwater interaction.

Many field studies have demonstrated the existence of spatial and

temporal variations of streambed permeability (Min, Yu, Liu, Zhu, &

Wang, 2013; Wang et al., 2016; Wu et al., 2015). Many approaches

are available to estimate streambed permeability, such as by direct

measurements (e.g., pumping, slug, and permeameter tests) and indi-

rect estimation (e.g., grain size analysis and seepage meter; Cheong

et al., 2008; Kalbus, Reinstorf, & Schirmer, 2006; Pozdniakov, Wang,

& Lekhov, 2016). Numerous field studies have demonstrated the

importance of variable streambed permeability on surface water–

groundwater interaction (Newcomer et al., 2016; Pozdniakov et al.,

2016; Simpson & Meixner, 2012). In most numerical investigations

of surface water–groundwater interaction, streambed permeability

was assumed to be temporally constant due to difficulties in detecting

and measuring transient variations in permeability (e.g., Engelhardt,

Prommer, Schulz, et al., 2013; Sun et al., 2016; Tian et al., 2015).

Gianni, Richon, Perrochet, Vogel, and Brunner (2016) presented an

analytical model to identify transient streambed permeability by

inverting flood wave responses recorded in the time series of the

stream stage and near‐stream hydraulic head of the aquifer. The aqui-

fer hydraulic head was simulated using a flood wave function and the

streambed permeability, as a parameter of this function, is calculated

via an inverse procedure. By testing using synthetic and field data, this

method has been shown to be robust and reasonably accurate (Gianni

et al., 2016). It further reveals the controlling effect of temporal varia-

tion of streambed permeability on surface water–groundwater inter-

action. However, whether the permeability of the streambed is the

single controlling factor, and under what condition the streambed con-

trols surface water–groundwater interaction, is still unclear.

To model aquifer heterogeneities including facies, porosity, and

permeability, various geostatistical tools have been developed, such

as sequential indicator simulation, hierarchical sequential indicator
simulation, sequential Gaussian simulation, and multiple‐point

geostatistics (MPS; Guardiano & Srivastava, 1993; Pyrcz & Deutsch,

2014; Strebelle, 2000; Zappa, Bersezio, Felletti, & Giudici, 2006; Zhou,

Gómez‐Hernández, & Li, 2012). These geostatistical tools characterize

and quantify spatial variability using probabilistic models to generate

multiple heterogeneous realizations. Multiple realizations of perme-

ability, for example, can be used to quantify the uncertainty of this

parameter and how such uncertainty can propagate into the predic-

tion of flow and transport in aquifers. In studying surface water–

groundwater interaction, geostatistical methods have been adopted

to investigate the impact of aquifer facies on the spatial variability of

stream seepage (Fleckenstein et al., 2006) and the spatial and tempo-

ral dynamics of stream–aquifer exchange (Frei, Fleckenstein, Kollet, &

Maxwell, 2009). Among these methods, MPS overcome the known

limitations of variograms by utilizing the spatial correlation between

variables beyond two‐point statistics. A training image (TI) is used by

MPS to characterize the pattern of subsurface heterogeneity. With a

TI, data scarcity due to limited well information from the subsurface

can often be addressed satisfactorily. MPS has been developed and

applied in many subsurface modelling investigations (e.g., Huysmans

& Dassargues, 2009; Malone, Jha, Minasny, & McBratney, 2016;

Milliken, Levy, Strebelle, & Zhang, 2008; Zovi, Camporese, Franssen,

& Huisman, 2017); however, few studies have adopted MPS to under-

stand the effect of aquifer heterogeneity on surface water–groundwa-

ter interaction.

This paper analyses both streamflow and aquifer monitoring data

collected at a riparian zone of the Schwarzbach river using computer

models to (a) investigate the role of temporal variation of streambed

permeability on surface water–groundwater interaction; (b) determine

the impact of aquifer permeability heterogeneity, as modelled by MPS,

on the prediction of groundwater flow and its uncertainty; (c) identify

the most important time‐variable factors controlling stream–ground-

water interaction under losing and gaining streamflow conditions uti-

lizing uncertainty analysis of the simulated hydraulic head; and (d)

determine the most likely stream water infiltration paths as driven

by stream–groundwater interaction using Monte Carlo‐based ground-

water age modelling, which takes model uncertainty into account.
2 | METHODS

2.1 | Study site

A riparian groundwater monitoring (GWM) campaign was conducted

at a field site along the Schwarzbach river, a tributary of the Rhine

River, which is located southwest of Frankfurt, Germany (Figure 1a).

During the installation of a set of monitoring wells, 44 soil samples

were taken from three observation wells (GWM1, GWM2c, and S2)

with a vertical sampling density of 0.2 m. Based on the grain size anal-

ysis of these samples, intrinsic permeability for each of the 0.2 m inter-

vals was calculated using the Hazen method (Hazen, 1911). Hydraulic

head, stream stage, and precipitation were measured from August 15,

2010, to October 9, 2010 (Engelhardt et al., 2013). Using site data, a

two‐dimensional vertical transect was constructed (Figure 1a,b), which

lies perpendicular to the main stream channel. Based on hydraulic



FIGURE 1 (a) Our study site at a riparian
zone of the Schwarzbach river in Germany
(Engelhardt et al., 2011). (b) A monitoring well
network along a constructed two‐dimensional
vertical transect; location of the transect is
shown in (a) by a triangle symbol. (c)
Histogram of aquifer permeability of the
collected soil samples. GWM: groundwater
monitoring; NW: northwest; SE: southeast
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head data collected from all the monitoring wells at this site, the gen-

eral direction of the groundwater flow is from southeast (SE) to north-

west (NW). The transect thus captures the general groundwater flow

direction and is used for this modelling study to evaluate spatial and

temporal permeability heterogeneity. A detailed description of the

hydrology and hydrogeology of the field site and the installation of

monitoring wells is presented in Engelhardt, Prommer, Moore, et al.

