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Reducing Uncertainty in Calibrating Aquifer Flow
Model with Multiple Scales of Heterogeneity
by Ye Zhang

Abstract
Modeling and calibration of natural aquifers with multiple scales of heterogeneity is a challenging task due

to limited subsurface access. While computer modeling plays an essential role in aquifer studies, large uncertainty
exists in developing a conceptual model of an aquifer and in calibrating the model for decision making. Due to
uncertainties such as a lack of understanding of subsurface processes and a lack of techniques to parameterize
the subsurface environment (including hydraulic conductivity, source/sink rate, and aquifer boundary conditions),
existing aquifer models often suffer nonuniqueness in calibration, leading to poor predictive capability. A robust
calibration methodology is needed that can address the simultaneous estimations of aquifer parameters, source/sink,
and boundary conditions. In this paper, we propose a multistage and multiscale approach that addresses subsurface
heterogeneity at multiple scales, while reducing uncertainty in estimating the model parameters and model
boundary conditions. The key to this approach lies in the appropriate development, verification, and synthesis
of existing and new techniques of static and dynamic data integration. In particular, based on a given set of
observation data, new inversion techniques can be first used to estimate aquifer large-scale effective parameters
and smoothed boundary conditions, based on which parameter and boundary condition estimation can be refined
at increasing detail using standard or highly parameterized estimation techniques.

Introduction
While computer modeling plays an essential role

in hydrogeology, due to uncertainties in describing
aquifer parameters, flow and transport processes, and
the associated initial and boundary conditions (BC),
developing and calibrating a predictive aquifer model is
challenging. This issue occurs whenever real aquifers are
modeled with incomplete knowledge of system property,
state, and dynamics. Reducing all sources of model
uncertainty, however, is difficult to accomplish in practice,
due to the cost of drilling, sampling, conducting aquifer
tests, and the difficulty in portraying/forseeing future
aquifer forcings (Hunt and Welter 2010). A balance
between the cost of developing a model and model
accuracy is clearly desired and there exists a need to
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(1) identify optimal complexity in representing aquifer
processes and parameters for different prediction goals;
(2) determine parameters and BC for the optimal model(s)
accurately.

To address issues related to (1), hypotheses related
to parameter (and process) resolution must be tested.
For example, if we wish to predict average aquifer
flow, will a model with lower hydraulic conductivity
resolution be sufficient, ignoring smaller scale parameter
heterogeneities? Our research on hydraulic conductivity
upscaling suggests that optimal resolution in representing
aquifer heterogeneity likely exists (Zhang et al. 2006). To
address issues related to (2), robust and efficient model
calibration (or inversion) techniques are needed, which
can be facilitated by a new steady-state inverse method
that simultaneously estimates model parameters, model
source/sink rates, and model BC.

In this paper, a promising new direction in hydroge-
ological modeling is proposed in the form of a multistage
and multiscale model building and calibration approach,
which aims to account for subsurface heterogeneity at
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Figure 1. A proposed multistage and multiscale calibration method for groundwater flow modeling.

multiple scales, while reducing uncertainty in estimat-
ing model parameters and model BC. The key to this
approach lies in the appropriate development, verification,
and synthesis of the existing and new techniques of static
and dynamic data integration. Specifically, for a given
set of observation data, direct inversion techniques can
be used to estimate long-term (steady-state) aquifer large-
scale equivalent conductivities, average source/sink rates,
and (smoothed) BC. Based on these initial but lower reso-
lution estimates, grid, parameters, and BC can be refined
at increasing detail using standard parameter estimation
techniques (Figure 1).

In this paper, groundwater flow modeling is the focus
and problems associated with process uncertainty (i.e.,
transport modeling) are not addressed. In the following
sections, the issues related to model complexity are first
presented, before the issue of nonuniqueness in model cal-
ibration is discussed. Recent research on developing a new
steady state inverse method is summarized, which together

with a calibration exercise estimating hydraulic conduc-
tivities for multiple conceptual models, supports the pro-
posed multistage and multiscale calibration approach.

