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A new method for three-dimensional steady-state aquifer inversion is developed to simultaneously esti-
mate aquifer hydraulic conductivities and the unknown aquifer boundary conditions (BC). The method
has its key strength in computational efficiency, as there is no need to fit an objective function, nor
repeated simulations of a forward flow model. It employs a discretization scheme based on functional
approximations and a collocation technique to enforce the global flow solution. The noisy observed data
are directly incorporated into the inversion matrix, which is solved in a one-step procedure. The inverse
solution includes hydraulic conductivities and head and flux approximating functions from which the
model BC can be inferred. Thus a key advantage of the method is that it eliminates the non-uniqueness
associated with parameter estimation under unknown BC which can cause the result of inversion sensi-
tive to the assumption of aquifer BC. Two approximating functions are tested here, one employing qua-
dratic approximation of the hydraulic head (flux is linear), the other cubic approximation. Two different
BC are also tested, one leading to linear flow, the other strongly nonlinear flow. For both BC, the estimated
conductivities converge to the true values with grid refinement, and the solution is accurate and stable
when a sufficient number of the observation data is used. Compared to the quadratic function, the cubic
function leads to a faster convergence of the estimated conductivity at a lower level of grid discretization,
while it is also more robust for the different flow conditions tested. A sensitivity analysis is conducted
whereby the inversion accuracy is evaluated against data density. Composite scale sensitivity (CSS) can
reveal the overall information content of the data. However, when the number of measurements is fixed,
CSS cannot reveal whether the observed data can lead to reliable conductivity estimates. A one-observa-
tion-at-a-time (OAT) approach is proposed, which can indicate the reliability of the estimated conductiv-
ity for a given set of the observation data. To evaluate the stability of the method when the observation
data contain errors, a problem with 4 hydrofacies conductivities is inverted using hydraulic heads and a
single Darcy flux component. The results are accurate when the measurement error is small but become
slightly less accurate when the error is larger. In summary, flow condition, inverse formulation, grid dis-
cretization, observation data density and location, and measurement errors all influence the accuracy of
inversion.
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1. Introduction

Hydraulic conductivity (K) is a critical parameter influencing
fluid flow and solute transport in aquifers. However, estimation of
aquifer hydraulic conductivity is a challenging task, due to issues
related to aquifer heterogeneity, parameter and measurement scale
effect, uncertainty in aquifer boundary conditions, and the lack of
efficient estimation techniques. This study presents a three-dimen-
sional (3D) steady-state inverse method which efficiently and
simultaneously estimates aquifer hydraulic conductivities, flow
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field, and the unknown aquifer boundary conditions (BC). In the fol-
lowing paragraphs, different approaches of estimating aquifer
hydraulic conductivity are briefly reviewed, before key features of
the new method are presented and contrasted with the existing in-
verse methodology.

Aquifer K can be measured directly with Darcy tests on oriented
cores or estimated using aquifer tests, indirect means, or via the
calibration of an aquifer simulation model. Typically, core conduc-
tivity measurements sample a small aquifer volume, leading to val-
ues that are not representative of the aquifer at larger scales. With
slug tests, K can be estimated for a greater volume using analytical
flow solutions developed assuming radial flow from the test well in
a homogeneous formation with an infinite lateral extent. Similarly,
with pumping tests, analytical flow solutions have been developed



Y. Zhang et al./Journal of Hydrology 509 (2014) 416-429 417

to estimate large-scale horizontal hydraulic properties, e.g., the
well-known Thiem solution for analyzing steady-state flow and
the Theis solution for analyzing transient flow (Fitts, 2013). To ob-
tain K at higher resolutions, the analytical functions can be applied
to specific aquifer intervals that are isolated from the other inter-
vals, e.g., borehole flowmeter test, multilevel slug test, direct-push
permeameter test (Molz et al., 1994; Butler, 2005; Bohling et al.,
2012). Compared to the K derived from core measurement and
pumping test, these measurements can sample an intermediate
range of the formation volume. Moreover, at the same core scale
or well-test intervals, indirect K measurements can be made based
on correlations between rock petrophysical properties and fluid
flow properties, e.g., magnetic resonance logs, acoustic, density,
or neutron logs, and electrical-conductivity profiling (Williams
et al., 1984; Tang and Cheng, 1996; Shapiro et al., 1999; Hyndman
et al., 1994, 2000; Schulmeister et al., 2003; Kobr et al., 2005;
Camporese et al.,, 2011). For quality control, these indirect mea-
surements are compared and combined with one or more direct
K measurements. However, correlation between fluid flow and
petrophysical properties is often site-specific and empirical in nat-
ure. To address this issue, joint inversion techniques have been
developed whereas aquifer hydrodynamic data are analyzed
jointly with geophysical measurements (Kowalsky et al., 2006;
Brauchler et al., 2012). In these analyses, explicit correlation func-
tions are not needed, although certain “structure similarity” be-
tween fluid flow and petrophysical properties is enforced to help
constrain the joint inversion.

Another type of indirect K measurement can be made by build-
ing and calibrating an aquifer simulation model with an inverse
method (Hill and Tiedeman, 2007). For an overview of the inverse
methodologies used in groundwater model calibration, including
both direct and indirect methods and their pros and cons, please
see Neuman and Yakowitz (1979), Weir (1989), and Irsa and Zhang
(2012). Within the inversion framework, K becomes a model cali-
bration parameter and can be estimated (or inverted) at different
scales of interest. For example, aquifer flow models with distinct
hydrofacies zones can be built for which K can be estimated for
each hydrofacies. In highly parameterized inversion, K can be esti-
mated for each grid cell by imposing additional constraint equa-
tions on the inverse formulations (Zimmerman et al., 1998;
Doherty, 2005; Liu and Kitanidis, 2011). However, most of the
existing inverse techniques are based on minimizing an objective
function, which is typically defined as a form of mismatch between
the measurement data and the corresponding model simulated
values. During inversion, to minimize the objective function,
parameters including conductivities are updated iteratively using
a forward model which provides the linkage between the parame-
ters and the data. Because a forward model is needed, boundary
conditions (BC) of the model are commonly assumed known, or
less frequently, calibrated during the inversion. However, BC of
natural aquifers are often unknown or uncertain. (In transient
problems, both aquifer initial and boundary conditions are un-
known.) As demonstrated by Irsa and Zhang (2012), different com-
binations of parameters and BC can lead to the same objective
function values, thus results of many existing techniques may be-
come non-unique.

To address non-uniqueness in K estimation, Irsa and Zhang
(2012) developed a novel steady-state direct method for inverting
two-dimensional (2D) confined aquifer flow. The method adopts a
set of approximating functions of hydraulic heads and groundwa-
ter fluxes as the fundamental solutions of inversion. It does not rely
on minimizing objective functions (i.e., forward model-data mis-
match), while hydraulic conductivity, flow field, and the unknown
aquifer BC can be simultaneously estimated. Synthetic aquifer
problems with regular and irregular geometries, different
(deterministic) hydrofacies patterns, variances of heterogeneity,

and error magnitudes were tested. In all cases, K converged to
the true or expected values and was therefore unique, based on
which heads and flow fields were reconstructed directly via the
approximating functions. Boundary conditions were then inferred
from these fields. In the 2D analysis, the inversion accuracy was
demonstrated to improve with increasing observed data, low mea-
surement errors, and grid refinement, although source/sink effects
cannot be accommodated. To address the source/sink effects (e.g.,
pumping and recharge), Zhang (submitted for publication) ex-
tended the technique to inverting unconfined aquifers by super-
posing analytical flow solutions to generate the approximating
functions. In these cases, the inverse solution was obtained via
nonlinear optimization while the same high computation effi-
ciency was maintained. Furthermore, to account for uncertainty
in inversion due to the uncertain hydrofacies patterns, the method
was combined with geostatistical simulation, whereas both K
uncertainty and uncertainty in the unknown aquifer BC can be
quantified (Wang et al., 2013).