(2013).
2.2 | Characterizing aquifer heterogeneity

Currently, four stochastic modelling techniques are commonly used to

capture geologic heterogeneity and fluvial‐dominated deltaic reser-

voirs: (a) sequential indicator simulation; (b) object‐based modelling;

(c) multiple‐point statistics (MPS); and (d) spectral component geologic

modelling. As tested by Deveugle et al. (2014), unlike MPS, sequential

indicator simulation often fails to capture complex facies architecture

with curvilinear features. For the fluvial system they examined,

object‐based modelling can partially reproduce aspects of facies archi-

tecture whereas spectral component geologic modelling can introduce
unrealistic artefacts to the modelled facies architecture. MPS was con-

sidered the best technique among the four algorithms to reproduce

facies architecture and associated sand‐body connectivity.

To characterize aquifer heterogeneity, a TI was first generated to

capture the facies distribution identified at the study site based on per-

meability histogram. Multiple realizations of facies distributions were

then modelled using MPS, based on multiple point statistics derived

from theTI. Permeability distributionwas then simulated for each facies

using sequential Gaussian simulation (SGSIM). Finally, basedon themul-

tiple permeability fields, a set of groundwater flow simulationswas con-

ducted. Details of these procedures are described in the following.
2.2.1 | Training image construction

The TI is a numerical representation of the perceived geological het-

erogeneity at a study site, which is required by most MPS algorithms.

In this study, a facies categorization was first conducted according to

the permeability histogram (Figure 1c), and the proportion of each

facies type was calculated. A two‐dimensional TI of sedimentary facies

was generated by the Stanford Geostatistical Modeling Software
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(SGeMS) (Remy, Boucher, & Wu, 2009), which reflects a representative

vertical distribution of site sedimentary deposits by conditioning to the

information observed in sediment core samples and a geological concep-

tual model (Figure 1b). The geological conceptual model was created

based on a high‐resolution seismic survey by Haimberger, Hoppe, and

Schäfer (2005) in the northern part of the Upper Rhine Graben, an area

that contains our study site. That survey was carried out over a length of

80 km along the Rhine River and a length of 25 km along its tributary,

the Neckar River. The borehole logs from the central Upper Rhine

Graben show that these Quaternary sediments consist of fluvial and

lacustrine unconsolidated calcareous sands and gravels with interbedded

clay and silt layers with thickness ranging from 2 to 8 m (Haimberger

et al., 2005). The seismically imaged facies of the Pleistocene age in

the upper layers shows thick and uniform stratification with low

amplitude. Combining this geometrical information with observations

from boreholes, the strata at the site are interpreted to lie within a

braided to low‐sinuosity meandering river system. TheTI domain, which

represents the geological conceptual model conditioned to borehole

facies data, is 150 m × 15 m. It is uniformly discretized with cell dimen-

sions of 0.05 m × 0.05 m, so that theTI consists of 900,000 grid cells. It

is twice the size of the subsequent groundwater model (75 m × 15 m) in

the horizontal direction in order to reproduce larger scale patterns

(Caers & Zhang, 2005). Two types of facies (“sand” and “silt”) and their

proportions were interpreted from the permeability histogram. Given

the knowledge of the geological conceptual model, a sinusoid geobody

type was selected in SGeMS to generate the TI.
2.2.2 | Facies realizations

Among the available MPS algorithms for facies modelling (Mariethoz &

Caers, 2014), the widely used pixel‐based single normal equation simu-

lation (SNESIM; Strebelle, 2000) was used to generate facies realiza-

tions by conditioning to site borehole facies data while sampling the

multiple point statistics from the TI. Compared with other MPS facies

modelling algorithms, SNESIM was chosen due to its capacity, both in

data conditioning and geological shape reproduction, and its efficient

CPU performance in SGeMS. To generate each realization, SNESIM

simulates the facies patterns by scanning theTI and applies the sampled

statistics to simulate a facies type at each cell of the geostatistical grid.

The observed facies type and location of the soil samples served as

the conditioning data during the SNESIM simulation. The MPS simula-

tion grid is 75 m × 15 m, with cell dimensions of 0.05 m × 0.05 m, and

consists of 450,000 grid cells. Three hundred facies realizations were

created by SGeMS, which implements SNESIM (Remy et al., 2009).
2.2.3 | Permeability fields

To quantify permeability spatial correlation at the study site, experi-

mental permeability variograms in both the horizontal and vertical

directions were calculated and modelled for each facies. The

intrafacies permeability field within the silt and sand facies, as

modelled in each SNESIM realization, was simulated using SGSIM, a

conventional geostatistical method based on permeability histogram

and variogram (Deutsch & Journel, 1998). A set of 300 aquifer perme-

ability fields were modelled and then used as the input for subsequent

groundwater flow and age modelling.
2.3 | Estimating streambed permeability by analytical
model inversion

Streambed permeability is one of the key factors controlling surface

water–groundwater exchange (Genereux, Leahy, Mitasova, Kennedy,

& Corbett, 2008) and is often strongly affected by flood events in nat-

ural streams that can erode and redistribute stream sediments

(Simpson & Meixner, 2012). In this study, three flood events with dif-

ferent peak magnitudes were recorded between Days 9–18, 29–33,

and 45–49 since August 2010. At a given location, the streambed per-

meability can be expected to be highly transient between alternative

losing and gaining conditions when there are significant deposition

and remobilization of sediment particles (Simpson & Meixner, 2012).

