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Abstract A laboratory-generated hierarchical, fully heterogeneous aquifer model (FHM) provides a refer-
ence for developing and testing an upscaling approach that integrates large-scale connectivity mapping
with flow and transport modeling. Based on the FHM, three hydrostratigraphic models (HSMs) that capture
lithological (static) connectivity at different resolutions are created, each corresponding to a sedimentary
hierarchy. Under increasing system lnK variances (0.1, 1.0, 4.5), flow upscaling is first conducted to calculate
equivalent hydraulic conductivity for individual connectivity (or unit) of the HSMs. Given the computed flow
fields, an instantaneous, conservative tracer test is simulated by all models. For the HSMs, two upscaling for-
mulations are tested based on the advection-dispersion equation (ADE), implementing space versus time-
dependent macrodispersivity. Comparing flow and transport predictions of the HSMs against those of the
reference model, HSMs capturing connectivity at increasing resolutions are more accurate, although upscal-
ing errors increase with system variance. Results suggest: (1) by explicitly modeling connectivity, an
enhanced degree of freedom in representing dispersion can improve the ADE-based upscaled models by
capturing non-Fickian transport of the FHM; (2) when connectivity is sufficiently resolved, the type of data
conditioning used to model transport becomes less critical. Data conditioning, however, is influenced by
the prediction goal; (3) when aquifer is weakly-to-moderately heterogeneous, the upscaled models
adequately capture the transport simulation of the FHM, despite the existence of hierarchical heterogeneity
at smaller scales. When aquifer is strongly heterogeneous, the upscaled models become less accurate
because lithological connectivity cannot adequately capture preferential flows; (4) three-dimensional trans-
port connectivities of the hierarchical aquifer differ quantitatively from those analyzed for two-dimensional
systems.

1. Introduction

As a central topic of subsurface hydrology, solute transport in aquifers has been investigated for several
decades. Various theories have been proposed, including the macrodispersion approach based on the
advection-dispersion equation (ADE) [e.g., Gelhar and Axness, 1983; Dagan, 1989] and alternative or nonlocal
formulations, e.g., dual and multicontinuum models [Cushman and Ginn, 1993; Neuman, 1993; Harvey and
Gorelick, 2000; Haggerty et al., 2001], continuous time random walk [Berkowitz and Scher, 1998; Dentz et al.,
2004; Berkowitz et al., 2006], moment equation [Neuman, 1993, 2003; Neuman and Tartakovsky, 2009], pro-
jector formalism [Cushman and Ginn, 1993; Cushman et al., 2002], fractional ADE [Meerschaert et al., 1999;
Benson et al., 2000], and the stochastic-convective approach [Cvetkovic et al., 1996; Cirpka and Kitanidis,
2000; Ginn, 2001]. Simultaneous with theory development, field tracer tests have been conducted at various
locations with the explicit goal of testing one or more theories, e.g., Borden, Canada; Mobile, Alabama; Twin
Lake, Minnesota; Cape Cod, Massachusetts, Mirror Lake, New Hampshire; and the Macrodispersion Experi-
ment (MADE) at Columbus, Mississippi. At these sites, aquifer hydraulic conductivity (K) ranges from rela-
tively homogeneous, e.g., the Cape Cod site with a r2

f (variance of lnK) of 0.24, where K varies by
approximately 1 order of magnitude [Garabedian and Leblanc, 1991], to highly heterogeneous, e.g., the
MADE site has a r2

f ranging from 4.5 [Rehfeldt et al., 1992] to 6.0 [Bohling et al., 2012], where K varies from 4
to 6 orders of magnitude depending on the measurement methods. As shown by the MADE tracer experi-
ments, when r2

f is high, solute transport exhibits anomalous behavior such as non-Fickian breakthrough
curves (i.e., asymmetry and heavy tails) and scale dependence in the observed dispersivity.

In nearly 3 decades, several tracer experiments at the MADE site have been interpreted with theories.
Although nonlocal theories can often provide a better match [Zheng et al., 2011], ADE was found to capture
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the main solute plume characteristics if site heterogeneity is adequately resolved [Barlebo et al., 2004; Sala-
mon et al., 2007]. When dispersivity was modeled as time-dependent [Liu et al., 2008], tritium plume pre-
dicted with ADE improves over that of an earlier study simulating the same experiment using a constant
dispersivity [Feehley et al., 2000]. Assuming low-K inclusion within a high-K matrix, Fiori et al. [2013] capture
both the arrival and tailing of the tracer tests with an ADE-based formulation. In these cases, the ability of
ADE to capture transport likely improved because of the enhanced degrees of freedom in representing dis-
persion, as it is well known in regression that models with increased parameterization can provide
improved fits to observations. In simulating transport in a synthetic aquifer, ADE was also found to capture
bulk transport statistics when dispersivity was modeled as spatially or temporally variable [Zhang and Gable,
2008]. Field studies at Lauswiesen, Germany, further suggest that when multiple facies are explicitly
accounted for, ADE can provide predictions similar to a mass-transfer model [Riva et al., 2008, 2010]. By
comparison, nonlocal theories (including the above cited mass-transfer model) often invoke additional
transport parameters besides dispersivity, while physical meaning of these parameters and their interpreta-
tion using field data can become difficult to reconcile. As an example, among the nonlocal theories, those
with more parameters in their formulations can usually provide better fits, e.g., a space fractional ADE with
spatially variable dispersivity improves over a constant-dispersivity variant of the same model [Zhang et al.,
2007]. The above observations suggest that all theories with increased parameterization can potentially pro-
vide improved fits to data, although ADE is the most parsimonious model.

The previous paragraph highlights an ongoing debate over the issue of transport formulation for describing
tracer movement in heterogeneous aquifers. What makes this issue challenging is the complexity and
uncertainty of subsurface heterogeneity, as field and laboratory studies can suffer from data scarcity, mea-
surement support effects, and sampling or scale limitation. (There is also the issue of process uncertainty, as
transient flows due to aquifer recharge can impact dispersion—this topic will be left to another treatment.)
In sedimentary aquifers, heterogeneity of hydrological properties (notably, K) forms in response to dynamic
processes, e.g., sea level changes, basement subsidence, sediment supply variation, etc. As a result, conduc-
tivity heterogeneity exists at multiple scales, exhibiting nested structures within a lithological hierarchy, i.e.,
sediment laminas nested within larger scale beds that are further organized into facies or facies assemb-
lages [e.g., Fogg, 1990; Scheibe and Freyberg, 1995; Webb and Anderson, 1996; Anderson, 1997; Scheibe and
Yabusaki, 1998; Labolle and Fogg, 2001; Klise et al., 2008; Milliken et al., 2008; Comunian et al., 2011]. At even
greater scales, facies assemblages can give rise to aquifers and aquitards that are frequent targets in field-
scale contamination studies. At a given problem scale (often containing one or more sediment hierarchy),
heterogeneity can also exhibit long-range correlation or ‘‘connectivity,’’ which can give rise to preferential
flows or barriers that lead to early arrival and long tail in the solute breakthrough curve [Wen and G�omez-
Hern�andez, 1998; Zinn, 2003; Knudby and Carrera, 2005]. At the MADE site, sedimentological and geophysical
mapping confirm the existence of long-range facies connectivity that extends beyond the tracer test
domain [Bianchi et al., 2011; Meerschaert et al., 2013]. Thus, on the one hand, hierarchical deposits have
been explicitly modeled by combining large-scale lithological variations with the analysis of smaller scale
heterogeneities [e.g., on the other hand, by explicitly modeling connectivities at a given problem scale, fac-
tors influencing preferential flow and transport can be evaluated [Zheng and Gorelick, 2003; Salamon et al.,
2007; Bianchi et al., 2011]. Various connectivity definitions have been proposed by prior workers [Renard
and Allard, 2013]. In this work, we define connectivities as static (i.e., those related to lithological variation)
and dynamic (i.e., those related to flow and transport characteristics).