This study extends our earlier works by demonstrating the
applicability of the new direct method to inverting three-dimen-
sional (3D) steady-state flow in confined aquifers. Similar to our
earlier works, the 3D algorithm is tested using a set of synthetic
forward (true) models which provide the measurement data, with
or without measurement errors, for inversion. However, unlike the
earlier works, the inversion accuracy is tested using two different
sets of (increasingly complex) approximating functions under
two different global flow BC which induce either linear or strongly
nonlinear flow. Again, BC of the forward models are assumed un-
known and are estimated by inversion along with the hydraulic
conductivities and the flow field. To assess the accuracy of inver-
sion, the estimated conductivities and the BC are compared to
those of the forward models. A sensitivity analysis is conducted
to evaluate how the inversion outcomes converge to the true mod-
el with grid refinement or with increasing observation data. The is-
sue of data worth is examined using different statistical measures.
The stability of the method is also examined when measurement
errors are increased from error-free to a set of realistic values.
The inverse solution is considered stable if the estimated hydraulic
conductivities do not vary from the true values by more than one
orders of magnitude.

In the reminder of this article, non-uniqueness in parameter
estimation under unknown aquifer BC is first illustrated, before
the 3D inverse formulation of this study is introduced. Results
are presented in four sections relating to: (1) convergence of the
inverse algorithm with grid refinement; (2) data needs; (3) infor-
mation content of the observations; and (4) stability of inversion
under increasing measurement errors. In addressing topics (1)-
(3), a homogeneous aquifer problem is inverted and the observa-
tion data include hydraulic heads and a single groundwater flow
rate. In addressing topic (4), inversion is carried out for a heteroge-
neous problem with 4 hydrofacies. In this case, observation data
include hydraulic heads and a single Darcy flux component. The
relevant results are discussed before conclusion and future re-
search are summarized at the end.

2. Non-uniqueness in parameter estimation

The determination of hydraulic conductivity for steady-state
groundwater flow is mainly driven by the indirect inverse methods
solving a set of boundary value problems to minimize an objective
function. These methods assume either known BC for a given prob-
lem, or by appropriate parameterizations, obtain optimized BC
during inversion which is typically an iterative procedure. The ear-
lier generation of direct inversion methods (e.g., see a review in
Sun (1994)) make similar assumptions about the BC, although
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boundary conditions of real aquifers are rarely known in advance.
In this section, we demonstrate that unknown aquifer BC can lead
to non-uniqueness in the estimated hydraulic conductivities (Ks).
For simplicity, a 2D example is presented here by calibrating a sub-
domain problem (see the box labeled ‘a-b-c-d’ in Fig. 1a) of a lar-
ger forward model. A set of true Ks and BC are specified to this
larger model (Fig. 1a), which is simulated with MODFLOW2000
(Harbaugh et al,, 2000). The finite difference forward model
(FDM) and its discretization is shown in Fig. 1a. From the subdo-
main of this model, a set of regularly spaced observation data
(18 heads and 4 Darcy fluxes) is sampled without any measure-
ment errors. Based on these data, two hydrofacies conductivities
(K2, K3) that lie within the subdomain is calibrated with PEST
(Doherty, 2005) and with the direct method (Irsa and Zhang,
2012). For both methods, the inversion domain is defined by the
box-shaped subdomain within which all the observation data lie.
The subdomain BC are unknown to the new method, but are as-
sumed known to PEST with increasing degrees of uncertainty. To
both methods, the location of the larger FDM boundaries as well
as their BC are unknown, which is typical of real-world problems

where the measurement site may lie far from the aquifer bound-
aries. Because only deterministic (zoned) inversion is tested and
compared here, the pattern of conductivities within the subdomain
is assumed known to both methods.

For inversion with the direct method, a 3 x 2 inverse grid is
used to represent the subdomain (not shown). This small grid size
gives rise to a very small inversion system of equations, which can
be solved efficiently, i.e., the inverse code is written with MATLAB
2012a for which the computation time to solve this problem is less
than one second on a PC workstation. Given the set of error-free
observed data, the estimated Ks are extremely close to the true val-
ues with the estimation errors that are less than 1% (Table 1). The
inversion also recovers the hydraulic heads along the subdomain
boundaries (as well as heads internal to these boundaries), which
are compared to the true “BC”, i.e., heads sampled from the larger
FDM along the subdomain boundaries (Fig. 1b). With the direct
method, K2, K3 and the BC can be accurately and simultaneously
estimated.

For inversion with PEST, forward simulations of steady-state
flow within the subdomain are needed. This forward model, also
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Fig. 1. (a) The larger finite difference model (FDM) and the subdomain (‘a-b-c-d’) where the aquifer dynamic data are sampled for inversion. The BC of the FDM are shown:
besides the inflow and outflow boundaries, the remaining boundaries are no-flow. (b) Hydraulic heads along the subdomain boundaries are computed by the FDM and are
referred to as the “True BC” (thick solid line). Heads along the same boundaries inverted by the direct method with error-free measurements are referred to as “Inverse heads”
(thick dash line). (c) Based on the True BC, two increasingly perturbed sets of BC (“Approx. BC” and “Inaccurate BC”; thin dash and dotted lines) are given to PEST for the

estimation of K2 and K3 of the subdomain.
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Table 1
Estimated hydraulic conductivities (ft/d) for the subdomain using the direct method and using PEST under 3 different sets of assumed subdomain BC.
Grid Conductivity BC
K2 K3
True model (subdomain) 14 x8 50 100 True BC sampled from the larger FDM
PEST 40 x 40 46.6 105.9 True BC given to PEST (i.e., to create a forward model)
PEST 40 x 40 90.4 54.8 Approx. BC given to PEST
PEST 40 x 40 10,000 0.1 Inaccurate BC given to PEST
Direct method 3x2 49.8 100.7 Estimated by inversion

computed with MODFLOW2000, is extracted from the larger FDM
and is discretized with a finer 40 x 40 grid (the original discretiza-
tion in the FDM is 14 x 8). To generate the initial guess for PEST’s
iterations, true K2 and K3 values are given as the starting parame-
ter values. To run the forward model, different BC are postulated
along the subdomain boundaries (Fig. 1c), which lead to very dif-
ferent calibration results (Table 1). When the postulated BC are
identical or close to the true BC (“True BC” and “Approx. BC” in
Fig. 1c, respectively), the estimated Ks are either the true values
or not far from the true values (Table 1). However, when a more
perturbed set of BC is given to PEST (“Inaccurate BC”), the esti-
mated Ks become quite inaccurate and fall at the parameter
bounds provided to inversion even though their true values are
used as the starting parameters. The case presented here reflects
an extreme situation where wells are drilled and sampled for
hydraulic heads along the entire model boundaries. Even if such
a sampling scheme can be practically accommodated, the BC pro-
vided to inversion likely will contain measurement errors. Clearly,
whether PEST can accurately recover the parameters will depend
on how high these BC errors are.

For the problem examined here, the new inverse method yields
“unique” outcomes while PEST results are sensitive to the assumed
BC. This comparison illustrates the promise of the new method for
uniquely estimating hydraulic conductivities when aquifer BC are
unknown or uncertain. For the given (assumed known) parameter-
ization, inversion with the new method can also obtain the correct
BC, which suggests that it has a potential to be combined with the
objective-function-based techniques to help reduce the non-
uniqueness in parameter estimation. Further development and
verification of the method for three-dimensional aquifer inversion
is clearly desired and is the focus of the current study.