To estimate the temporal variation of streambed permeability and

reduce model uncertainty, a technique developed by Gianni et al.

(2016) was adopted to rapidly calculate a transient streambed perme-

ability and to identify its impact on the location and timing of water

fluxes at the sediment water interface. This technique represents a

heterogeneous streambed with homogeneous properties (i.e., an

equivalent permeability), which was proven feasible if both the calibra-

tion and prediction are made for a connected flow regime (Irvine,

Brunner, Franssen, & Simmons, 2012). Because the average stream

width and thickness at our study site are on the scale of a few metres

and groundwater flow and age distribution are modelled at the full

field scale, the extent of the streambed in the coupled surface

water–groundwater modelling is represented by only 20 grid cells.

Clearly, a homogeneous representation of the streambed is considered

suitable for the scale of investigation, and subgrid streambed hetero-

geneity is assumed to be accounted for by an estimated equivalent

permeability of the streambed, as explained below.

The transient streambed permeability is estimated from recorded

pressure heads within the aquifer and the stream stage through the

inversion of a numerical convolution between discretized stream stage

and aquifer response using the analytical model of Gianni et al. (2016).

This model numerically computes the aquifer response to stream stage

variations by assuming a linear variation of the function between two

successive time steps:

h x; nΔtð Þ ¼ ∑n−1
k¼1

Δt
6

F′kPn−k þ F′kþ1Pn−kþ1 þ 2F′kPn−kþ1 þ 2F′kþ1Pn−k
� �

;

(1)

where n is the number of discrete time steps of constant length Δt,

h(x, nΔt) is the hydraulic head at distance x perpendicular to the stream

edge at time nΔt. k is the index of summation. F′k is the stream stage

variation at k‐th time step. Pn − k is the hydraulic head at distance x

perpendicular to the stream edge at time (n − k)Δt, given by (Hall &

Moench, 1972)

P x; tð Þ ¼ erfc
x

2
ffiffiffiffiffi
αt

p
� �

− exp
x
r
þ αt

r2

� �
erfc

x

2
ffiffiffiffiffi
αt

p þ
ffiffiffiffiffi
αt

p

r

� �
; (2)

where erfc and exp are the complementary error function and the

exponential function, respectively. α (m2 s−1) is aquifer hydraulic diffu-

sivity, α = Kaρgda/μS, where Ka (m
2) is aquifer permeability, ρ (kg m−3)

is fluid density, g (m s−2) is gravity acceleration, μ (kg m−1 s−1) is fluid

dynamic viscosity, da (m) is thickness of the aquifer, and S is storativity



ZHOU ET AL. 5
(−). S is estimated to be 6.75 × 10−4 from a previous field investigation

(Engelhardt, Prommer, Moore, et al., 2013). The retardation coefficient

r (m) represents the required thickness of aquifer to cause the same

head loss as the streambed. r = dKa/K, d (m) is streambed thickness,

and K (m2) is streambed permeability.

When both d and Ka are known, then r can be used as a surrogate

for the estimation of the streambed permeability. By the convolution

of stream stage variations with Equation (1), water table variation

was computed at the observation well GWM2a over time. Parameter r

is then estimated by minimizing the sum of squared error between the

observed and modelled pressure heads at GWM2a. The approach is

implemented using the mathematical software MATLAB. Due to the

high heterogeneity of the aquifer, it is not suitable to calculate the

average aquifer diffusivity for the whole transect. Thus, three aquifer

diffusivities (0.1, 1, and 10 m2 s−1) were tested in the analytical inver-

sion. The time series of observed groundwater table at GWM2a are

segmented in partially overlapping time intervals, referred to as

parameter optimization window (POW), which is composed of two

parameters, the size (time interval width) and the shift (POW moving

length). Based on the segmentation of the time series, a set of varying

streambed permeability over time was calculated.
2.4 | Stream–groundwater flow model

A previous study by Engelhardt, Prommer, Moore, et al. (2013) used the

same monitoring campaign data to set up a groundwater flow model

with MODFLOW. In that model, the aquifer permeability was assigned

layer by layer in a deterministic sense, and the streambed permeability

was assumed temporally and spatially homogenous. Uncertainty in flow

and transport simulations due to aquifer spatial variation and streambed

temporal variation of permeability was not considered. This research

builds upon the previous work and the site streambed and aquifer per-

meability variation were modelled using analytical inversion of aquifer

response and geostatistical MPS simulations conditioned to lithofacies

observations at well locations, respectively. Because our lithofacies

observations exhibit high vertical resolution at the scale of 0.05 m, the

300 permeability models created by MPS simulations exhibit high spa-

tial resolution at the scale of 0.05 by 0.05 m. This approach thus avoids

upscaling the lithofacies model, which can lead to lost resolution in

representing the site geology. As a result, a large suite of high resolution

permeability MPS realizations were created as input for Monte Carlo

flow simulation, thus, computational requirement is much larger and a

high performance groundwater flow code is needed. This research con-

ducts stream–groundwater flow simulation using PFLOTRAN (Ham-

mond & Lichtner, 2010; Hammond, Lichtner, & Mills, 2014), an open

source, massively parallel, subsurface flow and reactive transport simu-

lator with parallelization through the PETSc library (Balay, Gropp, &

McInnes, 1997). In solving subsurface flow and transport problems

ranging from single to two‐phase flow, as well as reactive species trans-

port, it has exhibited excellent scaling performance (Zhang, Zhang, &

Lichtner, 2017).