Modeling and Model Complexity
In developing a hydrogeological site model, initial

model is almost always constructed using limited data,
including static site characterization data (i.e., aquifer
geometry, internal structure, porosity, hydraulic conduc-
tivity) and dynamic monitoring data (i.e., water levels,
pumping rates, or recharge estimates). In general, a sim-
ple conceptual framework model, or a hydrostratigraphic
model, is built first, integrating all available static data. It
is then calibrated based on the available site dynamic data,
either by trial-and-error, or with the aid of a parameter
estimation algorithm. At this stage, the worth and limita-
tion of the data can be explored within a formal sensitivity
analysis and inversion framework, which can yield uncer-
tainty measures of the initial set of estimated parameters,

2 Y. Zhang Groundwater NGWA.org



while pointing to the type and location of additional data
for collection (Hill and Tiedeman 2007). Such data, often
with enhanced information content that can be used to
inform parameter estimation, can then lead to the reduc-
tion of various model errors and uncertainties (Carrera and
Neuman 1986; Poeter and Hill 1997; Saiers et al. 2004;
Tiedeman et al. 2003). During this process, in addition
to the direct hydraulic data, auxiliary data such as tem-
perature, tracer/isotope concentrations, and geophysical
measurements can provide complementary or qualitative
verifications. This process then leads to a more refined
model, which can be subject to further testing, verifica-
tion, and refinement. Ideally, as additional relevant data
are collected, greater insights are gained on the system
behavior, and the model will become a more accurate
representation of the reality. This workflow is often uti-
lized in analyzing aquifer problems, although room for
improvement and optimization exists, particularly on the
issue of parameter resolution and model complexity, as
discussed below.

In aquifer modeling, the need to balance parameter-
ization complexity with study objectives and quality of
the data has been recognized by previous authors (Hunt
and Zheng 1999). Using a highly parameterized inversion
approach integrating many types of data, a smooth and
parsimonious hydraulic conductivity (K ) field is obtained
by Fienen et al. (2009) in delineating aquifer flow paths.
Research on K up-scaling suggests that if realistic and suf-
ficient geological resolution is incorporated, hydrostrati-
graphic models with equivalent conductivities can capture
the overall flow field of a heterogeneous synthetic aquifer
(reference model), that is, large-scale head distribution,
bulk flow velocity, and flow paths (Zhang et al. 2006,
2011). The level of complexity in resolving aquifer het-
erogeneity is also determined by the prediction goal, the
hydraulic BC, and the level of acceptable modeling error.
For example, as demonstrated by Zhang et al. (2006),
under a set of BC that drives steady-state vertical flow,
if the aquifer mean flow path is the prediction goal, a 2-
unit hydrostratigraphic model does an equally good job
of capturing the flow paths of the reference model as a
14-unit hydrostratigraphic model (see Figure 9 in Zhang
et al. 2006; also, Figure 3 herein). The 2-unit model is thus
of sufficient complexity for making this prediction. More-
over, if the length of the no-flow boundary is extended,
both hydrostratigraphic models (2- vs. 14-unit) are nearly
equally accurate in predicting the true hydraulic head field
(see Figure 14 in Zhang et al. 2006). When the length of
the no-flow boundary is reduced, however, mean relative
error in head prediction increases to 9% for the 2-unit
model, but stays low for the 14-unit model at around 3%.
Therefore, if a head prediction error of 10% is considered
an acceptable level of modeling error, the 2-unit model
will be of sufficient complexity; if 5% is acceptable, the
14-unit model is needed.

The above discussion suggests that optimal complex-
ities in describing aquifer parameters for meeting specific
prediction goals likely exist, although words of caution are
needed in translating these insights modeling the synthetic

system to real-world practice: To model a real aquifer,
how can we obtain equivalent conductivities without using
detailed measurements that are required by most upscal-
ing methods? Moreover, the hydrostratigraphic models
reported in the previous studies are driven with the true
BC of the reference model. In the real world, even if we
are able to estimate equivalent conductivities accurately,
how can we obtain accurate estimation of the aquifer BC ?
These questions lead to our second issue: how can optimal
flow models be built with reduced uncertainties in model
parameters and model BC? To address this, an appropriate
integration of the existing and new inverse methodolo-
gies will likely provide a way forward. How to determine
aquifer BC is an integral element of this integration, which
is discussed in detail in the following section.