3. Direct method

The direct method of this study discretizes the model domain
into block elements where a state variable is approximated with
functions satisfying the local governing flow equation a priori,
i.e., the fundamental solutions. Specifically, hydraulic head of each
element is approximated by a function satisfying the Laplace’s
equation, and Darcy flux components are obtained from differenti-
ating the head function via Darcy’s Law. The inverse solution is ob-
tained via minimizing a set of residual equations that are written at
a set of collocation points placed at the element interfaces. Resid-
ual equations are also written at the observation locations,
whether they are observed (point-scale) heads, observed (point-
scale) fluxes, or observed flow rates. The unknown hydraulic con-
ductivity is estimated together with the parameters of the head
and flux approximating functions. The direct method does not re-
quire a prior knowledge of the aquifer BC, nor does it attempt to
fit the BC during inversion. For a given problem, the aquifer BC
are always assumed unknown. Together with the aquifer hydraulic
heads and conductivities, the BC are part of the inverse solution.
Furthermore, should the BC be known along a part of or along

the entire model boundaries, the BC data (be they heads, fluxes,
or flow rates) can be directly incorporated into the inversion as a
set of observation data.

3.1. Approximating functions

The equation describing 3D steady-state groundwater flow in a
heterogeneous confined aquifer without source/sink effect is:

V-(@=0 )
q=-K(x,y,2)Vh

where V is the gradient operator, h is hydraulic head, K(x,y,z) is
locally isotropic, and q is Darcy flux. Given Eq. (1), the hydraulic
head solution is a harmonic function within a homogeneous
sub-region of the model domain, e.g., a single inverse grid element
or a hydrofacies zone comprising of a number of elements. In this
study, K(x,y,z) is parameterized as discrete hydrofacies zones. For
a given sub-region, the solution to the flow equation can be for-
mulated by adopting a set of approximating functions of hydraulic
head and Darcy fluxes. While the 2D studies of Irsa and Zhang
(2012) tested a quadratic head approximating function in which
case the flux approximation is linear, here we test two sets of
functions with increasing orders of approximation, i.e., quadratic
head hy:

hy(%,¥,2) = Ao + @1X + QoY + (37 + A4XY + AsXZ + AgYZ + a7 (X°
-2 +as(y’ - 2°) 2)
and cubic head EC:

he(%,y,2) = Go 4+ @1X + @y + asZ + 3a4(x* — 22) + 3as(y? — 2?)
+ 6agxy + 6azXz + 6agyz + 6agxyz + a1ox(3y?
= %) +anx(32 = X) + any(3x* —y*) + a13y(32°
— V) + @14z(3%% — ) + a152(3y? — 2%) (3)

For both cases, Darcy flux components are approximated as:
ax = *K%J]}' = 71(%7(]2 = *K%~

In the above equations, sub-indexes q and c indicate the order of
approximation in the hydraulic head, while ag,a,...,a;5 are the
unknown coefficients that will be determined from the inverse
solution. In the model domain, each block element has 4 approxi-
mating functions (h®,q®,q\",g"), with 9 unknown coefficients
for the quadratic head approximation and 16 unknown coefficients
for the cubic head approximation. The corresponding level of
approximation for the Darcy flux is linear if flq is adopted and qua-
dratic if flc is adopted.

3.2. Continuity at the Collocation points

In 3D inversion, for both quadratic and cubic hydraulic head
approximations, each element interface has one collocation point
in the center of the interface (see Appendix A). Due to the harmonic
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properties of these approximating functions, one collocation point
can ensure that the average value of the functions is preserved
across the element interface. In order for the solution of the direct
method to satisfy the flow equation globally, a set of residual func-
tions needs to be minimized at each collocation point p;:

/Rrj

where m, is the total number of element interfaces, R(I';) is the
residual of an approximating function on the jth interface, and d(p; -
— ¢) is the Dirac delta weighting function. In 3D inversion, the Dirac
delta weighting function needs to be chosen based on the size of the
inversion matrix (see detail in Appendix B).

For the quadratic head approximation, when the element inter-
face lies within a single hydrofacies zone, the residual equations
enforcing head and flux continuity across each element interface
are written for these 4 quantities: fzq7 Ggx, Gqys Gqz- However, when
the interface links two elements of different hydraulic conductivi-
ties, only two residual equations are needed in order to honor the
reflection principle: qu, Gqn Where g, represents the normal com-
ponent of the elemental Darcy flux to the interface. For the cubic
head approximation, the residual equations enforcing continuity
of head, flux, and their derivatives across an element interface
are written for 9 quantities: he, Qexs Geys Gezs ”9”7 ﬁg;*, ‘)g;y ,
{,LX "q‘y . Due to the linear dependency between the second order
derlvatlves of the state variable (hydraulic head), % ”"“ does not need
to be evaluated (Galybin and Irsa, 2010). Similarly, when the inter-
face is adjacent to elements with different conductivities, only 5
residual quantities are evaluated: hc, Gen, e 0;’;”, Hen,

In the following subsection, the equations are written for an
interface which lies within a hydrofacies zone. For those that lie
at the hydrofacies boundaries, the equations will be appropriately
reduced (as discussed above) and are thus not presented. More-
over, Eq. (4) is also formulated at the observation locations, where
d(p; — ¢) now represents a weighting imposed due to measurement
errors (¢ is 1.0 if the observations are error-free), and R(I}) is re-
placed with the residuals at the data locations R(t;), where ¢; is
the jth observed data.

p—edlj=0, j=1,...,m (4)

3.3. Algorithms

The algorithms of the 3D direct method are presented in this
section, where the hydraulic head solution is first approximated
with the quadratic formulation, and then with the cubic
formulation.

3.3.1. Quadratic approximation

For the quadratic approximation, 4 continuity equations for the
head and flux components are evaluated based on Eq. (4). At the jth
collocation point pj(x;, y;, z;) lying on an interface between elements
(k) and (1), the following continuity equations can be written:

3(p; — &)Ru, () = 3(p; — ) (KA (%;,3;, ) — KR (,.3,2)) ) = 0
8(p) — €)Ra () = 30y — £) (@40 (%,3,2)) — Ap(¥%.%.2)) =
3(p; — ©)Rey (P)) = o(p; — ©) (440 (%3, 2) — ) (%33, 2)
8(py — €)Rq (py) = 0(p; — &) (@2 (3.1,2) — AL(%.,,2) )

0
0
0

(5)

where the hydraulic head residual equation is multiplied by the
hydraulic conductivity in order to extract the K value from the solu-
tion. By writing Eq. (5) at all the collocation points in the problem
domain, a set of algebraic equations can be written with which head

and flux continuity can be enforced locally within each element,
while satisfying the global flow equation.

Eq. (4) is then written for the N observed hydraulic heads. For
the kth element, where the tth observed head lies, we aim to
minimize the difference between the observed head h{x;y:z:)
and the approximating function at the same location:
hg’j)c(xt,yt,zt). This equation is also multiplied by K, and taking
into account the observation weight 4(p; — ¢), we write a head
measurement residual equation at the location of the observed
head:

8(pe — &) (KRG, (Xe. Vs 22) = Khe(e, Yo 22)) =0, t=1,....N (6

The right hand sides of Egs. (5) and (6) are all zeros, thus the
solution at this point would be trivial. At least one flux or flow rate
measurement is needed for the inversion to succeed, which also re-
flects the well-known fact that hydraulic conductivity cannot be
uniquely determined from the hydraulic head data alone (Hill
and Tiedeman, 2007). For example, if an observed flux component
(e.g., qy) is available, Eq. (6) can be rewritten to create a flux mea-
surement residual equation using the same error-based weighting
scheme as that of the head observations:

3(pe — ) (oY 20) — 4ylXe,y1, 1)) = O )