2.4.1 | Numerical model set‐up

A two‐dimensional variably saturated flow model was set up for a

transect length of 75 m and an aquifer depth of 15 m (refer to the
transect in Figure 1b). The model is discretized into 450,000 grid cells

with a cell resolution of 0.05 m × 0.05 m, which corresponds to the

scale of the MPS simulation model. Given the observed highly tran-

sient stream stage and groundwater flow due to summer precipitation

and flood events, this high resolution horizontal and vertical cell size

was chosen across the model domain to guarantee numerical stability

under variably saturated conditions. The stream is surrounded by a 1‐

m thick streambed which is assumed to be highly controlled by the

surface water–groundwater exchange. The simulation period con-

tinues over 55 days, that is, from August 15, 2010, to October 9,

2010.

2.4.2 | Flow equation

The governing mass conservation equation for the variably saturated

flow is given by (Bear, 1979)

∂

∂t
ρθsð Þ ¼ ∇·

ρkkr
μ

∇P−ρg∇zð Þ
� �

þ q; (3)

where ρ (kg L−1) is water density, θ (−) is porosity, s (−) is saturation, k

(m2) is permeability, kr (−) is relative permeability, μ (Pa s) is viscosity, P

(Pa) is pressure, g (m s−2) is gravitational acceleration, z (m) is elevation

above the sea level (head datum), q (kg L−1 s−1) are sources and sinks.

The van Genuchten–Mualem model was used to relate fluid pressure,

saturation, and kr (Mualem, 1976; van Genuchten, 1980):

s ¼ 1þ bhj jd
h i−c;

(4)

kr ¼
ffiffi
s

p
1− 1−s1=c

� �ch i2
; (5)

where h (m) is matric potential. b = 14.5 (m−1), c = 0.63, and d = 2.68,

which are empirical parameters, c = 1 − 1/d. As the aquifer site of this

study has a sand‐rich texture, these parameters were obtained from

Carsel and Parrish (1988) as representative average values for such

deposits. Due to the thin unsaturated zone compared to the model

vertical dimension, the model uncertainty from these empirical param-

eters would be minor.

2.4.3 | Initial and boundary conditions

The initial and boundary conditions were set in a similar manner to the

MODFLOW/MT3DMS model by Engelhardt, Prommer, Moore, et al.

(2013). The initial hydraulic heads across the model domain were

defined from the head gradient measured between the observation

well GWM0 and GWM6. The SE boundary was defined by the pre-

scribed hydraulic head using the observed hydraulic head at GWM0.

The NW boundary was defined by the hydraulic head that was derived

from the interpolation between S3 and GWM6. The groundwater

recharge was assigned to the model top layer with a recharge rate of

15% of the precipitation that infiltrated into the groundwater as mea-

sured by Berthold and Hergesell (2012). The model bottom layer was

defined as a no flow boundary, corresponding to low permeable silty

clay layer. The observed time variable stream stage was assigned to

the model cells that represent the stream bottom with a time variable

head boundary. The porosity for the streambed was 0.12 with homo-

geneous distribution (Engelhardt, Prommer, Moore, et al., 2013). The
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porosity for silt and sand facies were 0.35 and 0.39 throughout the

aquifer domain, respectively, which were derived from the mean

porosity of each facies. The porosity of streambed and aquifer were

assumed to be homogeneous and constant. The time‐varying stream-

bed permeability was assumed to be spatially homogeneous and

assigned to the cells of the streambed. The permeability fields of the

aquifer were assigned to the aquifer cells according to the

geostatistical realizations.

2.4.4 | Uncertainty analysis

The multiple realization mode of PFLOTRAN was used to conduct the

Monte Carlo simulations of variably saturated flow in streambed and

in the connected aquifer using each of the 300 aquifer permeability

realizations as input. Simultaneously, 300 Monte Carlo simulations

ran on three processor groups with each group consisting of 100 sim-

ulations that ran one after another. Ninety‐six processor cores were

utilized. The computed pressure heads, a total of 300 sets, were

obtained to define the influence of permeability uncertainty on the

simulated heads. Based on the simulated and measured hydraulic

heads at observation wells GWM2a and S3, a mean absolute error

(MAE) of each realization was calculated:

MAE ¼ 1
j
∑j
i¼1 hmi−hsij j; (6)

j (−) is the number of the measured hydraulic head; hmi (m) and hsi

(m) are the measured and simulated hydraulic head, respectively. It

provides a criterion that a realization is acceptable to represent the

site geology if its MAE is below a user‐defined value (Anderson,

Woessner, & Hunt, 2015). A cumulative mean absolute error (CMAE)

was further calculated versus the number of realizations to estimate

how many realizations are sufficient for convergence:

CMAE ¼ 1
f
∑f
i¼1MAEi: (7)

f is the number of realizations, and MAEi is the MAE of the i‐th real-

ization. The maximum, minimum, and arithmetic mean simulated heads

were calculated based on the acceptable realizations. Standard devia-

tions of the simulated heads were calculated for the acceptable reali-

zations to represent the uncertainty.

2.5 | Groundwater age simulation

Groundwater age modelling provides a useful technique to facilitate

the estimation of groundwater recharge rate and velocity, the calibra-

tion of groundwater flow models, and the assessment of the renew-

ability of groundwater reservoirs (Kazemi, Lehr, & Perrochet, 2006).