Model Calibration and Nonuniqueness
Most of the existing parameter estimation methods

assume that aquifer BC is either known or can be
determined from model calibration. However, due to
limited subsurface access, BC is often unknown at
most field sites, while BC calibration may lead to
nonuniqueness in the estimated parameters, BC, and
flow field (Irsa and Zhang 2012). The nonuniqueness
issue can be explained using a simple example. Detailed
mathematical proof was given in Irsa and Zhang (2012)
and is not presented here. Suppose that from a two-
dimensional homogeneous isotropic steady-state aquifer
we sampled three hydraulic heads (dots in Figure 2a) and
one flow rate along the right hand side of the model,
which can be obtained from, for example, separating
stream hydrographs. Given these observed data, we can
write a simple weighted least-square objective function
S (b) describing the model-data mismatch (modified after
Equation 3.1a in Hill and Tiedeman 2007):

S (b)=
NH∑
i=1

ωhi

[
yhi

− y
′
hi

(b)
]2 +

NQ∑
i=1

ωqj

[
yqj

− y
′
qj

(b)
]2

(1)

where b is the parameter vector to be estimated (e.g.,
hydraulic conductivity here for the steady-state flow
problem), yhi

is the i th observed hydraulic head being
matched, y

′
hi

(b) is the model simulated hydraulic head
that corresponds to the i th observed head; yqj

is the j th
observed flow rate being matched, y

′
qj

(b) is the model
simulated flow rate that corresponds to the j th observed
flow rate, NH is the number of hydraulic head observa-
tions, and NQ is the number of flow rate observations,
ωhi

is a weight assigned to the i th head observation, ωqj

is a weight assigned to the j th flow rate observation. The
goal of most parameter estimation methods is to minimize
S (b) using optimization techniques, which minimizes the
model-data mismatch. With these techniques, parameters
are updated using repeated simulations of the forward
flow model, which requires the specification of the model
BC. For this simple problem, say we decide on a set of
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(a) (b)

(c) (d)

Figure 2. Nonuniqueness in fitting model BC in a homogeneous and isotropic aquifer within a square region [1,1]-[3,3]
(reprinted from Irsa and Zhang 2012). (a) Observation data: three heads and one integrated flow rate along the right
boundary, (b) two different Dirichlet BC, (c) and (d) streamlines driven by each BC.

specified-head BC that vary in a nearly linear manner
along the model boundary (the red curve in Figure 2b).
Given these BC, and knowing the hydraulic conductivity,
we can analytically generate the flow field (Figure 2c),
which honors both the three observed heads and the one
observed flow rate. On the other hand, we can use a
parameter estimation technique to estimate K , specifying
the same BC to the forward model (i.e., the flow problem
of Figure 2a discretized and solved with a numerical
technique), which is required for the regression iterations.
Assuming no measurement errors, the parameter estima-
tion technique will exactly recover the three observed
heads, one observed flow rate, and the state variables,
for example, the streamlines as shown in Figure 2c. At
this point, S (b) is optimized to be zero and the aquifer
model is perfectly calibrated for the given set of BC.
(A parameter estimation code, if correctly set up, and
barring numerical issues that can arise during regression
iterations, should ideally recover the analytical solution.)
Next, the exercise is repeated by assuming a different set
of specified head BC, for example, the green curve in
Figure 2b. Given the new BC, for the same K value, we
can generate another analytical flow solution (Figure 2d),
which also honors the same three observed heads and the

one observed flow rate. Again, K can be calibrated given
the new BC, which will recover the analytical solution
when the regression converges at S (b) = 0. Another
aquifer model is thus perfectly calibrated for the new BC.
If we perturb any of the two sets of the BC and repeat this
exercise ad infinitum, each time a new BC is assumed,
a different flow field will be perfectly calibrated to the
same observation data. It has been proven that there exists
an infinite number of BCs and flow fields that all satisfy
the same observed data (Irsa and Zhang 2012), leading
to zero S (b). Therefore, nonuniqueness in the inversion
outcomes can arise due to the unknown model BC.

The above discussion suggests that multiple sets
of calibrated parameters and BC may equally satisfy
the model calibration criteria (i.e., minimization of an
objective function), which may lead to a wrong model
being used for prediction and management purposes. In
natural aquifers, true BC are typically poorly known. If we
make a wrong assumption about the BC, we may obtain
a perfectly calibrated flow model using an objective-
function-based parameter estimation technique, even if
error-free observed data are used and even if there are
no model structure errors (in the above example, inverse
parameterization is given the true parameterization of
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the forward model). Indeed, an example of the influence
of BC in model calibration is provided in Hunt et al.
(1998), where for an aquifer-lake system in Wisconsin,
earlier calibration under a set of assumed BC yielded 9
best-fit K zones and 94 best-fit lake-bed conductances.
However, a revision of the BC by Hunt et al. (1998)
yielded a better calibrated model with only 2 best-
fit K zones and 18 lake-bed conductances. Although
highly parameterized techniques have been developed to
delineate aquifer heterogeneity at greater detail (Zhu and
Yeh 2006), nonuniqueness in parameter estimation may
also arise (Bohling and Butler 2010).