Similar equations can be written if additional flux compo-
nents are measured. Alternatively, a flow rate measurement
can be used. Because the flux approximating functions are given
analytically throughout the problem domain, an approximating
function of flow rate along any line or surface can be created
by integrating the appropriate fluxes. For instance, in a unit cube
with dimensions [0,0,0] to [1,1,1], a flow rate Q, along one side
of the model domain (x=1) can be evaluated as a surface
integral:

f 0 dy®
QY2 =) { / / ?JE,’Qdde}
k= 0 0

e

where dy®® and dz(¥ are the lengths of the kth element along the y
and z axis, respectively, e to f represent a set of elements lying on
the side of the domain at x = 1. Given an observed flow rate mea-
sured on the same surface (Qx), the flow rate measurement residual
equation takes the form:

3(p - &)Qx(x,,2) = 6(p — £)Q, (8)

The addition of Egs. (7) or (8) yields a non-trivial solution,
which leads to the unique estimation of the hydraulic conductivi-
ties. The final equation system consists of Egs. (5)-(8), which can
be solved with a least-squares method (more explanation is pro-
vided later). Note that if flux and flow rate measurements are both
available, Egs. (7) and (8) can both be used (the same can be said if
multiple flux and flow rate measurements exist). However, as
demonstrated in the Results section, a minimum of one flux com-
ponent or one flow rate measurement suffices to provide a well-
posed inverse solution even when multiple hydraulic conductivi-
ties are estimated.

3.3.2. Cubic approximation

Based on Eq. (4), the cubic approximation of the hydraulic head
leads to 9 continuity equations: hydraulic head, three Darcy flux
components, three cross derivatives, and two second order deriva-
tives of the hydraulic head. For the jth collocation point pj(x;, yj, z;)
lying on an interface between elements (k) and (I), we have the fol-
lowing continuity equations:
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74

0*(’() 0~(1)
8)<g;x(xj7ijzj)gcx(xjvypzj) =0
. 6[1(") aa(l)

(P — €)Roug (pj) = 0(p; — €) <aczy (X),¥5:21) — 8—;(x,-7yj,zj)

: 048 9ex
(; — )Rue (py) = 0(p; — 8)< ox X ViZi) =5

(vaijzj)> =0

a”(k) 6"(1)
3(p; — €)Rog (p;) = 3(p; — &) (;’—;’ (%.3,.2)) — %(xj,yj,z,o -0

9

The head measurement residual equation is formulated simi-
larly as Eq. (6), with the difference that the approximating hydrau-
lic head function is cubic. Similarly, Eq. (7) or Eq. (8) is rewritten
with gy or Q, evaluated using flux approximating functions that
are derived from the cubic head.

For both the quadratic and cubic head approximating functions,
the final systems of equations can be assembled into a matrix
form:

Ax=h (10)

where A is a sparse matrix (r x s). r is the number of equations, and
s is the number of unknowns. If the domain is discretized into n ele-
ments, the quadratic approximation vyields s=9n+1, while
s=16n+1 for the cubic approximation. The number of equations
can be determined by r=4m.+ N +g for quadratic approximation
and r = 9m. + N + g for cubic approximation, where N is the number
of observed hydraulic heads, g is the number of flux or flow rate
observations (g > 1), x is the solution vector of size s,
xc{Kal,... Kal" K} or x € {Ka\",...,Ka\? K}, b is of size r, con-
sisting of all zeros except g non-zero fluxes or flow rates. The sys-
tem of equations can be solved using a least-squares
minimization technique with either a direct solver (e.g., x = (ATA)~!
ATb) or an iterative LSQR solver (Paige and Saunders, 1982). For the
example problems presented in this study, in addition to observed
heads, one flow rate or flux measurement was provided to inversion
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which was sufficient to uniquely determine one or more hydraulic
conductivities.

4. Results

The inversion algorithms presented in Section 3 are tested on
several synthetic examples where the true aquifer flow conditions
were simulated with MODFLOW2000, from which a number of
hydraulic heads, flow rate, or flux were sampled. For several test
examples inverting a homogeneous aquifer, inversion results were
obtained using both the quadratic and cubic head approximations
with (mostly) error-free measurements. Increasing inverse grid
densities were tested. An analysis was then conducted to evaluate
the issues of data support, parameter sensitivity to observation
density, and of when observation data can yield reliable K esti-
mates. Finally, a problem with 4 conductivities was inverted under
increasing head measurement errors. In this section, dimensions
for all relevant quantities assume a consistent set of units (e.g.,
head in ft, K in ft/d, q in ft/d, Q is ft3/d), thus units of the various
quantities are often not labeled.

4.1. Convergence and accuracy of the direct formulations

In this subsection, two homogeneous forward models were cre-
ated to test the inverse algorithm. For both models, a cubic domain
of dimensions [0,0,0]-[1,1,1] was created. To each model, a true K
value of 1.0 was assigned. A finite difference grid with
25 x 25 x 25 block elements was used for the forward simulations,
thus a theoretical maximum of 15,625 observed hydraulic heads
can be extracted from each model (i.e., enough data exist for a sen-
sitivity study using random selections of the observations). The
only difference between the two models lies in how the aquifer
boundary conditions were specified:

(1) Alinear flow model or Model1 (Fig. 2). The BC were specified
as: h=1000 is assigned to the top boundary and 100 is
assigned to the bottom boundary, while the sides have no-
flow boundaries. Under this set of BC, the FDM solution of
hydraulic heads and streamlines for K=1 is shown (Fig. 2).
A vertical flow rate (Q;) was sampled from this solution
along the model side boundary at x = 1. Given these BC, this
measured flow rate is considered error-free.

(2) A nonlinear flow model or Model2 (Fig. 3). The BC were
specified as: the top boundary has a hydraulic head follow-
ing a parabolic function (300 + 100[(x + 0.3)% + (y + 0.4)?]),
while the remaining 5 sides were assigned no-flow bound-
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Fig. 2. Linear flow model, or Modell. FDM true solution of heads (a) and streamlines (b).
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Fig. 3. Nonlinear flow model, or Model2. FDM true solution of heads (a) and streamlines (b).
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Fig. 4. Grid refinement study for Mode1 and Model2, based on 50 observed heads
and one observed flow rate. When the number of elements per axis is 2, the inverse
grid is 2 x 2 x 2, and so forth.

aries. Under this set of BC, the FDM solution of hydraulic
heads and streamlines for K = 1 is shown (Fig. 3). A flow rate,
Q,, was sampled along the model side boundary at x=1. A
measurement error of +3% was imposed on this flow rate.

From each forward model, besides the one flow rate measure-
ment, fifty heads were sampled in a quasi-regular fashion, without
imposing any measurement errors. These data were used as the
observed data for inversion where both the quadratic and cubic
head approximating functions were tested. Under both linear
(Model1) and strongly nonlinear flow (Model2), a convergence
analysis was conducted whereby the inverse grid was increasingly
refined. Results of this grid refinement study are provided in Fig. 4,
which demonstrates the applicability of the 3D inversion formula-

tions. For the given observed data, inversion accuracy increases
with grid refinement. For a fixed grid, however, the cubic head for-
mulation leads to more accurate K estimates compared to the qua-
dratic head formulation. In other words, the cubic formulation
achieves similar accuracy as the quadratic formulation but with
fewer elements (in the following analysis, all inversions were done
using the cubic formulation). Moreover, flow condition also influ-
ences the accuracy of inversion: under linear flow, both formula-
tions converge to the true K quickly (cubic at 2 x 2 x 2;
quadratic at 6 x 6 x 6); under nonlinear flow, both converge more
slowly and a higher resolution grid is needed to achieve the same
level of estimation accuracy. Because with the larger grid sizes, the
inversion takes longer time, a 6 x 6 x 6 grid is used in all subse-
quent analysis with the exception of the last example (Section 4.4).
This discretization allows us to conduct a sensitivity study with
relative efficiency.

