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ABSTRACT

Zhang, Yifan, MS in Geology, Department of Geol@&y%eophysics, Dec, 2014

A physics-based inverse method is proposed for Isimeous parameter, boundary
condition, and flow fields (which includes hydraulhead field, Darcy flux fields, and
streamlines) estimation for a discrete fracturedifag By sampling synthetic aquifer
problems (i.e., forward models) containing varidtecture patterns to provide observation
data for inversion, the inverse method is tested parameter estimation under varying
observation data quality, data density, and th® mit fracture conductivity (Kf) to matrix
conductivity (Km). This method can achieve stabdeameter estimations for measurement
errors up to +/- 10% of the total hydraulic headiateon of the forward model. But the
accuracy of parameter estimation is sensitive ta deansity. In addition, hydraulic heads,
Darcy fluxes, streamlines, and boundary conditiares also recovered by inversion and are
found to capture the major characteristics of tloev ffield. The scientific importance of
recovering boundary conditions by inversion is aledfied by running a set of test problems
with PEST and comparing its solutions with thosdaoted with the direct method.
Furthermore, effective hydraulic conductivity tgresent flow in a fractured aquifer is also

successfully estimated by inverse method.
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CHAPTER 1 INTRODUCTION

Fractures are defined as “displacement discontewiit rocks, which appear as local breaks in
the natural sequence of the rock’s properties” {Ti& Donaldson, 2011). They are
discontinuities where minerals and rocks are brokeactures can be characterized as reduction
or loss of cohesion in most cases (Fossen, 201y &re formed when the stress in rocks
exceeds a certain limit, and thus the rocks faitmaaically. Natural fractures range on a scale
from micro-cracks to crustal rifts (Bonnet et &001). Normally fractures are preferential flow
paths, but when less permeable material is cordainefractures, fractures may form flow

barriers.

Fractured geological formations exist almost evémgng in the world (Berkowitz, 2002).

Although fractures only make up a small percerthefvolume of the entire formation, they have
a major influence on the formation’s propertieseTgroperties influenced by fractures most
significantly are porosity and permeability, whiahe the key parameters controlling the flow
performance in water and hydrocarbon reservoir ycidn. Characterizing fractured formations
is one of the most challenging tasks for hydroltsgend production geologists (Faybishenko,

Witherspoon, & Benson, 2000).

During the history of sedimentary process, nedilgedimentary formations in the upper part of
the earth’s crust have been fractured to some extena result, the definition of “fractured
reservoir” does not rely on the presence of fragubut depends on the influence of fractures on

fluid flow behavior (Bourbiaux, 2010). By this defiion, it is estimated that 20% of world olil



reserves lies in fractured reservoirs (Abbas, 20Q@her people have estimated that 40% of
world’s oil reserves are contained in carbonatenédions, which are highly likely fractured
(Perrodon, 1980). Even when production is performredin-fractured formations, artificial

fractures (e.g. hydraulic fractures) may be geeertd enhance production.

Naturally fractured reservoirs are the most conagpid water and hydrocarbon reserves. To
reveal how natural fractures impact reservoir pennce, fluid flow modeling and reservoir
simulation is widely applied and investigated. Rese simulation can be performed to optimize
water and hydrocarbon recovery, to calculate ecan@arth of a reservoir, and to evaluate the
risk (Lemonnier & Bourbiaux, 2010). As a resultseevoir simulation is a crucial tool for

reservoir management.

Past works have proven that models that treaturadtformations as uniform or non-uniform
isotropic continuum usually cannot always predicwf and transport in those formations
successfully. Instead, models must honor the hgésraty of fractured rocks. One method is to
represent the rock by a discreet fracture netwarld the other is to depict the rock as a
stochastic medium (Shlomo P. Neuman, 2005). In ttesis, the discreet fracture method is
applied as every single fracture is assumed to r@vik by its location, shape, size, and

orientation.

The heterogeneities of fractured aquifers may raggess multiple scales (Bonnet et al., 2001).
To test the performance of the physics-based isverethod under multiple scales of
heterogeneity, parameters are estimated when tleeb@tween fracture conductivit){) and
matrix conductivity Kn,) ranges from ten to a million. On the other haitaly generally takes

place in preferential flow paths in fractured fotmoas (Tsang & Neretnieks, 1998). To
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investigate the significance of the preferentiawfl paths, streamlines are generated using

inversed conductivities and boundary conditions \BCcompare to the true streamlines.