To address the nonuniqueness issue, a new
steady-state direct inversion method was developed
to simultaneously estimate hydraulic conductivity, state
variables, and BC of a confined aquifer, under the
condition where source/sink to the aquifer was negligible
(Irsa and Zhang 2012). Unlike the objective-function
based approaches, this method does not require forward
flow simulations to assess the model-data mismatch,
thus knowledge of the BC is not needed. Given suffi-
cient measurement data, the method yielded well-posed
systems of equations that can be solved efficiently with
linear optimization. The solution was also stable when
measurement errors were increased. However, only one
K was estimated (the other conductivities were obtained
from known conductivity ratios in the form of prior
information equations), while source/sink effects were not
accounted for (Irsa and Zhang 2012). As a result, ground-
water flux or flow rate observation(s) must be sampled
from the subsurface, which limits the applicability of
the method. Recently, for both confined and unconfined
aquifers, the method has been extended to simultaneously
estimate a number of conductivities (K s) and recharge
(or leakage) rates, along with the unknown model BC
(Zhang 2013; Zhang et al. 2013). Interestingly, a single
pumping rate, in addition to hydraulic heads, suffices to
provide the necessary measurement for inverting multiple
K s and multiple recharge rates.

Because of subsurface uncertainty, the inverse
method must also be able to handle model structure
errors, that is, when inverse parameterizations do not
reflect the true conditions in the aquifer. With the new
method, if the conductivity and recharge variabilities
are unknown, inversion yields physically meaningful
equivalent conductivities and average recharge rates.
Alternatively, if the inverse parameterization contains
spurious parameters, the new method can identify
such parameters, while the simultaneous estimation of
nonspurious parameters is not affected. The new method
thus obviates the well-known issues associated with
model “structure error,” whereas the inverse formulation
either simplifies or complexifies the true parameter fields.
Moreover, to investigate uncertainty in inversion, the
method can be combined with indicator geostatistics.
Uncertainty in the static data (i.e., hydrofacies proportion,
variogram, and correlation ranges) can be propagated
into the inversion outcomes—a set of realizations of
model parameters, flow fields, and BC can be created

(Wang et al. 2013). These realizations center on the
“true” solution created from an underlying “true” model
(i.e., a forward simulation with known parameters and
BC), while increased sampling of the static and dynamic
data leads to reduced spread in the estimated parameters,
flow fields, and BC. Therefore, not only can uncertainty
in K pattern be accounted for, issues of data worth and
sampling density can be addressed.

The new inverse method is based on a zoned param-
eterization scheme, that is, either a deterministic pattern
or a stochastic ensemble. The estimated parameters and
boundary conditions therefore reflect large-scale spatial
averages that are smoothed over local variations. While
we plan to extend the method to highly parameterized
inversion to account for small scale K variation and its
spatial correlation, the inverse method in its current form
is more suitable for inverting low-resolution conceptual
hydrostratigraphic models. Also, transient data, which can
provide additional information for inversion, cannot yet be
incorporated into the analysis, while both standard regres-
sion techniques and a variety of data assimilation methods,
for example, transient hydraulic tomography or the meth-
ods based on the Kalman filter, can utilize such data.
(Extension to transient flow is currently being researched,
whereas the inversion of drawdowns may be utilized to
remove the need to estimate the unknown aquifer ini-
tial conditions.) Finally, objective-function based param-
eter estimation techniques have diversified into handling
many types of flow problems while utilizing a variety
of observation data, for example, steady-state or tran-
sient hydraulic data, solute concentrations, temperature,
water chemistry, isotopes, etc. Spurred by the growth of
computing power, improvement in numerical algorithms
and solution techniques, and the increased awareness of
subsurface uncertainty, these techniques can now address
problems with a large number of parameters and both
parameter and prediction uncertainties can be assessed
with flexibility and efficiency (Liu and Kitanidis 2011;
Wen et al. 2002; Zimmerman et al. 1998). Looking for-
ward, can we benefit from the strengths of all these
approaches?