4.2. Data support

The answer to “How many observations do we need to be able
to estimate all the unknown parameters?” depends on the problem
of interest. In heterogeneous aquifers, the number of observations
is rarely sufficient to provide perfect (high resolution) solutions
(Moore and Doherty, 2006). However, given a hydrofacies parame-
terization, there usually exists a threshold level of measurement
data that can lead to satisfactory estimation of the parameters
and, in our case, the boundary conditions as well. Because the di-
rect method invokes an efficient one-step solution procedure, it
is highly suitable as an analysis tool to understand the issue of data
support. For both Modell and Model2, observed heads were ran-
domly sampled to provide the input data for inversion, keeping
the same flow rate measurement along the model side boundary
at x=1. For a given data support (N varies from 2 to 100), heads
were randomly sampled from the FDM 102 times. N={2, 3, 4, 5,
10, 20} for Model1; N = {5, 10, 15, 20, 25, 30, 40, 50, 100} for Mod-
el2. For both models, the estimated K was plotted against the data
support, N (Figs. 5 and 6). At each N, 102 inverse solutions were ob-
tained which result in the following estimated K values: minimum,
maximum, 80% percentile (box), and median (connected solid line).

For both models, conductivity converges to the correct value
(K=1) with increasing data support, as expected. With the excep-
tion of N = 2 (Model1) and N < 20 (Model2), the estimated K gener-
ally varies within one order of magnitude from the true value, i.e.,
the estimated K is greater than 0.1 and less than 1.5. For each mod-
el, there appears to be an approximate threshold N value where the
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Fig. 5. Conductivity estimated for Model1 when increasing number of the observed
heads are provided to inversion. The true K of the problem is 1.
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Fig. 6. Conductivity estimated for Model2 when increasing number of the observed
heads are provided to inversion. The true K of the problem is 1. The one observed
flow rate contains a +3% measurement error.

estimated K stabilizes and the variance of the K starts to decrease:
N =5 (Model1), N = 30 (Model2). For Model1, 80% of the estimated
K ranges from 0.64 to 1.0 when N = 5; for Model2, this envelop is
from 0.7 to 1.25 when N = 30. At these support sizes, adding more
observed heads does not significantly increase the accuracy and
reliability (i.e., reduction in the estimation variance) of the result.
This behavior was observed in other studies as well and was re-
ferred to as a ‘screening effect’ (Feyen et al., 2003). The variance
is also larger when the number of the observations is small. An
exception is that when N is very small (e.g., 2 for Modell and 5
for Model2), a few estimated conductivities actually become neg-
ative due to incorrect estimation of the hydraulic head gradient
[Oh/ox, Ohldy, 6h/oz]". In these cases, wrong gradient signs can be
computed locally from the few observed heads that are spaced
either too close to one another or sampled at locations that make
gradient evaluations difficult, e.g., 6h/dz is estimated using mea-
sured heads that are sampled on or near a horizontal plane. In
these cases, inspection of the reconstructed streamlines (not
shown) reveals incorrect local flow directions, indicating the issue
with gradient estimation. Clearly, when data are sparse, head gra-
dient estimation becomes challenging in 3D and inversion accu-
racy suffers accordingly. This problem vanishes when more
observed heads are provided to inversion with which head gradi-
ent vectors can be more accurately computed. In a field situation,
before any inversion is carried out, the existing measurements
need to be closely examined to evaluate whether head gradient,
which varies with space, can be accurately determined. Without
such data, inversion accuracy will be poor regardless of the inverse
method used. Moreover, even when N is very small, the degeneracy
in the head gradient estimation (i.e., negative K estimates) occurs
in only about 10% of the inverse solutions, while 80% of the esti-
mated K still remains positive.

The K estimation variance, together with the evolution of its
median value, suggests a minimum number of head observations
for the inversion to succeed under linear and nonlinear flow. For
Model1 (linear flow), if a 10% conductivity estimation error is con-
sidered acceptable, 10 observed heads (along with the one ob-
served flow rate) are sufficient to provide an accurate K estimate.
Upon inspecting the solutions, the highest errors in K estimation

tend to occur when the observed heads lie close to one another
(i.e., average distance <0.5), resulting in a strong screening effect.
In these cases, model domains extend beyond the observation loca-
tions, leading to extrapolation in the rest of the model where the
observed data do not exist. In these outer regions, continuity of
head and flux are imposed but locally these solutions are not con-
ditioned to measurements, which leads to a greater overall estima-
tion error. In real applications, model domain is typically defined
by the observation locations (see Section 2). Thus, should the mod-
el domain be selected to more closely follow the data, the inversion
accuracy is also expected to improve. For Model2 (nonlinear flow),
given the same acceptable error in K estimation, an N threshold ap-
pears around 40. Interestingly, accurate result can also be obtained
with an N as low as 10, i.e., near the maximum estimated K. This
particular solution suggests that for N = 10, an optimal distribution
of the observed heads exists. These heads may be described as a set
of “influential observations with high information content” for the
K estimation (Hill and Tiedeman, 2007). Together, these results
suggest that the accuracy of K estimation depends not only on
the quantity of the observations but also on their locations. Fur-
thermore, when N is greater than 30, the median K is generally
overestimated due to the imposed +3% error on the observed flow
rate. However, when N increases from 30, the influence of this flow
rate error on K estimation becomes less pronounced: when
N=100, only around +3% overestimation of the median K is
observed.

4.3. Information content of the observations

Various sensitivity analysis methods exist with which the influ-
ence of observations on parameter estimation can be assessed.
These methods are often based on estimating a sensitivity matrix
by differentiating the observations with respect to the parameters
(Hill and Tiedeman, 2007). Here, the fit-independent Composite
Scaled Sensitivity (CSS) statistic is tested, which provides a scalar
value summarizing the total information provided by all observa-
tions for the estimation of one parameter, in our case, K of the
aquifer:

41T pss? 1% oh
= J = (=2
cssf§j:]: {NH} , DSS; <6I<)|K| (11)

where N is the number of head observations and (+1) reflects the
one flow rate measurement. Here, for a subset of the support sizes:
N={5,10,20,40,100}, CSS is computed for Model2 using the for-
ward model for each set of the (randomly sampled) observed heads
at their measurement locations. (Note that for each support size,
102 inversion runs had been carried out with which K was esti-
mated given the same observed heads.) The CSS values are plotted
against the absolute error of K estimation (Fig. 7). Larger N leads to
higher CSS, indicating an overall increase of the information content
of the data, which then leads to a better estimated K. For a given
dataset, however, a slight increase in the K estimation error is ob-
served with increasing CSS. It suggests that for this model, CSS is
not able to give detailed information to distinguish if a given set
of the observations can result in an accurate and reliable K estimate.
Similar to Fig. 6, we observed that N ~ 40 appears to be a measure-
ment threshold: when N> 40, the K estimation error decreases
sharply with increasing CSS.

For Model2, CSS appears to be an inadequate indicator of the
information content of the data, i.e., whether a particular set of
the observations can yield accurate inversion results. Here, we
present a simple and efficient OAT (one-observation-at-a-time)
procedure which is shown for limited test cases to be a good
indicator of whether a set of observations can lead to a reliable K
estimate. In this procedure, we propose to solve the inverse
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Fig. 7. Computed CSS for Model2 when an increasing number of the observed
heads is provided to inversion. For each observation set (of size N), 102 inversion
runs were carried out. Thick lines represent a linear fit of the K estimation error
against CSS for a particular observation set.

problem using only 1 observed head at first, recording the esti-
mated conductivity value, i.e., K;. Then, one more observed head
is added, yielding K3, and so on until Ky (N represents the total
number of the observed heads in the dataset). We then evaluate
the convergence behavior of the estimated K versus the number
of observations used. If K appears to converge (i.e., the estimated
K appears to stabilize when increasing number of the head mea-
surements are used), then we randomize the sequence of the head
selections from the same observation dataset, and repeat the analy-
sis to obtain a new set of K; to Ky. Again, the behavior of K is in-
spected and compared to the first sequence. This analysis can be
repeated many times, and all sequences of K are compared to-
gether. The estimated K using the full dataset (of size N) is consid-
ered reliable if all the K sequences appear to converge after certain
measurement threshold is reached.