Despite the advances made in developing theory and field characterization techniques, practical problem
solutions require efficient transport simulators. Because resolving heterogeneity down to the smallest
resolvable continuum scale is impractical, when problem scale is large and site data are limited, flow and
transport simulators must necessarily ignore heterogeneity at one or more smaller scales (or hierarchies).
This necessity motivates the development of upscaling theories of flow and transport that develop deter-
ministic or stochastic solutions of the governing equations to derive formulations with effective or equiva-
lent parameters in order to capture bulk flow and transport behaviors arising out of the underlying
heterogeneity [Dagan, 1989; Gelhar, 1993; Dagan and Neuman, 1997; Cushman et al., 2002; Vogel and Roth,
2003; Frippiat and Holeyman, 2008; Fiori et al., 2013]. Two parameterizations are common in upscaling: (1)
heterogeneity is populated throughout the problem domain by assigning to each grid cell a grid-effective
conductivity and dispersivity that can account for flow and transport behaviors arising out of the subgrid
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heterogeneities [e.g., Efendiev et al., 2000; Rubin, 2003; Fern�andez-Garcia and G�omez-Hern�andez, 2007]; (2)
heterogeneity is represented by a series of homogeneous facies or aquifers/aquitards units, ignoring subu-
nit variation (hydrostratigraphic models, or HSMs). The first parameterization is frequently associated with
geostatistical modeling, e.g., creating conditional realizations that are then coarsened to create a simulation
model. The second parameterization, frequently invoked in larger scale studies lacking detailed field data, is
more amenable to developing hierarchical models [Monsen et al., 2005; Milliken et al., 2008; Ramanathan
et al., 2010; Li et al., 2011]. Upscaling for HSMs is the focus of this work.

Based on a three-dimensional (3-D) experimental stratigraphy exhibiting heterogeneity and connectivity at
different scales, this study evaluates the ADE-based macrodispersion theory for upscaling transport with a
suite of HSMs that captures lithological (static) connectivity at different sedimentary hierarchy. Equivalent
conductivities are first computed for individual connectivity (or unit) of the HSMs. Transport upscaling is
then carried out: in the heterogeneous reference model (i.e., experimental stratigraphy), ADE is assumed
applicable; in the HSMs, ADE is parameterized with macrodispersivities to represent solute spreading due to
unresolved, subunit-scale heterogeneity. The macrodispersion theory is chosen because it is the most
widely studied, has shown utility for capturing field transport, and has matured to an extent that its underly-
ing assumptions are generally understood [Rubin, 2003]. By comparison, upscaling theory for nonlocal for-
mulations is in its infancy, while practical applicability of many nonlocal methods still remains to be
demonstrated.Because the experimental stratigraphy was a unique outcome of a physical sedimentation
experiment, it is not amenable to a geostatistical (i.e., multiple-realization) treatment. Flow and transport
upscaling of this study is thus deterministic and adoption of the macrodispersion theory necessitates the
working assumption that ensemble predictions can be applied to evaluating single or unique experiment.
The ergodicity assumption has been adopted by prior workers when addressing issues with connectivity,
i.e., a large problem domain many times the lnK correlation range cannot be established [Desbarats and Sri-
vastava, 1991; Adams and Gelhar, 1992; Fern�andez-Garcia et al., 2004, 2005; Zhang and Gable, 2008]. This
assumption is necessary where long-range correlation exists in the field or in the laboratory, as the nature
of the transport condition cannot be changed to suit theory. In evaluating the experimental stratigraphy,
this study thus follows prior research in model conceptualization while focusing on the influence of connec-
tivity resolution on upscaling at increasing system lnK variances (0.1, 1.0, 4.5; K varies over 1, 3, and 6 orders
of magnitude, respectively). The effect of explicit connectivity modeling on predicting non-Fickian transport
by the ADE-based upscaled models is examined, yielding insights into why ADE can capture transport in
some situations (e.g., site heterogeneity is moderate and/or modeled at high resolution capturing dominant
connectivity), but not in others (e.g., sites with strong variability and/or models ignore or incorporate insuffi-
cient connectivity resolution). Because few hierarchical aquifer data have been analyzed for transport, this
study also examines several dynamic connectivity measures in comparison to prior values reported in the
literature.

In the remainder of this article, the heterogeneous reference model is introduced first, followed by a
description of the procedure used to construct the HSMs. Flow and transport upscaling methods are pre-
sented next, followed by the results section which consists of: (1) flow upscaling and verification; (2) trans-
port upscaling and verification; (3) dynamic connectivities. Insights of this study are summarized before
conclusion and future research is indicated.

2. Methods

2.1. Model Creation
This study is based on stratigraphic data of an experimental deposit that exhibits hierarchical heterogeneity
corresponding to physical sedimentation, i.e., fine-scale variations unique to local depositional processes
are nested within larger scale, sand/clay transitions that formed in response to global forcings [Sheets et al.,
2002; Zhang et al., 2010]. Compared to geostatistically generated models that are often devoid of connectiv-
ity [Zinn, 2003], the experimental data exhibit hierarchical structure not dissimilar to that observed at the
MADE site [Zheng et al., 2011], e.g., sand-rich channel-like features embedded in floodplain clay, facies pro-
portion and sizes exhibit spatial persistence, i.e., static connectivity. By scanning the sediment at high reso-
lution and aligning the images in 3-D, a fully heterogeneous reference model (FHM) is created. This model
is scaled to field dimensions (Lx3Ly3Lz 5 2500 m 3 2500 m 3 100 m, of Nx 5 100, Ny 5 100, Nz 5 40) to
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create a synthetic aquifer with K variation mirroring sedimentation (Figure 1a). Each local K is assumed iso-
tropic to facilitate transport upscaling with a well-known theory (see section 2.4).

To create the HSMs, lithology of the FHM was mapped to capture distinct facies (8-unit model; Figure 1c)
before the facies were grouped into depositional environments (3-unit model; Figure 1b), which were fur-

ther grouped into a single aquifer unit (1-unit model)
(see detail in Zhang et al. [2011]). Because this procedure
was carried out honoring lithological principles, the
mapped connectivity is static. In practice, such models
can be built using logging or geophysical data that are
sensitive to formation lithology. The static connectivity is
captured at different resolutions, in effect reflecting dif-
ferent levels of field characterization that can be carried
out in practice. For each connectivity (or unit) of the
HSMs, a geostatistical analysis estimated subunit lnK
mean, r2

f , and integral scales (Table 1). This analysis was
then repeated after increasing system lnK variance while
fixing the mean lnK. At a given system variance, as con-
nectivity resolution increases, subunit r2

f becomes

Figure 1. (a) The reference fully heterogeneous model withlocal K variation in natural log scale (system r2
f is 4.5). K varies over 6 orders of magnitude in this model. Connectivity map-

ping at two scales: (b) 3-unit model, and (c) 8-unit model, while units of the latter model are nested within units of the former model.

Table 1. Integral Scales of lnK (m) for the HSM Units

Models ID kx ky kz

1-unit 155.0 690.0 5.0
3-unit 1 155.0 610.0 3.8

2 140.0 900.0 12.0
3 200.0 900.0 12.0

8-unit 1 155.0 610.0 3.5
2 135.0 320.0 3.0
3 135.0 700.0 3.4
4 155.0 250.0 3.0
5 155.0 275.0 7.5
6 155.0 720.0 15.0
7 230.0 300.0 3.0
8 330.0 350.0 16.0
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progressively smaller (Table 1). Finally, besides lithology, other static measures can also be used to map con-
nectivity, e.g., percolation thresholds [Hunt, 2001; Zhang et al., 2010] and geostatistics-based ranking metrics
[Deutsch, 1998].