This thesis performs model calibrations with obagon data of hydraulic heads and Darcy flux
vectors to estimate hydraulic conductivities. Hydiaheads are easy to measure in wells, while
Darcy flux can be tested by a point velocity prgB®P) which is a new tool and can be used to
measure groundwater velocities at the centimeteate §Labaky, Devlin, & Gillham, 2009).
Darcy flux can also be calculated from direct flomte measurements, which can also be
obtained in the field (Bayless, Mandell, & Ursid)14; Devlin et al., 2012). The hydraulic
conductivity can be inverted if the observationadptovided are sufficiently sensitive to the
property of interest (Kowalsky et al., 2012). Howevobservation data can be expensive to
obtain and thus measurements available are venyetimCalibration of groundwater models
without enough measurements is an underdetermmesitse problem (Mclaughlin & Townley,
1996). To overcome this problem, a common methodoignake simplifying assumptions
regarding spatial variability (Moore & Doherty, Z)0 In this thesis, deterministic models are
defined where the exact spatial distribution of daydic conductivities is known and the

nonuniqueness problem is avoided.

In most parameter estimation studies, the focustgmas been on the indirect inverse method
solving a boundary value problem to optimize areotiye function, which aims to minimize the

measurement-to-model misfits. In these methods,hifdrologic properties of heterogeneous
formations are inverted starting with an initialegs of parameter values and boundary
conditions. Then observation data of hydraulic seadd flow rates are compared to the

corresponding simulation results obtained by rugnine forward mathematical model. The



parameters (sometimes also the boundary conditiohf#)e mathematical model are adjusted
after each simulation until a satisfactory matckhtobservation data is obtained, or the value of
the objective function is minimized. The final paweter values are considered as a reasonable
representation of the geologic formation (Doughiyng, Hestir, & Benson, 1994)Such
approaches satisfy the known physics and matheahatanstraints, are easily adaptable, and
have proven to be robust and efficient in manyasitins. But they require the assumption of
boundary conditions which are usually unknown andll wause great uncertainty. Also
parameter estimation via those indirect methods cdiren an iterative procedure involving
repeated simulations of the boundary value proldsratated before, which is a computationally
intense task especially when the model size iselafon the other hand, even though both
parameters (hydraulic conductivities) and boundamyditions can be modified and updated by
iterations, the inverse problem can be ill posed,, eénstability, nonuniqueness, and failure to
converge could happen. Furthermore, an infinite Imemof boundary conditions may fit the

observation data equally well; thus the inferredrmary conditions are generally non-unique.

Direct methods can also be used to solve the iev@reblems. The direct methods are
mathematically straightforward and computationeltfycient. However, the direct methods have
not been widely adopted due to their instabilityhef estimated parameters when the observation
data contains error. In hydrogeology, initial atptsn were made to directly determine
transmissibility from streamlines by inverting tflew equation along these lines, but this
method was found sensitive to measurement erraisttaums cannot obtain reliable parameter
estimation (Nelson, 1960, 1961, 1968). Though patamuncertainty can be controlled by
imposing bounds on the observation errors (Kleieed@71), solutions are often unreliable.

Other direct methods such as the direct matrix otktireate a set of superdeterminate algebraic
4



equations from discretizing the boundary value [Eob(S. P. Neuman, 1973; Sagar, Yakowitz,
& Duckstein, 1975). In a two-dimensional problemhem random noise is added to the
observation data, the direct matrix method is foandurate when the parameter dimension is
small (Yeh, Yoon, & Lee, 1983). Sufbun, 1994) stated that the necessary condition for
parameter identifiability is that the number of graeters is smaller than the number of

observation data.