To illustrate the OAT procedure, 3 examples using Model2 are
presented with N =50 (again, only one flow rate measurement is
used). In each example, 50 heads were randomly sampled at differ-
ent locations, yielding 3 alternative measurement datasets. For
each measurement set, 4 randomized sequences were created
using the OAT procedure. Three different behaviors are observed:
(1) Fast convergence (Fig. 8a): for all 4 sequences, a stable K is ob-
tained with as few as 30 observed heads. After 30, adding more ob-
served heads does not change the result, but may increase the
reliability of the estimated K. In this case, the particular measure-
ment set (a total of 50 heads) can provide enough information for
the reliable K estimation. (2) Slow convergence (Fig. 8b): a stable K
is obtained at 44 observed heads. In this case, the measurement
dataset (another randomly selected 50 heads) may provide less
information for reliable K estimation. (3) Non-convergence
(Fig. 8¢): none of the sequences suggest that the estimated K is sta-
bilizing. In this case, the measurement dataset (yet another 50
heads) does not provide sufficient information for reliable K esti-
mation, thus more observation data would be needed. In the above
analysis, a few sequences first appear to converge, but switch to
very different K values as more observed heads are added, e.g.,
the sequence labeled “3_1" in Fig. 8b, when N reaches 15. This sug-
gests that the addition of one more observed head leads to a signif-
icant change in the inverted flow field, thus illustrating the non-
uniqueness issue discussed in Irsa and Zhang (2012), where differ-
ent BC associated with different flow patterns can all satisfy the
same observed data. This behavior also suggests the necessity of
randomizing the sequence when carrying out the OAT analysis.
Having multiple sequences can help identify possible false conver-
gence behavior.

To evaluate the accuracy of BC recovery, the BC obtained from
one inverse solution (Model2: dataset “2” when N=50; see
Fig. 8a) are compared with the true BC which were used in the for-
ward FDM to generate the observation data. Along a diagonal pro-
file on the model top boundary where the true hydraulic head was
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Fig. 8. OAT test runs for 3 different measurement datasets, with (a) fast converging,
(b) slow converging, and (c) non-converging characteristics. For each dataset, 4
randomized sequences were run. True K of this problem is 1.

specified as a parabolic function, the recovered head profile closely
matches the true head profile (Fig. 9a). In addition, a separate
inversion is carried out when the model domain contains two hor-
izontal hydrofacies zones of equal thickness (the bottom hydrofa-
cies K is 100 times the top hydrofacies K). The true model in this
case is driven with a set of linear flow BC, thus flow is from top
to bottom (this problem is similar to the heterogeneous problem
described in the next section and is thus not presented in great de-
tail). Along a straight line in the center of the model domain
extending from the bottom boundary to the top boundary, the
recovered head profile is again favorably compared with the true
head profile (Fig. 9b). In all other inversion runs when accurate
Ks were estimated based on a sufficient set of observation data, a
similar accuracy in BC recovery is observed. Similar to K estima-
tion, the accuracy in BC recovery also increases with the increasing
number of the observation data.

4.4. Heterogeneous inversion and stability

A heterogeneous model is inverted where four hydrofacies
zones exist within a computation domain of xe][0,100],
y €[0,100], z<[0,100] (all units are in ft). In this analysis, the
cubic hydraulic head formulation is used. At the hydrofacies inter-
faces where K differs across the neighboring elements, fewer equa-
tions are needed in formulating Eq. (9), as only the hydraulic head,
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Table 2

Estimated hydraulic conductivities (ft/d) when inversion is conditioned to observed heads with increasing measurement errors. Conductivities of the true model are also listed.
The measurement error is defined by a percent of the total head variation in the solution domain. The computation time is obtained by running the inversion code on a dual-core

64-bit PC workstation.

Hydraulic conductivities Grid Computation time (s)
K1 K2 K3 K4

True model 1.0 x 1072 5.0 x 1072 1.0 x 107" 5.0 x 107! 50 x 50 x 20 ~5

Inversion: 0% (0) 1.0 x 1072 5.0 x 1072 1.0x 107! 5.0x 107! 2x2x2 ~1

Inversion: +0.1% (0.1 ft) 9.7 x 1073 49 %1072 9.7 x 1072 49 x 107" 2x2x2 ~1

Inversion: +0.5% (0.5 ft) 5.7 x 1073 29 %1072 5.7 x 1072 29 x 107! 2x2x2 ~1

Inversion: +0.1% (+0.1 ft) 1.01 x 1072 5.05 x 1072 1.01 x 107! 5.05 x 107! 4x4x4 ~2

Inversion: +0.5% (0.5 ft) 1.08 x 1072 5.4 x 1072 1.08 x 107" 5.4 x 107! 4x4x4 ~2

the normal flux, and its derivative are written for the continuity
equations. Spatially, the 4 hydrofacies are organized as (the value
of their respective hydraulic conductivity is given in Table 2):

e K1 zone: x € [0,50], y € [0,50], z € [0,100],

e K2 zone: x € [50,100], y € [0,50], z € [0,100],

e K3 zone: x € [0,50], y € [50,100], z € [0,100],

e K4 zone: x € [50,100], y € [50,100], z € [0,100].

Under a set of true model BC (specified head of 200 ft and 100 ft
for the top and bottom boundaries, respectively, and no-flow for
the sides), a forward FDM is simulated with a dense grid of
50 x 50 x 20 from which a set of observation data are sampled.
These data consist of 64 randomly sampled heads and one vertical
Darcy flux component (q,) sampled at (83.0, 83.0, 82.5). The inver-
sion is carried out first with a coarse grid, and then with a refined
grid. Initially, error-free measurements are used, and the estimated
conductivities are identical with those of the true model (Table 2).
Then, increasingly higher measurement errors are imposed on the
observed heads while keeping the mean error approximately zero
(error is not imposed on the flux measurement). For example, if the
errors is £0.1%, it means that we randomly add or subtract 0.1% of
the total head variation to each measured head sampled from the
true model. Tapes and pressure transducers can yield head mea-
surements with a precision of less than 1 cm (Post and von As-
muth, 2013). Pressure transducers sometimes suffer from
environmental effects, which can lead to head measurement errors
on the order of several cm or even decimeters (Post and von
Asmuth, 2013). In comparison, our head errors of +0.1-+0.5 ft
(£3-%15 cm) are reasonable. Though other techniques can lead to
even greater head measurement errors (e.g., meters), Post and
von Asmuth (2013) recommends that “the use of such data beyond

anything other than an initial, general reconnaissance study is
questionable, and any quantitative analysis based on them should
be avoided”. Therefore, we did not test head errors greater than
+0.5 ft.

When a small inverse grid (2 x 2 x 2) is first used, the esti-
mated conductivities become less accurate with increasing head
measurement errors, although the inversion results are still stable,
i.e., for the given error magnitudes, the estimated hydraulic con-
ductivities do not vary from the true values by more than one or-
ders of magnitude. When the inverse grid is refined to 4 x 4 x 4,
for the same measurement errors, much improved K estimates
were obtained, especially for the case with the larger measurement
errors (+0.5 ft). Clearly, similar to the homogeneous problems in-
verted earlier, inversion accuracy of the heterogeneous problem
is also affected by grid resolution. The conductivity estimation er-
ror, however, is expected to grow when the measurement errors
are further increased and/or when the number of observed heads
is further decreased (this latter problem was evaluated previously
with the homogeneous problems and will not be repeated here). A
systematic study is needed, however, to evaluate an optimal mon-
itoring network with which the inversion can be carried out with a
high degree of stability - i.e., accurate parameter estimates that are
robust to measurement errors while only a limited number of head
measurements is provided to inversion.