2.2. Flow Upscaling
Flow upscaling was conducted to compute equivalent conductivity (K*) for each unit of the HSMs [Zhang
et al., 2011]: (1) the FHM was simulated solving the steady state incompressible flow equation under differ-
ent global flow boundary conditions (BC), (2) for each unit, mean flux and hydraulic gradient were com-
puted for each BC; (3) by imposing Darcy’s Law using mean fluxes and gradients from all BC, K* was
computed with a least-squares method. Given the system variances investigated (r2

f 5 0.1, 1.0, 4.5), three
sets of upscaled K* were obtained for each HSM (Table 2). To eliminate numerical errors associated with
grid coarsening, the HSMs employ the same grid as the FHM. Accuracy of the upscaled K* can be assessed
by comparing flow predictions of the HSMs against those of the reference model under the same global
flow BC (see 3.1).

2.3. Transport Modeling
One steady state flow experiment imposing a lateral hydraulic gradient along the x axis is selected for the
transport analysis. Hydraulic heads of the left and right sides of the model are assigned constant values of
100 m and 10 m, respectively, and all other boundaries are no-flow. Flow is driven from the inflow boundary
(x50 m) to the outflow boundary (x52500 m). Within the flow field, the release of a dilute, conservative
tracer is simulated by all models (the computational domain and simulation grid are the same as the flow
model). Given the K range (which changes with system variance), the simulated lateral transport is
advection-dominated, and diffusion is ignored. In all models, advective-dispersive transport is simulated:
local dispersion is assumed for the FHM; macrodispersion for the HSMs. Longitudinal macrodispersivity is
estimated for the latter, as this parameter can be linked to geostatistical parameters of the underlying heter-
ogeneity and because, for flow parallel to stratification, longitudinal spreading is significant compared to
transverse spreading. Below, the transport formulation is briefly explained.

The continuum-scale ADE that describes transport of a dilute, conservative solute in groundwater is:

@c
@t

5r � Drcð Þ2r � q
h

c
� �

(1)

where c is solute concentration, D is dispersion tensor, q is Darcy flux, and h is effective porosity. Ground-
water velocity (v) is calculated as q/h. In this work, h is given a uniform value of 0.25, typical for sand-clay
systems [Freeze and Cherry, 1979]. D is expressed as [Bear, 1988]:

D5 aTV1Ddð ÞI1 aL2aTð Þvv=V (2)

where Dd is effective porous medium diffusion coefficient (Dd 5 0 in this work), I is the identity matrix, aL

and aT are longitudinal and transverse dispersivities, respectively, and V is magnitude of the groundwater
velocity.

Table 2. Equivalent Hydraulic Conductivity Principal Components (m/yr) Computed With Flow-Based Upscalinga

Models ID

r2
f 5 0.1 r2

f 5 1.0 r2
f 5 4.5

Var(lnK) Kxx Kyy Kzz aM
L Var(lnK) Kxx Kyy Kzz aM

L Var(lnK) Kxx Kyy Kzz aM
L

1-unit 0.1 40.97 40.10 38.15 15.5 1.0 60.74 50.32 33.43 155.00 4.5 230.41 113.82 30.64 697.50
3-unit 1 0.078 34.13 33.30 32.63 12.09 0.784 32.56 26.03 22.54 121.52 3.528 58.63 24.81 17.35 546.84

2 0.066 48.97 47.89 46.47 9.24 0.662 96.54 78.90 66.40 92.68 2.979 475.42 216.91 172.62 417.06
3 0.063 46.26 45.46 44.83 12.60 0.629 80.15 68.17 60.43 125.80 2.831 330.03 178.35 121.00 566.06

8-unit 1 0.046 42.10 41.85 40.90 7.13 0.458 55.66 18.81 24.57 70.99 2.061 123.78 102.95 53.39 319.46
2 0.048 43.65 43.20 42.63 6.48 0.482 63.88 26.22 47.88 65.07 2.169 179.05 129.85 72.34 292.82
3 0.037 44.04 43.63 42.63 5.00 0.373 62.67 28.86 61.92 50.36 1.679 148.15 116.01 72.97 226.62
4 0.046 29.59 29.55 28.48 7.13 0.464 18.66 26.33 46.51 71.92 2.088 13.46 14.17 3.78 323.64
5 0.027 65.34 64.97 61.98 4.19 0.266 212.08 96.26 19.76 41.23 1.197 1715.69 1401.05 676.38 185.54
6 0.050 45.55 44.91 43.64 7.75 0.504 72.99 71.82 23.40 78.12 2.268 227.64 141.98 84.52 351.54
7 0.044 59.96 60.12 56.89 10.12 0.437 171.45 80.88 17.99 100.51 1.967 1288.16 1530.46 304.19 452.30
8 0.055 44.49 43.96 43.35 18.15 0.546 68.33 69.90 18.32 180.18 1.967 208.41 135.81 95.29 810.81

aFor all HSM units, system variance (r2
f ) and unit-specific aM

L (m) predicted by a first-order theory are also listed.
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Equation (1) can be discretized to create a random walk particle tracking (RWPT) equation of the form
[Tompson and Gelhar, 1990; Kitanidis, 1994]:

xpðtnÞ5xpðtn21Þ1 vðxpðtn21Þ; tn21Þ1r � Dðxpðtn21Þ; tn21Þ
� �

Dt1Bðxpðtn21Þ; tn21Þ � zn

ffiffiffiffiffi
Dt
p

(3)

where xp(tn) is particle position at time tn, v(xp(tn), tn) is groundwater velocity at xp(tn) and tn, D(xp(tn), tn) is
the dispersion tensor at xp(tn) and tn, Dt is time step, and zn is a vector of independent random variables of
standard normal distribution. B(x(tn), tn) is related to D(xp(tn), tn) as follows:

DðxðtnÞ; tnÞ5
1
2

BðxpðtnÞ; tnÞ � BTðxpðtnÞ; tnÞ (4)

At the subgrid level, v(xp(tn), tn) is sampled from a set of semi-analytic functions that accurately delineate
streamlines using bilinear interpolation of the interface Darcy fluxes [Pollock, 1988]. Under higher lnK varian-
ces, divergence of dispersion could be significant in regions with high velocity gradients, equation (3) is
thus solved for all models with r�D evaluated at every time step using finite differences.

For a given system variance, at the start of a RWPT simulation, 100,000 particles are released at x 5 300 m,
their positions uniformly distributed within a 60 3 775 m2 area (z � [25, 85] m and y � [900, 1675] m). To
compare results of the FHM and the upscaled models (where groundwater velocity is increasingly smoothed
as connectivity resolution is reduced), the same tracer test is simulated by all models. To conserve mass in
computing the tracer moments (next), particle tracking is terminated when the fastest particle reaches the
outflow boundary. The remaining no-flow boundaries are set to reflect the particles back if any attempts to
cross them. The time step size is chosen following this rule: at least 10 time steps are required for a particle to
move through the fastest-flowing cell, thus particle motion is resolved at high temporal resolution through-
out the simulation time [Prickett et al., 1981; Tompson et al., 1987]. Because of the explicit need to compute
r�D at every time step and the fact that a large number of particles is needed to avoid artificial fluctuations
in the computed breakthrough curve [Salamon et al., 2006], a parallel RWPT code based on Message Passing
Interface is developed, significantly reducing computation time. For a 3-D test problem simulating 100,000
particles, for example, the parallel code achieves 143 speedup using 32 processors. All simulations were run
on the Yellowstone Supercomputer at the National Center for Atmospheric Research (Computational & Infor-
mation Systems Lab).

For each tracer simulation, moment analysis is conducted to investigate the time evolution of solute mass
centroid, average plume velocity, and spreading of the solute around its mass centroid. These moments are
defined as:

M5

ððð
X

hcð Þdxdydz (5)

lp5
1
M

ððð
X

xphc
� �

dxdydz (6)

s25
1
M

ððð
X

xp2lp
� �

xp2lp
� �

hcdxdydz (7)

where X is the computational domain, M is total solute mass, lp is mean displacement of solute mass cent-
roid, and s2 is spatial covariance describing spreading of the solute about its centroid. The mean velocity of
the plume (vp) is computed as [Burr et al., 1994]:

vp5
dlp

dt
(8)

The above central moments cannot reveal plume’s higher moments such as skewness and early and late-
time behavior. Solute breakthrough curve (BTC) is thus calculated at two downstream control planes at
x 5 500 m and x 5 1000 m. Over time, the number of particles crossing each plane is counted to create a
set of vertically integrated BTC.