A Multistage and Multiscale Calibration
Given the state-of-practice in aquifer modeling and

the recent advancements in parameter scaling and model
inversion, a fruitful direction for further development may
lie in a multistage and multiscale integration that can
address subsurface heterogeneity at multiple scales, while
reducing uncertainty in estimating model parameters and
model BC. As illustrated in Figure 1, direct inversion
techniques can be first used to estimate long-term
(steady-state) aquifer large-scale effective parameters
and smoothed BC, based on which parameter and
boundary condition estimation can be refined at increasing
detail using the objective-function-based techniques. The
proposed approach complements the prevalent modeling
workflows: either deterministic or stochastic element can
be incorporated, with the later accounting for uncertainties
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in parameter and BC estimation. This approach is also
consistent with the idea, as proposed by previous workers
(Anderson and Woessner 1992; Hunt et al. 1998), of
developing a low-resolution “screening model” prior to
building complex and highly resolved models.

The multistage and multiscale integration can be
supported by the previous research. For example, as
revealed by our earlier upscaling studies, as long as
the model BC is close to the true BC, equivalent
conductivities can lead to accurate bulk flow predictions
by the hydrostratigraphic models. The new inverse
method, by estimating both large-scale parameters and
smoothed BC, can serve just this purpose. However,
accuracy of the inversion is limited by the type, location,
quality, and quantity of the measurement data. For the
synthetic problems we tested so far, given sufficient
data support leading to well-posed inversion problems,
the estimated parameters fall within one order (often
much better) of the true values. For real-world problems,
because measurements will never be exhaustive nor error-
free, inversion can only provide physically reasonable
but nonexact estimates. One way to remediate this
issue is to account for parameter, flow field, and BC
uncertainties in inversion, for example, via a Monte Carlo
analysis (Wang et al. 2013). For example, histogram
of an estimated parameter may suggest a reasonable
accuracy (small spread) or otherwise. A variance map
of the inverted hydraulic head ensemble can indicate
locations where additional sampling is needed to reduce
the largest hydraulic head estimation uncertainty. This
identification, along with the new data collected to reduce
such uncertainty, should lead to a revision/update of the
earlier inversion (see the loop in Figure 1). In areas of low
uncertainty (of both the parameters and head fields), local
analysis with a refined grid or parameterization can be
carried out depending on the study objective, for example,
solute transport modeling typically requires more resolved
K fields.

The new inverse method, as it stands, could provide
a low-cost, low-resolution aquifer characterization tool
with which initial conceptual models can be built with
coarsened representations of parameter heterogeneity
(both of K s and source/sink rates). Based on the same
observed data, such models can be refined using either
standard or highly parameterized techniques that can
account for sub-hydrostratigraphic, smoothly varying, and
possibly correlated heterogeneity, for example, pilot point
or geostatistical inverse techniques. The estimated K s,
recharge rates, as well as the smoothed BC of the
low-resolution models can provide the prior estimates
for these refinement studies; their values are considered
physically reasonable due to the fact that they’re inferred
from the conservation of mass and flux principles as
enforced by the initial inversion with the steady-state
data . With the physically reasonable BC, prior K s,
and source/sink estimates, inversion based on optimizing
objective functions will become more well-posed, which
then lead to physically reasonable parameter estimates
and/or refinements. A multiscale calibration exercise

supports this view and is presented in the following
section.

An Illustrative Example
To support the view that multistage calibration can

yield well-posed problems leading to better estimated
parameters, a calibration exercise is presented using a
suite of models with decreasing spatial K resolutions: a
fully heterogeneous model and three hydrostratigraphic
models with increasingly fewer K zones (Figure 3). All
models employ the same high-density grid containing
845,298 finite element cells (detail on model creation can
be found in Zhang et al. 2006). The heterogeneous model
is considered a reference model with which steady-state
groundwater flow is simulated under a set of true BC,
that is, no-flow along the model sides and bottom and a
specified sloping potentiometric head along the model top
creating confined conditions. From this model, a set of
simulated observation data is obtained at five monitoring
wells: 13 hydraulic heads and 5 Darcy fluxes (Figure 3a).
To represent measurement uncertainty, random errors
with a coefficient of variation of 10% are added to the
“observed” data, assuming no spatial correlation among
them, that is, error covariance matrix is diagonal.