This thesis tests the liability of the physics-lthsirect method for parameter estimation. This
method does not require the presumption of boundamyditions; instead it can recover
boundary conditions by inversion along with the taydic parameters. This method is
mathematically straightforward and computationalfffcient. It discretizes the problem domain
into elements and state variables are approximbted function satisfying the governing
equation, the Laplace’s equation. State variabteth@ observation points are then directly
incorporated. The unknown hydraulic conductivityesimated together with parameters in the
head and flux functions. To ensure head and fluxioaity at element boundaries, a collocation
technique is used; elements within one hydro fasime continuous heads and fluxes in all
directions, while elements separated by a maténterface assume continuity in head and
continuity of the normal flux. The inversion proirieis thus stated with correct physical
constraints. Using Laplace’s solution with unknoegefficients, the method in effect estimates
the coefficients by “bending” the approximate swlattoward the true solution, following the
observations with their weights. Unlike the exigtimdirect and direct methods, this method
does not discretize a boundary value problem; ghpsori knowledge of the boundary condition
is not required. Also this method does not attetofit boundary conditions to observation data,

avoiding the nonuniqueness problem. In a single iee., single matrix solve), model
5



parameters and model state variables are simultaheestimated, and boundary conditions of
the modeling region can be inferred by the invetigdraulic heads along the boundary (Irsa &

Zhang, 2012).

In this thesis, steady state groundwater flow irtetzgyeneous isotropic confined aquifers
characterized by fractures and flow barriers avestigated by the physics-based direct inverse

method.



CHAPTER 2 BACKGROUND

1. Nonuniquenessin Fitting Boundary Conditionsto a Steady State Problem

Most existing methods utilize the solution of a bdary value problem with prescribed
boundary conditions which can be modified and updatiuring inversion, along with the
parameters of the model. The main issue of theshade is that the fitted boundary conditions
are not unique. The other issue of these methotisatsthey are computationally intensive as
numerous forward simulations are involved until @@ fit between the forward simulation

results and the observation data is obtained.

The severity of the nonuniqueness depends on taetitytand quality of the observation data.
When enough data is available and the data gusalltigh, the nonuniqueness is less pronounced.
But even in this case, there still exists more tbae set of boundary conditions providing
solutions that satisfy the observed data and jprformation. On the other hand, it is commonly
assumed that by adding flow rate data, the nonemess in fitting the hydraulic heads can be
reduced and perhaps a unique solution is possdiiause a flow rate measured at any point in
the aquifer would impose an additional constramtlte solution. However, the addition of flow

rate data does not guarantee a unique solution.

The nonuniqueness issue can be demonstrated by-ditvensional example of steady state
groundwater flow in a homogeneous isotropic agquiisia & Zhang, 2012). In this example, the
hydraulic heads satisfy the Laplace’s equationufeig2.1(a) shows that 3 hydraulic heads are
sampled in the study domain, with two located atdbrners on the left and the other one located

at the middle of the right boundary. In additioriloav rate is also obtained analytically along the



y axis on the right boundary. Figure 2.1(b) sholaat two different sets of boundary conditions
are specified along the study domain. Both boundanditions honor the observation data of 3
hydraulic heads and 1 flow rate. However, theséf2rdnt sets of boundary conditions lead to
totally different reconstructed flow fields as showy Figure 2.1(c) and Figure 2.1(d). The
smoother boundary condition represented by thdimedn Figure 2.1(b) leads to the smoother
flow field in Figure 2.1(c). On the other hand, theore fluctuated boundary condition
represented by the green line in Figure 2.1(b)deadhe less smooth flow field in Figure 2.1(d).
In this example, the observation data of 3 hydcdutiads and 1 flow rate do not lead to a unique
estimation of hydraulic heads along the same baynddis example shows that the methods
involving the solution of a boundary value problenth assumed boundary conditions cannot
obtain unique estimation of flow fields as morenttuae set of boundary conditions will satisfy
the same observation data. This issue is one ofntA@r concerns with current inversion
methods. Even though a unique estimation of hydrawnductivity can be achieved, extremely
different flow fields will be obtained due to difnt presumed boundary conditions. As a result,

a great amount of uncertainty will be caused infthlewing prediction analysis.
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CHAPTER 3 METHODOLOGY

1. Flow Equations

The physics-based inverse method presented belowti®ased on solving a boundary value
problem. As a result, it does not require the prgstion of boundary conditions and does not
involve iteration. This method can provide the b#fstto the observation data with stable

convergence.