2.4. Transport Upscaling
For the reference heterogeneous model, hydrodynamic dispersivities are assigned to equation (3) to rep-
resent local dispersion. As aT is usually much less than aL [Bear, 1988], aL is set to 1022 m and aT is
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ignored. Alternatively, local dispersion can be ignored entirely because its effect on large-scale solute
spreading is usually negligible [Rubin, 2003; Zhang and Gable, 2008; Fiori et al., 2013]. To simulate trans-
port in the HSMs, two upscaling formulations are tested: (1) unit-specific macrodispersivity: aM

L is esti-
mated for each unit of the HSMs to represent solute spreading due to unresolved, subunit-scale velocity
variation, (2) time-dependent macrodispersivity: aM

L is obtained from moment analysis of the tracer
plume simulated by the FHM. For the upscaled models, because aM

L is spatially or temporally variable,
an enhanced degree of freedom in representing dispersion (i.e., as compared to using a single dispersiv-
ity) is employed. Moreover, because classic theories predict that macrodispersion scales with lnK var-
iance, transport upscaling is carried out at each system variance. Below, both approaches are briefly
described.

In the first approach, a first-order stochastic theory is implemented to estimate spatially varying macrodis-
persivity [Gelhar and Axness, 1983; Rubin, 2003; Fiori et al., 2013]:

aM
L 5r2

f k (9)

aM
T 50 (10)

where k is lnK integral scale along mean flow direction (i.e., x axis), r2
f is local lnK variance describing sub-

unit variability. As shown in Table 1, most HSM units are weakly to moderately heterogeneous, and, as
connectivity resolution is increased (i.e., from 1 to 3 to the 8-unit models), local lnK variances decrease. In
equation (9), lnK integral scales transverse to flow are not used, as statistical anisotropy is found to have
minor effects on predicting BTC under similar transport conditions [Zarlenga et al., 2012; Fiori et al., 2013].
Tracer’s initial vertical dimension (60 m) is large compared to vertical lnK integral scales of the various
connectivities (3�16 m), satisfying theory requirement of a large plume in direction orthogonal to flow
[Dagan, 1989; Rubin, 2003]. Additional simulations were carried out in the FHM using a larger initial
plume size (7031025 m2), with results suggesting that tracer moments are not significantly affected.
However, it must be pointed out that ergodicity as a working assumption cannot be strictly proven.
Moreover, for the lateral transport regimes analyzed, transverse macrodispersivity is assigned zero. At all
system variances, transverse expansion of the plume, as simulated by the FHM, is found negligible over
time (not shown).

In the second approach, an apparent longitudinal macrodispersivity is obtained by analyzing tracer simula-
tion in the FHM [Dagan, 1989], which can be traced to Einstein’s original time-dependent dispersion con-
cept [Einstein, 1905]:

aM
L ðtÞ5

1
2

s2
xxðtÞ2s2

xxð0Þ
lpðtÞ2lpð0Þ

(11)

With equation (11), a time-dependent aM
L can be obtained by fitting a function to the apparent aM

L

of the FHM experiment (the apparent aM
T is again set to zero). This approach is analogous to situa-

tions where solute plume is monitored at high resolution with detailed measurements. Instead of
evaluating aM

L for every particle at every time step (as is done with the unit-specific approach, where
aM

L is evaluated depending on the position of each particle), the apparent aM
L is assigned to all par-

ticles regardless of their positions. For a given system variance, the apparent aM
L obtained from ana-

lyzing the FHM tracer test is assigned to all HSMs, regardless of their differences in connectivity
resolution.

Because velocity simulated by the FHM becomes more strongly variable under increasing system variance,
tracer experiment is simulated for 200 years, 40 years, and 4 years by all models, corresponding to system
r2

f 5 0.1, 1.0 and 4.5, respectively.

2.5. Flow and Transport Connectivity
At each system variance, select flow and transport connectivity measures are computed for the FHM and
each of the upscaled models. Unlike the static connectivity (i.e., lithology mapping) that defines the HSMs,
dynamic connectivities can be strongly influenced by r2

f and thus the variability of the velocity field. For
fluid flow connectivity, the definition of Knudby and Carrera [2005] is chosen because it can potentially rep-
resent preferential flows:
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CI5
K eff

xx

KG
(12)

where CI is a flow connectivity index, KG is geometric mean of the local conductivity, and K eff
xx is an effective

conductivity of the bulk flow field:

K eff
xx 5

QLx

ðh12h2ÞA
(13)

where Q is bulk flow rate across the outflow boundary over Ly3Lz, and h1 and h2 are the hydraulic heads
applied at the inflow and outflow boundaries, respectively. For all models, K eff

xx is computed from the refer-
ence or the upscaled flow field. For example, for the 8-unit model, only one K eff

xx is computed, reflecting a
global effective flow parameter.

For every model, two transport connectivity metrics are computed. The first metric is the power-law slope
fitted to the BTC’s tail in the log-log space [Willmann et al., 2008; Renard and Allard, 2013]. The second met-
ric is defined by Knudby and Carrera [2005] as:

CT5
tpeak;hom

tpeak;het
(14)

where tpeak,het is peak breakthrough arrival time predicted by a heterogeneous model (i.e., FHM, 8-unit, and
3-unit models) at a given capture plane, and tpeak,hom is peak breakthrough arrival time predicted by a
homogeneous model (i.e., 1-unit model) at the same capture plane.

3. Results

3.1. Hydraulic Conductivity Upscaling and Flow Verification
For a given system variance, steady state flow is simulated in the FHM under different global BC [Zhang
et al., 2011]. For each HSM unit, average hydraulic gradients and Darcy fluxes can be computed with which
an equivalent K* can be estimated. For all units, equivalent K*passed the Cholesky decomposition test [Bha-
tia, 2007], and is diagonally dominant because model coordinate is either parallel or orthogonal to stratifica-
tion (Table 1 lists the principal components of K*). To evaluate the accuracy of the equivalent K*, the same
flow experiments conducted for upscaling are repeated in the HSMs. Using the FHM as a reference, devia-
tions in the average outflow rate and hydraulic head can be computed, which are found to vary with flow
direction and system variance [Zhang et al., 2011]. Upscaling result of the lateral flow experiment is ana-
lyzed here with two error metrics of prediction, i.e., relative error in flow rate (err) and mean relative error
(MRE) in hydraulic head:

err5
jqHSM2qref j

qref
3100%; (15)

MRE5
1
l

Xl

i51

jhi;HSM2hi;ref j
hi;ref

3100% (16)

where qHSM and qref represent average Darcy flux at the outflow boundary computed by the HSM and the
FHM, respectively, l is number of grid cells within a HSM unit, and hi,HSM and hi,ref represent head computed
by HSM and FHM at each cell location, respectively.

Figure 2a presents the err of the HSMs. For a given HSM, higher system lnK variance leads to less accurate
flow rate prediction. When variance is fixed, err of the 8-unit model is consistently the smallest, that of the
1-unit model consistently the largest. Clearly, along with variance, connectivity resolution plays a significant
role: models with higher connectivity resolutions can better capture flow. Figure 2b compares the MRE of
hydraulic head among the HSMs. Again, MRE increases with system variance: when r2

f 5 0.1, MRE is less
than 2% for all models, but increases to 3.5–4.4% and 4.9–6.5% when r2

f 5 1.0 and 4.5, respectively. Hydrau-
lic head prediction becomes less accurate with increasing r2

f . For a given system variance, MRE of the 8-unit
model is the smallest, that of the 3-unit model the highest. To summarize, both system variance and con-
nectivity resolution influence the accuracy of the upscaled flow fields. Increasing variance is also found to
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result in increasing horizontal-to-vertical anisotropy ratio (Kxx/Kzz or Kxx/Kzz) of K*, as preferential flows start
to form in the reference model [Zhang et al., 2010]. Figure 3 presents lateral Darcy flux computed by all
models when system variance is 4.5. As connectivity resolution is reduced, velocity becomes increasingly
smoothed, although the HSMs generally capture the mean velocity of the reference flow field.