Particle tracking and direct simulation are the two groundwater age

modelling techniques most commonly used when a groundwater flow

field is known (Suckow, 2014). Compared to particle tracking, which

typically considers advection and ignores the mass exchange between

flow paths, direct simulation of groundwater age is more favoured in

that it also considers dispersion and diffusion (Suckow, 2014). More-

over, because of the uncertainty in aquifer parameters, groundwater

flow fields simulated for any field‐based studies will suffer uncertainty.

However, most studies that applied groundwater age modelling to
investigate groundwater recharge and chemistry evolution do not take

such uncertainty into account (Attard, Rossier, & Eisenlohr, 2016;

Lemieux & Sudicky, 2010; Yu, Yao, Cao, & Zheng, 2015). To avoid

the introduction of bias into modelled groundwater age, model uncer-

tainty cannot be neglected in groundwater age modelling. The ground-

water age is calculated by the advection–dispersion equation for

nonreactive tracer transport that is implemented in PFLOTRAN fol-

lowing the method described in Goode (1996):

∂A
∂t

¼ ∇·D·∇A−∇·A
q
θ
þ 1; (8)

A ¼ ∫
∞

0 tC dt

∫
∞

0C dt
; (9)

where A (d) is the tracer mean age with concentration C (mol L−1), θ

(L L−1) is the porosity, q is the specific‐discharge vector, and D is the

dispersion tensor. The right side term “+1” denotes each molecule get-

ting 1‐day older every day. Building upon the flow model, the initial

age of 1 × 10−8 days and concentration of 1 × 10−16 mol L−1 of a

dummy tracer was defined across the model domain. A zero gradient

boundary condition was defined at the SE, NW, top, and bottom

boundary, respectively.

Because the site permeability was explicitly modelled at high res-

olution, the longitudinal and transverse dispersivity were all set to zero

(assuming subgrid dispersion is negligible), thus, the computed age

reflects a purely advective travel time distribution along the ground-

water streamlines. The resultant groundwater age only refers to the

time from the start of the simulation. It reveals the infiltration paths

from surface water into groundwater and can help to visualize zones

that received surface water fluxes with younger ages. The groundwa-

ter age simulation was conducted for each acceptable flow model. A

probabilistic infiltration path was then delineated based on the ensem-

ble of simulated infiltration paths, thus taking into account the geolog-

ical uncertainty. The area with high or close to 100% probability

indicates the highest confidence in the predicted infiltration paths.
3 | RESULTS AND DISCUSSIONS

3.1 | Facies category

Grain size analysis of the soil samples shows that the aquifer beneath

and in close proximity to the stream is highly heterogeneous and is

composed of interbedded silt, clay, and sand layers (including fine,

median, and coarse sand layers). Permeability is calculated with the

Hazen method (Hazen, 1911), using the d50 values from the grain size

curve, that vary from 2.61 × 10−14 to 9.74 × 10−11 m2 (Figure 1c). The

distribution of permeability indicates the existence of two hydrofacies

populations, one representing a silt‐rich facies and the other a sand‐

rich facies (referred to herein as the silt and sand facies). A cut‐off

value separating the two populations was identified at 1 × 10−12 m2.

The bimodal permeability distribution in the histogram shows the pri-

mary control of facies on permeability, thus, facies modelling is neces-

sary to capture the permeability variation and to honour the observed

sharp spatial transition. Variogram analysis of the permeability data
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shows that the horizontal/vertical anisotropy ratio is 5.8 for silt facies

and 1.35 for sand facies, respectively. The uncertainty of the Hazen

method and insufficient horizontal data are the main reason for lack

of agreement between the experimental and the modelled variograms

in the horizontal direction, both in silt and sand facies. Moreover, to

capture within‐facies variability, a subsequent permeability simulation

was conducted within each facies using SGSIM, which used the histo-

gram and variogram models of permeability developed for each facies

(Figures 1c and 2, Table 1). The approach adopted thus captures both

large‐scale facies transitions and small‐scale within‐facies permeability

variation. Most of the existing literature (usually modelling lnK rather

than K) is using an exponential function, which creates more “noisy”

random K fields during simulation. We used a spherical model to fit

the variogram curves, which can create a smoother random K fields

given the same conditioning data (Koltermann & Gorelick, 1996). A

smoother random K field will lead to smoother streamlines as com-

pared to the noisy K fields. However, the distinction here is not signif-

icant because the facies modelled by MPS dominates the distribution

of flowpaths and velocities, rather than the subfacies‐scale K variabil-

ity (Zhang & Gable, 2008).
3.2 | Aquifer heterogeneity

A stationary TI (Figure 3a) was constructed based on geological infor-

mation from well data (Figure 3b) and the geological transect (Figure 1

b). In theTI, the red region corresponds to the silt facies with low per-

meability materials such as silt and clay, whereas the background, or

blue region, corresponds to the sand facies with high permeability

materials such as sand and gravel. Three hundred facies realizations

(Figure 3c) were generated with SNESIM by (a) sampling the local con-

ditional probabilities from the TI using a MPS template, and (b)
FIGURE 2 Horizontal and vertical experimental (dots) and modelled (cur
constraining the realizations by observed facies identified in soil sam-