Under the condition that the true BC is known, the
three hydrostratigraphic models are calibrated based on
the same dataset using nonlinear regression as imple-
mented in UCODE and PEST (both of the standard
version and PEST SVD) (Doherty 2005; Poeter et al.
2005). During regression iterations, all forward simula-
tions with these models are therefore driven by the true
BC. A weighted least-squares objective function is used,
which consists solely of data misfit terms without impos-
ing regularization nor prior information equations. The
optimization algorithms, as implemented in UCODE and
PEST, are gradient-based local methods. The horizontal
conductivity (Kx) of each unit of the hydrostratigraphic
models is set as the calibration target. Prior to calibration,
a parameter sensitivity analysis is conducted to identify
the units for which Kx can be estimated for the given
set of the observation data, following the guidelines of
Hill and Tiedeman (2007). For the starting parameter
guess in inversion, equivalent Kx computed for the same
unit is used (see detail on its calculation in Zhang et al.
2006). Both UCODE and PEST are compiled into 64-
bit executables on a Linux computer cluster. To enhance
computational efficiency, a serial iterative solver (Bram-
ley and Wang 1995) is implemented in the forward flow
models, its results are verified by a direct Gaussian Elim-
ination solver. The iterative solver sped up the simulation
time of the forward model by approximately 60 times. For
most inversion runs, both UCODE and PEST converged
overnight or within a day.

Results of this exercise are presented in Table 1,
where both the calibrated Kx and the equivalent Kx

are listed for each hydrostratigraphic model. Several
observations can be made:
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(a) (b)

(c) (d)

Figure 3. (a) A fully heterogeneous groundtruth model with lnK variation in m/year. Steady-state groundwater simulation
is conducted under a BC of no-flow along the model sides and bottom and a specified sloping potentiometric head along the
model top. Observation data (13 head and 5 Darcy flux measurements) are sampled at five well locations. (b) A 14-unit model.
Color represents the unit ID. (c) A 7-unit model. (d) A 2-unit model. Models b, c, and d are examples of alternative conceptual
models developed with decreasing amount of site characterization data. They are calibrated using nonlinear regression based
on the simulated observations of the groundtruth model.

Table 1
Steady-State Calibration Outcomes of Kx for the Units of the Three Hydrostratigraphic Models

Model ID Unit ID Equivalent Kx

Calibrated
Kx (UCODE)

Calibrated
Kx (PEST classic)

Calibrated
Kx (PEST SVD)

Model b 4 330.5 345.1 349.5 300.2
5 554.6 758.0 712.1 601.3
6 871.0 942.8 909.2 801.0
8 583.8 626.2 625.4 501.8
10 591.6 639.8 653.2 501.9
11 140.4 133.2 130.3 199.8

Model c 2 305.0 308.7 308.4 305.0
3 632.4 157.9 158.0 632.4
5 162.7 127.8 127.6 162.7

Model d Aquifer 324.6 121.0 120.9 NA

The equivalent Kx of the same units, previously computed in Zhang et al. (2006), are listed. Conductivity unit is m/year. Location of these units and their IDs are
shown in Figure 3. Before calibration, a parameter sensitivity analysis was conducted to identify the units for which Kx can be estimated for the given set of the
observation data (Figure 3a).

1. UCODE and PEST (classic) give consistent results in
the estimated Kx values;

2. For the chosen observation data, most of the insen-
sitive parameters belong to low-K units and are not
estimated by regression, indicating potential difficulty
in estimating K for aquitards;

3. For the 14-unit model (Figure 3b), regression yields
realistic Kx that fluctuates around the equivalent Kx;

4. For the 7-unit model (Figure 3c), Kx estimated

by UCODE and PEST (classic) are less accurate,

although PEST SVD converges at the starting param-

eter values—the equivalent Kx;

5. For the 2-unit model (Figure 3d), UCODE and PEST

(classic) underestimates the aquifer Kx, while PEST

SVD fails to converge.
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Clearly, parameter estimation is more satisfactory for
the 14-unit model than for the 7- and 2-unit models. In
this case, an enhanced level of heterogeneity resolution is
likely key to the success of inversion. It is of interest to
note that PEST SVD failed to calibrate the 2-unit model,
which suggests that this particular technique may be able
to identify model structure deficiency that the others
fail to reveal. However, without a systematic analysis
testing different observation data density and location,
and possibly, flow directions (i.e., different true BC), this
finding could be coincidental.