3.2. Transport Simulations and Upscaling
Assuming identical initial concentration distribution, a conservative tracer is released into the flow fields of
all models. The upscaled Kxx, computed for each HSM unit using flow properties (see above), are compared
against an apparent Kxx inferred from the mean solute plume velocity (i.e., vPx) when solute is traveling
through the same unit: Kxx 5 hvPx,/(@h/@x). To calculate the apparent Kxx, tracer initial dimensions were
reduced to fit into each unit, so velocities from the other units are not sampled by solute particles. Apparent
Kxx should approach the upscaled Kxx if solute has sampled most of the subunit velocities. (Using tracer
moment to infer equivalent conductivity is a common practice, although it is not used here to replace flow
upscaling because of the general difficulty of tracking a large number of particles inside each irregularly
shaped HSM unit, and because such an approach can only lead to equivalent parameters along the mean
flow direction). Table 3 presents this comparison for the 3-unit model. For all units, the two conductivities
agree well with each other when r2

f 5 0.1 and 1.0, thus static connectivity mapping corresponds to dynamic
flow connectivity. When r2

f 5 4.5, however, Kxx derived from vPx overestimates the upscaled Kxx by 17% to
42%, which is attributed to the appearance of lateral preferential flows: particles channel through fast-
flowing streamtubes within a HSM unit without sampling the slower velocities in the same unit, which leads
to an overestimated Kxx compared to the upscaled Kxx. The latter is computed using all velocities within the
unit, thus the effect of fast channeling is averaged out. At higher system variance, only a portion of the
mapped static connectivity is dynamically connected.

3.2.1. Transport Simulation in the FHM
Time evolution of the mass centroid and longitudinal plume covariance (s2

xx) of the reference model is first
examined. At all variances, mass centroids over time are near straight lines (solid curves in Figures 4a–4c),
suggesting that plume centroids move at constant speeds, consistent with the observation of Dagan
[1989]. The centroid velocity (i.e., slope of a line fit) increases with variance, e.g., vPx 5 7.5, 16, and 138 m/yr
for r2

f 5 0.1, 1.0, and 4.5, respectively. As preferential flows are developed under higher variance, mean lat-
eral groundwater velocity is increasing, as is the equivalent Kxx (Table 1). At a fixed variance, s2

xx increases
with time parabolically (solid curves in Figures 4d–4f), thus tracer not only expands continuously along
mean flow, but rate of this expansion (i.e., the apparent aM

L ) increases with time. The apparent aM
L , obtained

with equation (11), also increases with r2
f (Figure 5): when r2

f 5 0.1, it grows from 0 to 35 m over 200 years,
but reaches as high as 150 m (in 48 years) and 250 m (in 4 years) when r2

f 5 1.0 and 4.5, respectively. At
each variance, a third-order polynomial function of time is fitted, with a goodness-of-fit (R2) greater than
99%. These functions will be used by the HSMs employing time-dependent macrodispersion.

Figure 2. (a) Error in flow rate prediction by the HSMs at increasing system variances: r2
f 5 0.1 (circles), 1 (squares),and 4.5 (triangles). (b)

MRE in hydraulic head prediction: 1-unit model (black), 3-unit model (dark gray), and 8-unit model (gray).
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Tracer simulated by the FHM is visualized next (Figure 6, first column). Of the total 100,000 particles, a ran-
dom subset of 1,000 particles, capable of capturing the full extent of the plume, is plotted. When r2

f 5 0.1,
the flow field is weakly heterogeneous and tracer expands slowly (Figure 5a). When r2

f 5 1.0, due to
increased flow variability, tracer at 38.4 years is more laterally extensive than it is at 180 years under
r2

f 5 0.1. When r2
f 5 4.5, tracer is the most laterally expansive: at 3.84 years, while tracer’s leading edge

nearly reaches the outflow boundary, most of the solute mass is still found near the source release plane.
This phenomenon was observed at the MADE site with a similar level of K variability, although both down-
stream and upstream plume spreading was observed there at early times, possibly due to injection artifacts
and transient flow effects [Boggs et al., 1992].

Breakthrough curve (BTC) can reveal tracer’s higher moments including arrival, tailing, and symmetry. When
r2

f 5 0.1, BTC at the first control plane (x 5 500 m) is narrow and reaches a peak particle count (proxy for
concentration) at t 5 30 years (Figure 7a, solid curve). Due to the relatively homogeneous flow field and
short travel distance, tracer lateral spreading is limited and BTC exhibits a slight asymmetry. At x 5 1000 m,
a stronger asymmetry is observed (Figure 7d, solid curve): over the longer travel distance, tracer has experi-
enced more variable flow, resulting in a lower peak concentration (at t 5 110 years) and more lateral
spreading. This is similar to the behavior observed in Fiori et al. [2013]. When r2

f 5 1.0, due to increased flow
variability, BTC at x 5 500 m is more laterally spread out with a stronger asymmetry (Figure 7b, solid curve)

Figure 3. Dracy flux(qx) distribution for system variance of 4.5, with (a) FHM, (b) 8-unit model, (c) 3-unit model and, (d) 1-unit model. Note that qxof the FHM varies about 6 orders of
magnitude.
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compared to that observed when r2
f 5 0.1. As the result of a higher mean velocity, breakthrough peak also

occurs earlier at t 5 15 years. At x 5 1000 m, BTC peaks at t 5 30 years (Figure 7e, solid curve), while tracer
has also expanded significantly compared to that observed at x 5 500 m. When the leading edge of the
plume reaches the outflow boundary, a large number of particles have not yet reached the second control
plane. When r2

f 5 4.5, velocity variability is the strongest, i.e., qx varies close to 6 orders of magnitude (Fig-
ure 3). BTC at x 5 500 m is even more spread out (Figure 7c, solid curve) compared to those observed at
lower system variances. BTC at x 5 1000 m (Figure 7f, solid curve) reaches a peak concentration at 2.5 years,
decreases briefly, before increasing again. While a significant number of particles have reached this control
plane via fast-flowing pathways (i.e., the first peak), the remaining particles lag behind and are advecting
slowly in the lower velocity zones.

3.2.2. Transport Upscaling (Unit-Specific Macrodispersion)
Using unit-specific macrodispersivities, tracer moments of the HSMs, computed with the same grid, initial
particle distribution, and number of particles, are compared to the FHM (Figure 4). In visualizing the plumes,
the same random subset of particles is used. At all system variances, plume centroid displacement is nearly
linear with time, while that simulated by the 8-unit model is closest to that of the FHM. Because centroid
displacement is determined by mean velocity, the 8-unit model yields the best bulk velocity field, allowing
it to accurately capture the reference plume’s position over time for all system variances. The 1 and 3-unit
models, because their flow errors do not differ significantly, exhibit similar deviations in predicting the cent-
roid velocity (Figure 2). Moreover, at all variances, s2

xx of the HSMs increases with time, indicating plume
expansion. At all the times examined, because macrodispersion enhances mixing within individual units,
the HSM plumes are better mixed compared to the reference plume. Below, tracer moments predicted by
all models are compared in greater detail.