ples. The optimal reproduction was determined by visual inspection

using a 60‐node search template with a dimension of

100 m × 100 m, 6 multigrid, and a 0.5 servosystem factor to approach

the target facies proportion (0.3:0.7). The template dimension and the

number of multigrids are the most influential parameters for the pat-

tern reproduction. The SNESIM realizations preserve the heteroge-

neous facies structure that is consistent with the geological

conceptual model. They show a mean proportion and standard devia-

tion of 0.347 and 0.011 for silt facies and 0.653 and 0.011 for sand

facies, respectively. Next, the permeability filed was simulated within

silt and sand facies using SGSIM in each facies realization. The assem-

bled 300 permeability fields then served as input for the subsequent

groundwater flow model (Figure 3d).
3.3 | Streambed permeability

The streambed permeability were calculated for different POW size,

shift, and aquifer diffusivities to evaluate the input parameter sensitiv-

ity (Figure 4). The streambed permeability were calculated from the

10th day until the end of the simulation period. The aquifer

response to the stream stage variation is represented by the measured

hydraulic head at GWM2a. Three sets of aquifer diffusivity (0.1, 1, and

10 m2 s−1) were tested to represent the whole transect from the range

of minimum values of 0.01m2 s−1 to maximum values of 19.28m2 s−1

calculated from the measured soil sample permeability (Figure 1) and

storativity. Under the same POW size (5 days) and shift (1 day), an

increase of aquifer diffusivity from 0.1 to 1 to 10 m2 s−1 resulted in

a threefold increase in the retardation coefficient. By comparing dif-

ferent POW sizes (1, 5, and 7 days), it can be shown that the model

using a larger POW size was able to capture more head observations
ves) permeability variograms for silt and sand facies, respectively



TABLE 1 Variogram parameters of permeability for the silt and sand facies

Facies
Variogram
type

Nugget Ranges
(m)

Angles
(°) Sill (m2)2(m2)2

Max Med Min Azimuth Dip Rake

Silt Spherical 0 6.2 4.6 0 90 0 0 4 × 10−22

Sand Spherical 0 5.8 1 0 90 0 0 2 × 10−27

FIGURE 3 (a) The training image (TI) and (b) well identified facies that were used for constraining the MPS simulations of facies; (c) examples of
single normal equation simulation facies realizations; (d) assembled permeability fields

FIGURE 4 The estimated streambed permeability, stream stage, and
observed hydraulic heads at GWM2a over time. The 11 sets of
streambed permeability indicated with different colours correspond to
different parameter combinations of parameter optimization window
size, aquifer diffusivity, and parameter optimization window shift,
respectively. GWM: groundwater monitoring
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and reproduce the general trend, but the transient head fluctuation at

small time interval was not well captured. Models with a lower POW

size with 0.5 day and aquifer diffusivities of 0.1, 1, and 10 m2 s−1,

and shifts of 0.2 and 0.5 day per time step were also tested, but no

signals were observed due to the limited observations that this POW

can capture. Although smaller POW size and shift can capture tran-

sient head fluctuation, the decrease of the POW size and shift can

produce a number of outliers due to the decrease of the signal (obser-

vations) to noise ratio (Figure 4b). Thus, the estimation of the stream-

bed permeability depends highly on the choice of the POW size and

shift, and the accurate estimation of the effective aquifer diffusivity.

Each set of streambed permeability were transferred into the ground-

water flow model. We found that 33 realizations of the 300 simulated

hydraulic heads using datasets shown as purple and grey lines in

Figure 4a are able to reproduce the recorded hydraulic heads, whereas

all of the realizations from the rest of the datasets in Figure 4a,b failed

due to their comparable values with one another and less variation

with time. Given the quick response of the pressure head at GWM2a

to the stream stage, the small window size and shift is reasonably

expected. The 300 realizations, using dataset (POW 1 day size and

0.2 day shift, and 10 m2 s−1 aquifer diffusivity) shown as purple in

Figure 4a, were chosen for the subsequential uncertainty analysis.
3.4 | Model uncertainty

First, the CMAE in hydraulic heads for the stochastic forward runs

using 300 aquifer permeability fields was calculated. Figure 5a shows

that the CMAE stabilized after approximately 50 realizations at

0.09 m, indicating that 50 runs would have been sufficient for model



FIGURE 5 Cumulative mean absolute error (CMAE) and mean absolute error (MAE) of the 300 Monte Carlo simulations with 300 aquifer
permeability fields and with the optimal transient streambed permeability (a) and (b), without the streambed layer (c) and (d), and with
constant‐in‐time streambed permeability from Engelhardt, Prommer, Moore, et al. (2013) (e) and (f). (a) The relatively stable CMAE after 50
realizations indicates convergence of the Monte Carlo process. (b) The acceptable simulations were conditioned by removing the runs with MAE
greater than 0.06 m. (c) and (e) A higher set of CMAE was observed compared with (a) due to the large deviation of simulated hydraulic head from
measured data when removing streambed data. (d) and (f) All the MAEs were above the cut‐off line, indicating that the outliers do not yield an
acceptable model
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convergence (Anderson et al., 2015). If the MAE in hydraulic head is

then calculated for each stochastic forward run, the question of

whether or not the realization still stays within the acceptable calibra-

tion range can be determined (Figure 5b). An optimal cut‐off value of

0.06 m was chosen by testing the MAE value from 0.04 to 0.1 m to

judge the obtained results. Those realizations with a MAE of more

than 0.06 m did not yield an acceptable model and were removed,

leaving 33 conditioned realizations for the uncertainty analysis.

Results from the 33 forward runs were summarized by plotting the

maximum, mean, minimum, and standard deviations of the simulated

hydraulic heads, versus the measured hydraulic heads (Figure 6).

Figure 6 shows that most of the observed hydraulic heads at GWM2a

and S3 lie in the range between the maximum and minimum simulated

hydraulic heads, except that the hydraulic heads around 30th day at

GWM2a were underestimated, which might be due to the underesti-

mation of the streambed permeability during the short flood event.