Importantly, the above example illustrates that even
with limited measurement data that are corrupted by
noise (Figure 3a), if the correct BC and good initial Kx

(i.e., equivalent Kx) are provided , standard parameter esti-
mation techniques can yield physically reasonable Kx

estimates for the hydrostratigraphic model, as long as the
model incorporates a sufficient level of K heterogeneity
(e.g., the 7-unit model). As demonstrated by the earlier
upscaling study (Zhang et al. 2006), these simpler mod-
els can create reasonable to good representations of the
flow field of the heterogeneous reference model. More-
over, success with the standard methods here suggests
that highly parameterized techniques, or those that employ
transient data (i.e., data fusion), may also build upon these
prior models with coarse parameter resolutions. Such
methods can populate finer scale correlated parameters
within individual hydrostratigraphic units, smaller scale
parameter variation can therefore be captured by ana-
lyzing the same data. This problem will be explored in
the future.

In modeling real aquifers, a similar multiscale
calibration can be carried out. Based on limited field data,
the direct inversion method can provide a set of large-scale
parameter and BC estimates for an initial model with low
resolutions, for example, the 2-unit model in the above
example. This model (or a suite of models if the direct
method is combined with geostatistical simulations),
can be subject to additional calibration with UCODE,
PEST, or other techniques. In the new calibration, model
or data errors may be revealed using fit-dependent
statistics, whereas transient data, if available, can be
calibrated to help reveal additional parameterization
details. This combined analysis may point to deficiency
in the model structure (e.g., inversion fails to converge),
or if such deficiency is absent, point out locations
where the estimation uncertainty is large and where
additional static or dynamic data should be collected
should resources become available. If additional sampling
is carried out, the above workflow can be repeated,
which then can result in increased parameterization detail,
for example, the 7- or 14-unit model. Guided by this
multistage calibration, model will evolve with increasing
parameterization complexity that is supported by the
data that are collected specifically to reduce estimation
uncertainty. In this process, whenever appropriate, a post-
audit analysis should be carried out testing whether
an optimal parameterization, including the resolution of

model BC, has been achieved for a given set of (post-
audit) prediction goals and acceptable modeling errors.

Conclusion
Because of limited subsurface access, modeling and

calibration of natural aquifers with multiple scales of het-
erogeneity is a challenging task and large uncertainty
exists in developing a conceptual aquifer model and
in uniquely calibrating this model for decision making.
Because of uncertainties such as a lack of understanding
of subsurface processes and a lack of techniques to param-
eterize the subsurface environment (including hydraulic
conductivity, source/sink rates, and BC), existing aquifer
models can suffer nonuniqueness in calibration, leading to
poor predictive capability. A robust calibration method-
ology is needed that can address the simultaneous esti-
mation of aquifer parameters, processes, and boundary
conditions.

In this paper, we propose a multistage strategy that
also addresses subsurface heterogeneity at multiple scales,
while reducing uncertainty in estimating model parameters
and model BC. The key of this strategy lies in the
appropriate development, verification, and synthesis of
the existing and new techniques of static and dynamic
data integration. In particular, direct inversion techniques
can be first used to estimate aquifer large-scale effective
parameters and (smoothed) boundary conditions, based on
which parameter and boundary condition estimation can
be refined at increasing detail using standard or highly
parameterized techniques. Both the initial analysis and
the refinement stage(s) fit with the existing modeling
workflows, whereas simpler models are constructed first,
upon which complexity or refinement is added next, with
or without collecting additional observation data.

Furthermore, because exhaustive subsurface sampling
is impractical, an important question in developing hydro-
geological site models is whether or not there exists one
or more optimal level(s) of parameterization and process
complexity that is sufficient for making accurate predic-
tions. Research suggests that such optimality likely exists
in groundwater flow modeling, as hydrostratigraphic mod-
els with reduced K heterogeneity resolutions can suffice
for making certain flow predictions. On the other hand,
the importance of heterogeneity on solute transport model-
ing has been increasingly recognized in hydrogeology and
related fields. Could a hydrostratigraphic model of suffi-
cient heterogeneity resolution also be capable of making
accurate transport predictions? For certain bulk transport
performance metrics, our work upscaling dispersivity sug-
gests so (Zhang and Gable 2008). Transport issues, how-
ever, will be addressed later in tandem with the issues of
process complexity, that is, coupling flow and transport.
For both flow and transport modeling, our long term goal
is to find an optimal modeling approach in terms of pro-
cess representation, parameter scale, grid resolution, and
inversion methodology.
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