When r2
f 5 0.1, s2

xx of the FHM, 8-unit, and 3-unit models are parabolic (rate of plume expansion increases
with time), while that of the 1-unit model is linear (constant rate). At t560 years, all models display a similar
plume size (Figure 6a, first row), corresponding to a similar s2

xx value at the same time (Figure 4d). At t5180
years (Figure 6a, second row), the 8-unit model accurately captures the lateral extent of the reference

Figure 4. Time evolution of tracer moments using unit-specific macrodispersivity: mean plume displacement for r2
f 5 (a) 0.1, (b) 1.0, and (c) 4.5, respectively; longitudinal plume covari-

ance for r2
f 5 (d) 0.1, (e) 1.0, and (f) 4.5, respectively. The solid, dash-dot, dashed-circle, and dash-square curves represent FHM, 1-unit, 3-unit,and 8-unit models, respectively.
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plume, thus a HSM with high connectivity resolution can capture longitudinal spreading. When r2
f 5 1.0, s2

xx

of the 8-unit model is (correctly) parabolic, while those of the 3 and 1-unit models are nearly linear (Figure
4e). At a fixed time, comparing s2

xx of a HSM with that of the same model under r2
f 5 0.1, lateral plume

dimension is greater. For all except the 1-unit model, when lateral flow field is more variable, advection-
controlled longitudinal spreading is enhanced. Because macrodispersivities increase with variance (Table 1),
dispersion-controlled longitudinal spreading is also enhanced. All HSMs predict upstream dispersion, which
is absent in the FHM. When r2

f 5 4.5, HSMs are not able to capture the parabolic behavior of the FHM (Fig-
ure 4f), although the 8-unit model is the least inaccurate. At higher system variance, upstream dispersion is
also significant in the HSMs due to the greatly increased macrodispersivities.

BTCs of the HSMs at the control planes reveal that (Figure 7): (1) when variance is low, HSMs provide fairly
accurate predictions of solute arrival, tailing, and overall breakthrough asymmetry. The observed tailing in
these models can be attributed to the explicit modeling of connectivity, as groups of particles move at dif-
ferent mean velocities. Again, the 8-unit model is the most accurate at capturing the BTC. (2) when variance
is higher, HSMs predict earlier arrival times, but capture the overall asymmetry at x 5 500 m; at x 5 1000 m,
HSMs correctly predict the arrival time but cannot capture the BTC. The earlier (x 5 500 m) underestimation
of the arrival time is due to the fact that macrodispersivities predicted by theory reflect asymptotic values,
which are usually achieved after solute has migrated over significant distances sampling a number of

Figure 5. Apparent longitudinal macrodispersivity (circles) of the tracer simulated by the FHM under (a) r2
f 5 0.1, (b) r2

f 5 1.0, and (c) r2
f 5 4.5. A polynomial function (solid curve) is fitted

with the goodness-of-fit shown.
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heterogeneities. The later (x 5 1000 m), more accurate, arrival prediction can be attributed to the fact that
tracer has migrated over several lateral lnK correlation scales (Table 2). (3) when variance is the highest, all
HSMs predict poor BTC. Lithological mapping, though sufficient to capture flow and transport connectivity
when variance is low, fails to do so when variance is high. This confirms the earlier observation when the
apparent Kxx inferred from tracer velocity is higher than the upscaled Kxx.

3.2.3. Transport Upscaling (Time-Dependent Macrodispersion)
Time-dependent macrodispersion, when assigned to the HSMs, mimics the observed spreading in the FHM
(Figure 5). When plume centroids are examined first (Figures 4 and 8), time-dependent macrodispersivity
provides almost identical results at low-to-medium variances as those simulated previously with unit-
specific macrodispersivities. When variance is higher, greater differences are observed, but mainly in results
of the 8-unit model. Plume centroid averages the positions of all particles and appears less influenced by
how macrodispersion is formulated. When plume size (i.e., s2

xx ) is examined next, results of the HSMs are no
longer similar to those using unit-specific aM

L . At all variances, s2
xx of the HSMs exhibits the characteristic par-

abolic behavior of the reference plume (Figure 8), thus the increasing rate of tracer expansion is captured.
The time-dependent functions assigned to them (i.e., approximately linear growth of the apparent aM

L with
time) ensure this. At a given variance, the 8-unit model is the most accurate, despite the fact that the same
time-dependent aM

L is assigned to all HSMs. When variance increases, prediction of the HSMs degrades: at

Figure 6. Particle locations simulated under (a) r2
f 5 0.1,(b) r2

f 5 1.0, and (c) r2
f 5 4.5. The first, second, third, and fourth columns represent tracer plumes simulated by the FHM, 8-unit, 3-

unit, and 1-unit models, respectively. All HSMs employ unit-specific macrodispersion. The first row of each plot represents particle positions at (a) t560 years, (b) 12.8 years, and (c)1.28
years. The second row of each plot represents particle positions at (a)t5180 years, (b)38.4 years, and (c) 3.84 years. Only a selectedsubset of 1000 particles is shown in each plot. Particle
initial positions (light gray) are also shown.
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r2
f of 4.5, all HSM predictions are quite poor (Figure 8f). Plumes visualized in Figure 9 reveal that the 8-unit

model is still the best, as it approximately captures the leading edge of the reference plume even when var-
iance is high. The time-dependent formulation also leads to reduced upstream dispersion near the tracer
release plane (Figure 9). The apparent aM

L is zero at t 5 0, regardless of system variance (Figure 5).

BTCs of the HSMs at the control planes reveal that (Figure 10): (1) when variance is low, all HSMs except the
1-unit model predict the BTC well, and their predictions are similar to those of the unit-specific models (Fig-
ures 7a and 7d). (2) when variance is higher, HSMs become less accurate, although compared to the unit-
specific models (Figure 7b), better arrival time is predicted at x 5 500 m. This is likely a result of more accu-
rately capturing the initially small plume with the apparent aM

L . At x 5 1000 m, however, compared to Figure
7e, there is no significant arrival time improvement. Due to the longer travel distance, asymptotic aM

L

adopted by the unit-specific models are not significantly inferior. (3) when variance is the highest, perform-
ance of the HSMs degrades further, although the 8-unit model can still capture the arrival times of the FHM
at both control planes. The arrival time is significantly influenced by the existence of preferential flows in
the FHM, which can be captured to some degree by the 8-unit model, but not by the others.

3.2.4. Sensitivity Analysis
Tracer simulations in the upscaled models generally yield a poor fit when system variance is high. Could
these be numerical artifacts from insufficient discretization? Because a more refined flow grid can lead to
more resolved (but not necessarily more accurate) subgrid as well as global streamlines, for r2

f 5 4.5, veloc-
ity field of the 8-unit model is recalculated with an 83 refinement, doubling each of Nx, Ny, and Nz. With
the refined flow field, tracer simulation is repeated with unit-specific macrodispersivities. As shown in Figure
11, both mean plume displacement and longitudinal plume covariance are very close to those obtained
with the original flow field. Moreover, increasing number of particles in the RWPT experiments can poten-
tially improve the smoothness and accuracy of the computed tracer moments as well as BTC. However,
results of the 8-unit model using 1,000,000 particles nearly coincide with the original results (Figure 11),
thus the original number of particles are sufficient for the transport analysis of this study. Finally, for all sys-
tem variances, when local dispersion is ignored, breakthrough curves computed by the FHM are virtually

Figure 7. Breakthrough curves predicted by all models, with the HSMs using unit-specific macrodispersivity: at x5 500 m for r2
f 5 (a) 0.1, (b) 1.0, and (c) 4.5, respectively; at x5 1000 m

for r2
f 5 (d) 0.1, (e) 1.0, and (f) 4.5, respectively. The solid, dash-dot, dash-circle,and dash-square curves represent FHM, 1-unit, 3-unit,and 8-unit models, respectively.
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identical (not shown) to those presented earlier with nonnegligible local dispersion. For anisotropic hetero-
geneity where transport is advection-dominated, local dispersion generally has no discernable impact on
large-scale solute spreading [Fiori, 1996].