The stochastic forward modelling was conducted twice again

using the suite of aquifer permeability realizations, but removing the

streambed layer and using a constant‐in‐time homogenous streambed

permeability (3.78 × 10−11 m2) from Engelhardt, Prommer, Moore, et al.

(2013), respectively. Figure 5c,e shows that CMAE was stabilized at a

higher value of 0.115 and 0.105 m than that of 0.09 m in Figure 5a,
respectively. All of the MAEs were higher than the cut‐off value,

which means none of these simulations yielded an acceptable model

(Figure 5d,f). By comparing the simulations of Figure 5c,d to those of

Figure 5a,b, which include the streambed layer with temporally tran-

sient permeability, the essential role of streambed in the stream–

groundwater interaction processes is elucidated. While by comparing

Figure 5e,f to Figure 5a,b, the implementation of constant‐in‐time

streambed permeability significantly increases the model uncertainty

over those based on a temporally variable streambed permeability.

The uncertainty from streambed overwhelms the variation due to

aquifer heterogeneity. Thus, temporally variable streambed permeabil-

ity should be considered for the improved uncertainty analysis of

stream–aquifer interaction.

The simulated hydraulic heads from the conditioned stochastic

runs match well with the observed values at the observation well

GWM2a and S3 (Figure 6a,b). For GWM2a, the maximum uncertainty

of 0.033 m occurred at 14th day during the first flood period (9–18th

days), followed by a smaller uncertainty of 0.024 m at the 30th day

during the second flood period (Days 29–33). The greater distance

between the stream and the observation well S3 decreased the

response of hydraulic head at S3 to the variation of stream stage, even

during the flood periods and heavy precipitation events. However, the



FIGURE 6 Results of conditioned stochastic forward runs at the
observation wells (a) GWM2a and (b) S3, respectively. The
maximum, mean, and minimum values of the simulated hydraulic
heads are compared with the measured data and the simulated data
from the previous base study using MODFLOW (Engelhardt,
Prommer, Moore, et al., 2013). Standard deviation shows the
uncertainty of simulated hydraulic heads of this work varies with
precipitation and flood periods

FIGURE 7 The simulated water flux at the stream–aquifer interface.
The maximum, mean, and minimum values of the water flux are
summarized from 33 realizations. Positive and negative values indicate
water infiltration from the stream into the aquifer and exfiltration from
the aquifer to the stream, respectively
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model uncertainty reached a maximum value of 0.04 m at the 14th

day during the first flood period. Another peak value of 0.017 m is

observed for the second flood period. In summary, high uncertainties

were following the two heavy precipitation events (Days 9–18 and

29–33). Given that the transient streambed permeability was identical

in each model run, the high uncertainties are attributed to the aquifer

permeability fields that vary between each stochastic simulation. In

contrast to infiltration periods, during the exfiltration periods, the

uncertainties were distinctively lower. The higher uncertainties during

the infiltration periods can be explained by the decreased control of

streambed on the exchange fluxes during infiltration periods.

The streambed permeability has been proven by several authors

(e.g., Hatch, Fisher, Ruehl, & Stemler, 2010; Kurtz, Hendricks Franssen,

& Vereecken, 2012; Taylor, Lamontagne, & Crosbie, 2013; Zhang,

Hubbard, & Finsterle, 2011) to be a highly dynamic parameter due

to clogging, sedimentation, and remobilization of the sediments

(Emmett & Leopold, 1963). Smaller particles have a greater tendency

to be mobilized, which in turn will increase the entire streambed per-

meability during the floods due to the increased porosity caused by

larger particles, whereas the clogging and deposition of transported

sediments during dry seasons will decrease streambed permeability.

Thus, during dry seasons, the streambed limits the surface water–

groundwater exchange, while it promotes the exchange during floods.
This is coincident with the simulated water flux at the stream–aquifer

interface (Figure 7). During the infiltration periods, the reduced

streambed permeability due to sediment remobilization resulted in

predicted water fluxes with a large standard deviation, whereas the

increased streambed permeability by sediment clogging and deposi-

tion limited the exchange flux during the exfiltration periods. The high

flux standard deviation during infiltration periods originated from the

variation of aquifer permeability fields, which then decreased during

exfiltration periods due to the increased control of the streambed on

the exchange flux.

As shown in Figure 6, the simulated hydraulic heads using

MODFLOW by the previous study (Engelhardt, Prommer, Moore,

et al., 2013) also fitted the measured hydraulic heads well at GWM2a

and S3. The modelling results were obtained through an inverse

parameter estimation using PEST based on the Gauss–Marquardt–

Levenberg method. Given that MODFLOW calibrated the aquifer

head falls in the middle of the heads predicted by the stochastic

models, the previous calibration using a homogeneous model obtained

best‐fit equivalent parameters which are not amenable to uncertainty

analysis. In this work, spatial heterogeneity in the aquifer, as modelled

by a stochastic technique (e.g., MPS), allows quantification of uncer-

tainty in the modelled flow paths, thus capturing not only the mean

prediction (as done by MODFLOW) but also uncertainty and spread

from the mean. Given that the field site has only limited characteriza-

tion data, the uncertainty analysis is a necessary and important com-

ponent of this work, which significantly improves upon the previous

study. Moreover, the calibration of temporally homogeneous stream-

bed permeability is highly dependent on the choice of its initial value

and the correlation with aquifer permeability, this study calculates

temporally heterogeneous streambed permeability only based on the

stream stage and measured hydraulic heads which eliminates the

impact of parameter correlation.
3.5 | Surface water infiltration path

The groundwater age distribution was calculated for each of 33 reali-

zations (Figure 8). Younger groundwater was observed during the infil-

tration period (Day 15) than the exfiltration periods (Days 35 and 55).