The recovered head boundary conditions are very accurate
when error-free data are used to condition the inversion (not
shown), but become less accurate when the measurement error
is increased. These results are consistent with what was found in
our earlier 2D studies. Computation time for the above inversion
(i.e., a program written with MATLAB 2012a) is extremely fast
when a least-squares direct matrix solver is used. Generally, it
takes less than two seconds for the solver to converge, and the
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solution time does not appear to be affected by the increasing mea-
surement errors that are tested in this problem. However, for 3D
inversion with much larger grid sizes, the system of equations will
become much bigger. Iterative solution techniques will likely be
needed for which a number of efficient LSQR solvers (both serial
and parallel) are under development (Lee et al., 2013).

5. Discussion

Using synthetic examples providing a set of true models from
which measurements can be sampled, this study demonstrates
the applicability of the new direct method for aquifer inversion
in three dimensions. In formulating the fundamental solutions of
inversion, earlier studies evaluated a set of lower order approxi-
mating functions, which were shown to provide sufficiently accu-
rate solutions for different 2D problems (Irsa and Zhang, 2012;
Wang et al., 2013). For 3D inversion, two sets of approximating
functions of increasing complexity are developed and tested: qua-
dratic head and linear Darcy flux versus cubic head and quadratic
Darcy flux. Although the lower order approximating functions can
yield accurate results when the inverse grid is refined, the higher
order approximating functions can lead to a faster convergence
of the estimated conductivity at a lower level of grid discretization.
Regardless of the order of approximation, the direct method can
yield accurate results given a sufficiently refined grid, whereas
high accuracy can be gained with a coarse grid using higher
approximation. Although a tradeoff exists between the order of
approximation and the number of inverse grid cells, the inverse
analysis can be performed with a high computational efficiency.
Moreover, based on two simulations with identical parameteriza-
tion but with different flow fields (uniform versus strongly non-
uniform), the effect of boundary conditions, or the degree of flow
tortuosity, also impacts the inversion accuracy. The cubic approx-
imating function is found to be more robust when different flows
are inverted, and is thus chosen for the majority of the analysis.
A sensitivity analysis is then conducted to elucidate the effect of
sampling density on the inversion accuracy. The results suggest
that the location of the measurement data can also influence inver-
sion: when the measured heads are clustered, the inversion accu-
racy suffers because of a greater extrapolation error. An OAT
procedure is used to determine if a given set of measurements
can lead to a reliable K estimate. Because the direct method is com-
putationally efficient, a large number of inversion runs, as required
by the OAT procedure, can be completed quickly. The optimal mea-
surement location, however, remains undetermined and will re-
quire additional analysis for which a global sensitivity technique
will likely be needed (Saltelli et al., 2008). Finally, using a problem
with four hydrofacies, stability of inversion under increasing
observation errors is demonstrated. The inversion accuracy is not
only influenced by the magnitude of the measurement errors but
is also affected by the inverse grid resolution.

In conducting the above analyses, which were carried out to
analyze the inverse algorithm and its stability, the observation data
include hydraulic heads and a single subsurface flow rate, or
hydraulic heads and a single Darcy flux component. Clearly, to ap-
ply the direct method to inverting problems under non-pumping
conditions, an issue exists with measuring the subsurface ground-
water fluxes or flow rates which are needed for inversion. One way
to collect flux measurements is to conduct borehole flowmeter
tests (Molz et al., 1994) or downhole flow logging (Gellasch
et al., 2013) under ambient flow. To measure subsurface flow rates,
hydrograph separation can be utilized, although this technique re-
quires that aquifer intersect streams whose gain/loss can be accu-
rately measured. In studying groundwater-surface water
interactions, various seepage meters can directly measure water

fluxes at sediment-water interfaces (Kalbus et al., 2006). Indirect
approach can use Darcy’s Law to infer subsurface fluxes based on
local K and hydraulic head measurements. For example, using the
Multilevel Slug Test, a local K can be estimated at each packed-off
interval (Butler, 2005). Before the test (under ambient flow), if the
same interval is subject to multiple head measurements at loca-
tions above and beneath this interval, an in situ groundwater flux
can be inferred. In addition, new measurement techniques for
in situ groundwater flux determination are now available (Labaky
et al., 2009). With the Point Velocity Probe, for example, both the
magnitude and direction of the average linear velocity can be mea-
sured. If porosity measurement is also available, Darcy flux vectors
can then be determined. The above discussion suggests that sub-
surface flow rate or flux measurements can in theory be obtained
if the appropriate tests are conducted. However, some of these
fluxes are indirect measurements (e.g., those determined by Dis-
tributed Temperature Sensing involve inverse modeling of the
measured temperatures), and the associated measurement errors
may be higher. In addition, under the Dupuit-Forchheimer condi-
tion, new inverse formulation has been developed to account for
source/sink effects (e.g., pumping and recharge) (Zhang, submitted
for publication). For problems with heterogeneous conductivity
and recharge distributions, inversion is successful given a single
pumping rate in addition to hydraulic heads as measurements.
For these problems, subsurface flux or flow rate observations are
no longer needed. The extension of the 3D method to address
source/sink effects will be investigated in the future. To summa-
rize, data requirement of the new inverse method is not unreason-
ably high. The potential of this method to be adopted by real world
analysis can be enhanced by new measurement techniques or im-
proved formulations.

A fundamental contribution of our series of studies is to prove,
via the direct method, that boundary condition information is not
needed for estimating aquifer parameters including hydraulic con-
ductivities (and source/sink rates). With the objective-function-
based approaches, hydraulic head and flux BC must be specified
along the entire model boundaries, because these methods require
the repeated simulations of a forward flow model in order to min-
imize the objective function. One issue with these approaches lies
in the fact that BC are typically unknown in real aquifers, and if a
wrong set of BC is assumed, parameters estimated using objective
functions are likely non-unique. As demonstrated in Irsa and Zhang
(2012), two different sets of BC can give rise to two different flow
fields both of which can perfectly fit the same observed data, yield-
ing a zero objective function. Moreover, when BC are specified to
the forward model, these traditional methods in effect require that
inversion be conditioned to these boundary heads or fluxes. In
other words, by specifying BC to a forward model in order to minimize
an objective function, the calibrated model is “fitted” to these heads or
fluxes. The problem is that such heads or fluxes are not real mea-
surements that are sampled from the aquifer; rather they reflect
a conceptual assumption made by the modeler. Because of subsur-
face uncertainty, if a wrong BC assumption is made (e.g., leakage
exists along a presumed no-flux boundary), this will result in the
so-called “model error” which is difficult to remediate using the
objective functions, e.g., various authors have discussed how the
objective functions may be modified to account for such errors
(Doherty and Welter, 2010). As demonstrated in Section 2 of this
study, even in the extreme case where boundary heads are sam-
pled everywhere in order to provide the BC for the forward model,
measurement errors, which effectively create a large number of
“incorrect measurements” along these boundaries, can signifi-
cantly impact the accuracy of inversion using the objective func-
tion. With the direct method, the heads, fluxes, or flow rates are
provided to inversion at the locations where they are measured,
and they can be anywhere inside the model domain or on the
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model boundaries. Compared to the traditional methods, no
assumptions about the BC are made, eliminating the possibility
of making the type of “model errors” that can arise due to a wrong
BC assumption. In fact, our series of studies demonstrate that
observation data that are sampled anywhere in the solution do-
main (with a minimum of one flux or one flow rate measurement)
can effectively replace the need for specifying the BC along the en-
tire model boundaries.