3.3. Analysis of Flow and Transport Connectivity
For all models, K eff

xx computed by equation (13) is greater than KG, with a CI value ranging from 2.6 to 15.2
(Table 4). CI of the FHM is consistent with stratification, which amplifies horizontal flow. It also increases
with system variance because of emerging preferential flow [Zhang et al., 2010]. For the HSMs, their CI val-
ues reflect the combination of explicit connectivity mapping and upscaling (i.e., equivalent K* of each con-
nectivity is generally anisotropic), both contributing to horizontal flows. When variance is low, all HSMs
have a similar CI as that of the FHM. When variance is higher, greater differences emerge. For the 1-unit
model, CI does not change with system variance. This suggests that when connectivity is not accounted for,
CI is not a useful index of flow connectivity, because the emergence of preferential flow under high variance
cannot be established. For the other HSMs, CI increases with r2

f because connectivity is captured. When var-
iance is high, the 8-unit model is best able to represent the flow connectivity of the FHM, as expected.

When comparing transport, HSMs under lower system variance and/or with higher connectivity resolution
are better able to capture transport connectivities of the FHM. For the BTCs at the first control plane
(x5500 m), results of power-law fitting and CT are shown in Table 5 and 6, respectively. For all variances, CT
computed for the 3 and 8-unit models are close to each other, suggesting that this metric cannot accurately
distinguish the difference in their transport connectivity. On the other hand, power-law slope can provide
better quantification: at a given variance, with a few exceptions, it tends to increase with connectivity reso-
lution (Table 5). Figure 12 compares CT versus power-law slope between this study (at the first control
plane) and 2-D results from Willmann et al. [2008] for their ‘‘Type 2’’ (two heterogeneity scales but no prefer-
ential flow) and ‘‘Type 5’’ (one scale of heterogeneity but high-K cells are strongly connected) fields. When
transport is 3-D, CT falls into a narrow range from 1.0 to 1.6, while in 2-D it ranges from 1.3 to 4.0. In 2-D,
power law slope appears to decrease with CT; in 3-D, it varies independently of CT. Transport connectivity

Figure 8. Evolution of plume moments predicted by all models, with the HSMs using time-dependent macrodispersivity: mean plume displacement for r2
f 5 (a) 0.1, (b) 1.0, and (c) 4.5,

respectively; longitudinal plume covariance for r2
f 5 (d) 0.1, (e) 1.0,and (f) 4.5, respectively. The solid, dash-dot, dash-circle,and dash-square curves represent the FHM, 1-unit, 3-unit,and

8-unit models, respectively.
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behaves differently in 3-D because solute can more easily migrate around low-K features[Fiori and Jankovic,
2012].

4. Discussion

For a hierarchical aquifer model, ADE is assumed applicable to describing transport at the continuum scale:
local dispersion is assigned to the FHM and macrodispersion to the HSMs. A 1-unit model ignoring all scales
of heterogeneity provides a fair representation of the transport behavior of the FHM when system variance
is low. When variance is higher, it becomes a poor choice: transport predictions using time-dependent aM

L

do not improve significantly over those using a constant aM
L , despite the enhanced degree of freedom in

representing dispersion. This is consistent with the interpretation of MADE tracer tests using a homogenous
model [Zheng et al., 2011]. In comparison, the 3 and 8-unit models provide better predictions at all varian-
ces, thus an enhanced degree of freedom in representing dispersion can improve transport upscaling.
Between them, the 8-unit model is more accurate, thus a higher connectivity resolution can further improve
upscaling. Because solute travels through both high and low velocity zones due to the explicit modeling of
connectivities, these models can capture non-Fickian transport such as breakthrough tailing and asymme-
try. This effect is also illustrated in Fiori et al. [2013] who used statistically populated inclusions to represent

Figure 9. Particle locations simulated under(a) r2
f 5 0.1, (b) r2

f 5 1.0, and (c) r2
f 5 4.5. The first, second, third, and fourth columns represent tracer plumes simulated by the FHM, 8-unit, 3-

unit and 1-unit models, respectively. All HSMs employ time-dependent macrodispersion. The first row of each plot represents particle positions at (a) t5 60 years, (b) 12.8 years, (c) 1.28
years. The second row of each plot represents particle positions at (a) t5 180 years,(b) 38.4 years, and (c) 3.84 years. Only a selected subset of 1000 particles is shown in each plot. Particle
initial positions (light gray) are also shown.

Water Resources Research 10.1002/2014WR016202

ZHANG AND ZHANG VC 2015. American Geophysical Union. All Rights Reserved. 1703



low-velocity zones within a high-velocity matrix. At the Lauswiesen site in Germany where system lnK var-
iance is around 3.0, when heterogeneity was modeled at two scales (stochastic facies and subfacies corre-
lated K distributions) that were conditioned to site static data, ADE as well as a purely advective model can
capture depth-averaged BTC that exhibits heavy tails [Riva et al., 2008]. In this case, inclusion of subgrid
mass-transfer processes using a dual-porosity formulation did not lead to significant improvement.
Together, the above studies suggest that ADE with an enhanced degree of freedom in representing disper-
sion can capture non-Gaussian transport due to the underlying (hierarchical) heterogeneity.

Figure 10. Breakthrough curves predicted by all models, with the HSMs using time-dependent macrodispersivity: at x5 500 m for r2
f 5 (a) 0.1, (b) 1.0, and (c) 4.5, respectively; at x5

1000 m for r2
f 5 (d) 0.1, (e) 1.0, and (f) 4.5, respectively. The solid, dash-dot, dash-circle, and dash-square curves represent the FHM, 1-unit, 3-unit, and 8-unit models, respectively.

Figure 11. Time evolution of (a) mean plume displacement and (b) longitudinal plume covariance under r2
f 5 4.5. The solid curve, dashed

curve, and circle represent the simulation results with the 8-unit model using the original flow and tracer discretization, using a refined
flow grid, and using a refined RWPT simulation with 1,000,000 particles, respectively.
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For the transport problems tested, predictive ability of the alternative macrodispersion formulations does
not differ significantly. Both approaches are fairly accurate when implemented with the 8-unit model and/
or when system variance is low. With the 3 and 1-unit models, both perform fairly well in capturing break-
through tailing and asymmetry at low-to-medium r2

f . Differences between the two do exist. For example,
time-dependent aM

L is able to capture the rate of lateral plume expansion over time, even with the 1-unit
model. Such an effect is not well captured with the unit-specific aM

L . During early migration, time-
dependent aM

L predicts more accurate solute arrival time while reducing upstream dispersion, althoughthis
approach requires detailed tracer measurements while unit-specific models only need static (geostatistical)
parameters. For all variances, the 8-unit model is the best predictor, regardless of the formulation used:
when connectivity is sufficiently resolved, the type of data conditioning for modeling transport appears less
critical. However, what resolution is ‘‘sufficient’’ is likely problem dependent, and future work needs to test
more heterogeneities. Furthermore, how upscaled models should be conditioned by data is influenced by
prediction goal. If the location/speed of plume centroid is of interest, data type used to condition transport
does not matter significantly, especially when system variance is low to moderate. If early prediction is of
interest, detailed measurements as required by the time-dependent models are more appropriate. If late-
time behavior is of interest, the type of data again becomes less important.

When aquifer variability is weak (e.g., r2
f � 1), all upscaled models are fairly robust and increased accuracy

can be achieved with higher connectivity resolutions. This is consistent with the observations at the Cape
Cod and Borden sites, where aquifers are weakly heterogeneous and longitudinal spreading of the meas-
ured tracers is in fair agreement with theory. When system exhibits strong variability, however, all macrodis-
persion models perform poorly, which is attributed to their general failure to capture preferential flows in
the FHM. In these cases, lithological variation cannot accurately capture dynamic connectivity. In this study,
connectivity was delineated by kriging [Zhang et al., 2011] which is a smooth interpolator that can lead to
classification errors that then contribute to upscaling errors, e.g., high-K cells assigned to low-K facies or
connected thin lenses become separated. Such issues cannot be remedied easily using macrodispersion,
although a finer connectivity resolution (i.e., further division of the 8-unit model) may improve prediction.
However, techniques that can distinguish dynamic connectivity are needed, while for problems where such
connectivity cannot be practically identified, pre-asymptotic or higher order theories, or one or more nonlo-
cal formulations, should be explored. Upscaling will again aim to map dynamic transport behaviors to
parameters of these models.