FIGURE 8 Simulated groundwater age of (a) realization #1, (b) realization #2, and (c) realization #3 at Days 15, 35, and 55. Day 15 corresponds
to the infiltration period, whereas Days 35 and 55 correspond to the exfiltration periods
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The different aquifer permeability field used in each realization

resulted in a highly different age distribution and thus the implicit dif-

ferences in the flow path. Due to the heterogeneous and anisotropic

permeability distribution, longer preferential flow paths were

observed in the model domain down hydraulic gradient. The distinc-

tive flow paths shown by each realization indicate the dominant con-

trol of aquifer heterogeneity on stream water infiltration.

Figure 9 provides the probabilistic map of the surface water infil-

tration path after 55 days simulation time. The map summarizes how

many times a cell contributed to the path divided by the total number

of realizations. The area with a probability of 1.0 represents the case

where a cell contributed to the path in all 33 runs. The surface water

derived from rainfall penetrated to a depth of 0.5 m from the top layer

in 100% probability. The stream water infiltrated into the aquifer with
FIGURE 9 Probabilistic area of contribution
with low (blue) to high (red) for surface water
infiltration path based on the 33 groundwater
age realizations
a horizontal length ranging from 8.4 (100% probability) to 24.2 m (10%

probability) in a NW direction from the right stream bank and with a

depth ranging from 1.6 (100% probability) to 4.6 m (10% probability)

from the stream bottom. The water infiltrated from the stream flowed

primarily towards the NW direction as it integrated with the regional

groundwater flow system. This method provides a probabilistic esti-

mation of the surface water infiltration path based on the Monte Carlo

concept. Although it only considers advective flow without dispersion,

sorption, or geochemical reactions, tracking water particle paths in

terms of probability can still be used to evaluate a hypothetical waste-

water plume in a qualitative sense. For example, areas with extreme

probability (0% or 100%) are expected to be less sensitive to particle

numbers and discretization levels than those with uncertain probabil-

ity (around 50%; Juckem, Fienen, & Hunt, 2014). The probability



FIGURE 10 Simulated groundwater age by
MT3DMS in the previous study with young
(red) to old (blue) after 55 days (Engelhardt,
Prommer, Moore, et al., 2013)
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map also provides a reference for the optimization of monitoring wells

and solute sampling depths.

Figure 10 shows the surface water infiltration path simulated by

MT3DMS in the previous study (Engelhardt, Prommer, Moore, et al.,

2013), which assumes five homogenous aquifer layers and one

temporally constant homogenous streambed permeability. By

comparing to Figure 10, the significant difference of surface water

infiltration shape and scope in Figure 9 is due to the aquifer

heterogeneity, which leads to a rougher shape and a larger span in

the horizontal direction. Meanwhile, the simulated groundwater

age by MT3DMS was based on the calibration of the previous

groundwater flow model using Gauss–Marquardt–Levenberg

method, the potential parameter non‐uniqueness may limit the

prediction of all possible scenarios. Thus, aquifer heterogeneity

should be considered for the improved uncertainty analysis of

groundwater age distribution.
4 | CONCLUSIONS

The estimated streambed permeability from the inversion of flood

wave responses shows a transient pattern of the streambed perme-

ability, which decreased during infiltration periods and increased dur-

ing exfiltration periods. The estimation of streambed permeability

depends strongly on the selection of the POW size, shift, and aquifer

diffusivity. It is worth mentioning that the aquifer anisotropy, espe-

cially in the vertical direction, might impose a significant impact on

the estimation of the streambed permeability, as layers with lower or

higher permeability could be activated alternatively by the varying

height of the groundwater table. The aquifer permeability simulated

using MPS with multiple realizations are highly heterogeneous and

anisotropic. Each realization captures both facies and subfacies scale

variability. By incorporating the transient streambed permeability and

heterogeneous aquifer permeability, the newly developed groundwa-

ter flow model was able to reproduce the recorded fluctuation of

hydraulic head at two observation wells. Our numerical results demon-

strate that the exchange flux of the stream–groundwater interaction

during infiltration periods was mainly reduced by the aquifer, whereas

the streambed shows dominant limitation on the exchange flux during

exfiltration periods with its reduced permeability. Moreover, by com-

paring the simulations with constant‐in‐time homogenous streambed

permeability and without streambed layer, respectively, temporally

variable streambed permeability can significantly decrease the model

uncertainty. Therefore, it is essential to consider the influence of
transient streambed permeability when studying stream–groundwater

interaction under variable stream stage and discharge situations.

Groundwater age simulation using multiple permeability realiza-

tions quantifies the uncertainty in the stream water infiltration path

with a probabilistic map. Stream water infiltrated into the aquifer to

a depth of 1.6 (100% probability) to 4.6 m (10% probability) below

the stream. Laterally, stream water infiltrated towards the NW direc-

tion up to 8.4 (100% probability) to 24.2 m (10% probability) from

the stream. Based on the computed probabilities, the region from

the stream bottom to a depth of 1.6 m and from the stream right bank

to a lateral distance of 8.4 m has experienced stream–aquifer interac-

tion with the highest confidence. The large variation in path probabil-

ity, however, shows the significant control of aquifer heterogeneity on

groundwater flow. The probability map also provides a forecast enve-

lope for a hypothetical wastewater plume that is released from the

streambed.
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