Although BC can in theory be calibrated, such an approach is
likely inefficient. This is because infinite combinations of parame-
ters and BC can satisfy the same observed data and non-
uniqueness in calibrating the model parameters and model BC
can only be eliminated at the limit where the observed data are
sampled everywhere. In the real world, both the location of the
aquifer boundaries and their boundary conditions are typically
uncertain. As demonstrated in Section 2, the direct method applies
to problems when the location of the aquifer boundaries is
unknown, in which case the inversion domain is defined by the
location of the measurements. This is again because the direct
method does not built a forward model to evaluate objective func-
tions. A further issue with the objective-function-based methods is
computation efficiency. For example, using global optimization
techniques (i.e., genetic algorithm, neural net, and others), thou-
sands or more forward models must be solved to minimize an
objective function (and if BC are additionally calibrated, more for-
ward problems must be solved). With the direct method, given
appropriate measurements, both the parameters and the unknown
model BC can be simultaneously estimated. It is computationally
efficient because the inversion only involves a single matrix solve.
If appropriate approximating functions are used, the inverse grid
can also be very small, leading to high computation efficiency.
An exception is when the inverse method is combined with geosta-
tistics, whereas many parameter realizations are inverted to ac-
count for the uncertainty in hydrofacies distribution (Wang et al.,
2013). Integration of the 3D method with geostatistics will be
addressed in the future.

6. Conclusion

In this study, a direct inverse method is presented for three-
dimensional steady-state aquifer inversion where the aquifer
boundary conditions are unknown. This method extends the
two-dimensional study of Irsa and Zhang (2012), where its key
strength lies in its computational efficiency. The formulation of
the inverse method is based on (1) creating local solutions, or
approximating functions, of hydraulic head and Darcy flux that sat-
isfy the homogeneous, local flow equation; (2) enforcing the conti-
nuity of head and flux globally via a set of collocation points that
lie on elemental interfaces; (3) conditioning the local solutions at
the measurement locations. Because of this formulation, there is
no need to fit an objective function, nor is there a need for repeated
simulations of the forward flow model. Via step (3), the noisy ob-
served data can be directly incorporated into the solution matrix,
which is solved in a one-step procedure. The inversion results in-
clude hydraulic conductivities and head and flux approximating
functions from which the model boundary conditions can be
inferred.

Two hydraulic head approximating functions were tested, one
employing quadratic approximation of the hydraulic head, the
other cubic approximation. Compared to the quadratic approxi-
mating function, the cubic function leads to a faster convergence
of the estimated hydraulic conductivity at a lower level of grid
discretization, while it is also more robust when different flow
conditions are inverted. Two different boundary conditions were
also tested, one leading to linear flow, the other strongly nonlin-

ear flow. Under both boundary conditions, the estimated conduc-
tivities converge to the true values with the refinement of the
inverse grid, and the inversion results were shown to be accurate
when a sufficient number of the observation data were used. Un-
der linear flow, for example, 10 observed heads and 1 observed
flow rate measurement can lead to accurate inverse solutions.
Under nonlinear flow, however, 40 observed heads and 1 flow
rate measurement are needed. Inversion is also successful using
observation data such as 64 hydraulic heads and a single Darcy
flux component. This level of data requirement is considered
quite high if traditional water wells are used for the hydraulic
head measurements. On the other hand, multilevel sampling
wells can provide the much needed vertical resolution to obtain
the measured heads in three-dimensions. These new technologies
can significantly reduce the number of observation wells needed
for the inversion to succeed. Moreover, the observed heads are
randomly sampled, although measurement location is known to
be a significant factor that can impact the accuracy of parameter
estimation (Hill and Tiedeman, 2007). Based on the insights of
this study, future work will explore optimal sampling locations,
thus data requirement for inversion can be further reduced. Fur-
thermore, to understand data worth, a sensitivity analysis is con-
ducted whereby the inversion accuracy is evaluated when
increasing observed heads are sampled. The results of this analy-
sis are analyzed first with the composite scale sensitivity (CSS)
which can reveal the overall information content of the data.
The more heads are sampled, the higher the CSS, and the more
accurate the inverse solution. However, when the number of
measurements is fixed, CSS cannot identify whether a particular
set of the observations can lead to a reliable conductivity esti-
mate. A one-observation-at-a-time (OAT) approach is proposed,
which can identify the reliability of the estimated conductivity
for a given set of the observations. To evaluate the stability of
the inverse method when measurement data contain errors, a
problem with 4 hydrofacies zones is inverted. The results are
accurate when the measurement error is small but become
slightly less accurate when the error is larger. In summary, flow
condition, inverse formulation, grid discretization, observation
data density and location, and measurement errors can all influ-
ence the accuracy of inversion.

This study points to an efficient way of conducting first-pass,
low-cost aquifer characterization where both aquifer parameters
and aquifer boundary conditions can be obtained from limited site
data, prior to conducting pumping tests or other aquifer stimula-
tion techniques. In particular, Section 2 suggests that the new
method can act as a low-resolution screening model to infer the
unknown site BC, which when given to PEST or other objective-
function-based techniques, may improve their results. Base on
the insights of this study (e.g., more measurements are needed to
successfully invert nonlinear flow), future studies will investigate
sensitivity measures that take into account the aquifer flow condi-
tion, which can then help identify a set of optimal observation
locations. Future work will also incorporate site geostatistical data
in three-dimensions to account for realistic aquifer heterogeneity
and to explicitly quantify uncertainty in both parameters and
boundary conditions. Joint hydrological and geophysical inversion
is of interest, whereby geophysical measurements correlated to the
hydrological parameters can be used to provide additional con-
straint questions. By adding such equations to inversion, highly
parameterized techniques estimating a greater number of parame-
ters (e.g., K at each grid cell) will be attempted.
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Appendix A. Number of collocation points per interface

Assuming a 3D rectangular domain discretized into block ele-
ments with I, J, K elements along the x, y and z axis, respectively,
one has a total of IJK elements. Below, the number of collocation
point per element interface (P) is computed assuming a homoge-
neous aquifer.

A.1. Quadratic approximation

Each element has 9 unknowns, thus we have a total of 9IJK un-
knowns. Given the 4 continuity equations at every collocation
point, the total number of equations is 4P(3[JK — I] — IK — JK),
where P is the number of collocation points per interface. To avoid
the creation of an underdetermined inversion matrix, one must
have 4P(3[JK — I] — IK — JK) > 9IJK. Therefore, the number of collo-

cation points per interface is: P > W. For [K>4, P > 1.
One collocation point per interface is shown to be sufficient for
the quadratic approximation.

A.2. Cubic approximation

Each element has 16 unknowns, thus we have a total of 16]JK
unknowns. Given the 9 continuity equations at every collocation
point, the total number of equations is 9P(3[JK — I — IK — JK). To
avoid an underdetermined system, one must have
9P(3IJK — ] — IK — JK) > 16lJK. Therefore, the number of colloca-

tion points per interface P is: P > % For [K>4, P > 1.
One collocation point per interface is sufficient for the cubic

approximation.

Appendix B. Weighting of the continuity equations at the
collocation points

Taking P =1, the weights assigned to the continuity equations
are computed as the inverse of the ratio of the number of equations
to the number of unknowns. A weight of 1 would be if the system
is square, such as in solving a boundary value problem to which the
method of this study is also applicable, e.g., see Irsa and Galybin
(2010). Below, we assume again a homogenous aquifer, a regular
block grid, and a limiting case.

B.1. Quadratic approximation

Given the 4(3[JK — I] — IK — JK) equations and 9[JK unknowns,
the ratio is:
43JK -] - IK — JK) 1

=133, J(pj—¢) = i3 ~0.75

pm 9K

—_

B.2. Cubic approximation

Given the 9(3[JK — IJ — IK — JK) equations and 16IJK unknowns,
the ratio is:

93K — I — IK — JK) 1

i 16K =167, olpj—¢) = 757=06

—_
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