Models of this study reveal insights into flow and transport behavior in hierarchical media, based on which
we propose an upscaling strategy with 3 steps: (1) large-scale connectivity, preferably corresponding to
dominant transport pathways, is first identified [Monsen et al., 2005]. (2) after capturing such connectivity,
effective conductivity can be estimated without conducting flow upscaling using, e.g., (a) tracer test; (b)
analytic-stochastic techniques subject to similar variability constraints [Zhang et al., 2007]; (c) parameter
estimation techniques that can infer effective parameters from the observed state variables [Irsa and Zhang,
2012; Zhang, 2014]. (3) after the flow field has been upscaled, transport upscaling is conducted by condi-

tioning to either spatial statistics assuming that a local stationary
variogram is applicable, or to tracer moments using time-
dependent formulation. Note that a similar approach was sug-
gested by Anderson [1997], as explicit modeling of connected
features is believed to exert a stronger control on predicting
transport than smaller scale heterogeneities within such features
[e.g., Fogg, 1986; Jussel and Stauffer, 1994; Poeter and Townsend,
1994]. This study suggests that accuracy of such an approach will

Table 3. Upscaled Kxx (m/yr) for Units of the 3-Unit Model Compared to Kxx of the Same Units Inferred From Mean Plume Velocity

System
Variance

Unit 1 Unit 2 Unit 3

Upscaled
Kxx

Kxx From Mean
Plume Velocity

Upscaled
Kxx

Kxx From Mean
Plume Velocity

Upscaled
Kxx

Kxx From Mean
Plume Velocity

r2
f 5 0.1 34.24 34.13 49.11 48.97 46.20 46.26

r2
f 5 1.0 32.56 32.80 96.54 96.92 80.15 81.21

r2
f 5 4.5 58.63 68.05 475.42 588.54 330.03 467.51

Table 4. Flow Connectivity (CI) Computed for All
Models Under Increasing System Variances

System
Variance

1-Unit
Model

3-Unit
Model

8-Unit
Model FHM

r2
f 5 0.1 2.59 2.62 2.65 2.71

r2
f 5 1.0 2.59 2.91 3.25 4.01

r2
f 5 4.5 2.59 3.96 6.00 15.16
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depend on whether dynamic connectivity is captured at sufficient
detail as well as the underlying system variability, i.e., higher vari-
ability will likely require a finer resolution. However, these insights
may change when a different heterogeneity is evaluated depend-
ing on, e.g., how realistic it is to assume that a local stationary var-
iogram can describe heterogeneity within individual
connectivities. To verify this, not only will we need to seek a differ-
ent connectivity mapping scheme robust to variance, we also
need to address the local stationarity assumption. For a given
problem, when connectivity resolution (i.e., spatial division) is

increased, local variances of the individual connectivities will decrease. Can a threshold be reached such
that potential local nonstationarity can be ignored? In studies that tested upscaling theories on nonstation-
ary media with bimodal, channeled, and hierarchical heterogeneities [Desbarats, 1990; Desbarats and Srivas-
tava, 1991; Zhang and Gable, 2008], theory provides reasonable predictions when (local) lnK variances are
relatively low.

5. Conclusion

Solute transport in hierarchical porous media is examined by developing hydrostratigraphic models (HSMs)
integrating large-scale connectivity mapping with flow and transport upscaling. A laboratory-based synthetic
aquifer, which exhibits hierarchical heterogeneity (FHM), provides a reference hydraulic conductivity model.
Within the sedimentary hierarchy, HSMs with different lithological (static) connectivity resolutions are cre-
ated: an 8-unit facies model, a 3-unit depositional model, and a 1-unit homogeneous model. For each con-
nectivity (or unit) of the HSMs, equivalent hydraulic conductivity is first calculated using flow-based
upscaling. In the computed flow field that is parallel to stratification, an instantaneous, conservative tracer is
simulated by all models. While local dispersion is modeled in the FHM, transport is upscaled for the HSMs
using alternative approaches: (1) macrodispersivities, conditioned to geostatistical parameters of subunit
heterogeneity, are assigned to the HSMs using a first-order theory; (2) time-dependent macrodispersivities,
conditioned to detailed tracer measurements from the FHM, are assigned to the same models. In both flow
and transport upscaling, increasing system lnK variance (0.1, 1.0, 4.5) reflecting field-scale variability is tested.

For all variances tested, HSMs provide fair to good bulk flow predictions, with relative errors in flow rate and
hydraulic head less than 5% and 7%, respectively. For a given model, upscaling errors of flow increase with
variance. When variance is fixed, HSMs with increased connectivity resolution are more accurate. Among
them, the 8-unit model provides the best flow predictions at all variances. In transport modeling, tracer
migration (i.e., mass centroid, longitudinal plume covariance, breakthrough curve, peak concentration) of
the FHM can be captured well by the HSMs with higher connectivity resolutions, but upscaling errors of
transport increase with variance as well. Importantly, when connectivity is explicitly resolved, an enhanced
degree of freedom in representing dispersion can improve the ADE-based models by capturing non-Fickian
transport of the FHM. This suggests that nonlocal theories which use more parameters than dispersivity
may have similarly benefited. When connectivity is sufficiently resolved, the type of data used to condition
transport also becomes less critical. Data conditioning, however, is influenced by the prediction goal. More-
over, 3-D transport connectivities of the hierarchical aquifer analyzed in this work differ quantitatively from
those analyzed for 2-D systems, consistent with prior observations.

When aquifer is weak-to-moderately heterogeneous (r2
f � 1), upscaled ADE can adequately capture trans-

port, despite the existence of hierarchical heterogeneity at smaller scales. For such media, accurate trans-
port upscaling can be accomplished with low
connectivity resolutions. At the weakly heterogeneous
Cape Cod and Borden sites, spreading of the observed
plumes is in fair agreement with theories. When aquifer
exhibits stronger variability, the upscaled models perform
poorly, which is attributed to the failure of static connec-
tivity to capture preferential flows (i.e., dynamic connec-
tivity) in the FHM. This observation is consistent with

Table 5. Power-Law Slopes Fitted to Break-
through Tailing at x5500 m for All Models
at Increasing System Variances

r2
f 0.1 1.0 4.5

1-unit 1.57 0.72 0.60
3-unit 1.57 0.90 0.33
8-unit 2.08 1.33 0.46
FHM 2.91 2.73 3.06

Table 6. Transport Connectivity Computed for All Mod-
els at Increasing System Variances Using Peak Times in
the Simulated BTC at x5 500 m

r2
f 0.1 1.0 4.5

3-unit 1.03 1.06 1.10
8-unit 1.05 1.06 1.10
FHM 1.16 1.23 1.59
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tracer interpretations at the MADE site.
Renard and Allard [2013] provide a review
of flow and transport connectivities, which
will be examined along with a new inver-
sion approach to develop improved con-
nectivity mapping schemes that are
robust to system variance.

The experimental stratigraphy offers one
example of a hierarchical heterogeneity.
Results and insights of this study thus per-
tain to this one heterogeneity and cannot
yet be generalized to other systems.
Because aquifer heterogeneity tends to be
site specific, additional studies analyzing
different heterogeneities are needed to
help reveal insights that are more univer-
sal in nature. However, the upscaling
method of this study is general and the
equivalent conductivities are tensor prop-
erties that can be used to capture bulk
flow for complex geometries. The study
method can thus be applied to analyzing

problems with any connectivity features. Future work can further assess the ergodicity condition as a work-
ing assumption, for which a stochastic approach is likely needed, i.e., instead of using one reference FHM
for upscaling, an ensemble of such reference models will be created and analyzed. Such an approach will
increase the computational burden but is straightforward to implement.
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Erratum
In the second paragraph of the Introduction, the ‘‘Zhang et al.’’ citation is incorrect: ‘‘Although nonlocal theories can often provide a better

match [Zhang et al., 2011], ADE was found to capture [...]’’ The correct citation is Zheng et al., 2011. This version may be considered the

authoritative version of record.
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