The 3-dimensional groundwater flow equation in afeced aquifer with source/sink effects is

written as:
6<K 6h>+6(K ah)+a<Kah)_Sah 1
ax\ " *ax/ oay\ Yay) oaz\ Zdaz) "ot M

. - oh .
Where h(x,y,z)is hydraulic head [L]K represents hydraulic conductivity [Llﬁsa is the

source/sink term [L/T].

When the formation is homogeneou, K, andK, do not vary with space, and the flow

equation can be simplified as:

0%h 0%h 0%h dh
— +K,—+K
0x?

K, Y 3y? 252 = Ss 3¢ (2)

Furthermore, if the formation is isotropic which ane that hydraulic conductivities in all

directions are the sam&( = K, = K, = K), then the flow equation can be simplified as:

62h+62h+62h_55 oh ]
0x2  9y? 9z2 Kot ®
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Under the condition of homogeneous and isotropimé&tions, if the flow is steady state which
. . h .
means that the hydraulic heads do not vary wmetéfg = 0), then the flow equation can be

further simplified as:

0%h N 0%h N 0%h
0x? dy? 0z?

=0 (4)

At last, the 2-dimensional steady-state flow eaquratif a homogeneous and isotropic aquifer is:

d2h N 0%h
0x2  0z%2

)

Equation (5) is commonly known as the Laplace’s atign. In this thesis, steady-state
groundwater flow in homogeneous and isotropic a&gsjfwhich is governed by the Laplace’s

equation, is investigated.

2. Physics-Based Inverse Method

The physics-based inversion method applied in ttnesis study enforces two constraints: (1)
global continuity of hydraulic heads and Darcy #tsxthroughout the solution domain; (2) local
conditioning of the inverse solution to observedraylic heads, fluxes, and flow rates (i.e., state

variables) if available.

For each grid cell within the study domain, the faydic headlf) can be represented by a second

order polynomial which satisfies the Laplace’s emum

h(x,z) = ag + a;x + ayz + azxz + a,(x* — z2) (6a)

11



In this approximation,x and z are coordinates of the middle point of the gridl;ce
ay, a4, a,, as,and a, are unknown parameters of the grid cell. With #gigproximation, Darcy

fluxes can be obtained by differentiating hydrabiads:

oh

q.(x,2) = —Kea = —K°(a$ + az + 2a%x) (6b)
oh

q,(x,z) = —Keg = —K°(a$ + a$x — 2a5z) (6¢)

In the equations{® represents the hydraulic conductivity of the cgpanding element. With
the fundamental solutions described for each geilll ®@quation (6)), the solution must also
satisfy the governing equation globally. This is@uoplished by minimizing a residual function
on the collocation points. The collocation techmigqa used to guarantee global continuity of
hydraulic heads and Darcy fluxes. Two collocatianings are assigned on every boundary
between grid cells (Figure 3.1). Grid cells witline hydro-face (the two grid cells on both sides
of the boundary have the same hydraulic condugjidassume continuous hydraulic heads and
fluxes in all directions, while grid cells separhtey a material interface (the two grid cells on
each side of the boundary have different hydrazdieductivities) assume continuity in hydraulic
head and continuity of the normal flux (the flux agle direction is perpendicular to the material
interface). The inversion problem is thus stateith worrect physical constraints. As described in
Figure 3.1, the left and right boundaries are wa+fboundaries, thus there only exists vertical

flow in this case.

12
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The continuity equations at interfaces that sepatdterent materials are:

shead (K, hl, — K,h2,)) = 0 (7a)
5% (axl, — 0:2,) = 0 (7b)
5% (ak, - a:2,) = 0 (7¢)

The continuity equations at interfaces that have same hydraulic conductivity values (K) on both

sides of the interface are:

shead (K, hl, — K,h2,)) = 0 (8a)

5% (a:t, - 4:2,) = 0 (8b)

Where 6 is a weighting function assigned to the equatitmgeflect the magnitude of the

measurement errors.

The local conditioning equations (data equatiohaj tonstrain the inverse solution to observed

hydraulic heads and fluxes are:

13



5head(Kehapproximated - Kehobserved) =0 (9a)

s/t =0 (9b)

CIy approximated B qyobserved)

Equations (7), (8), and (9) together form a matrix-vector problem, which can be solved to obtain
hydraulic conductivity (K) value and all the parameter a values. With equations (6a), (6b) and
(6¢c), the hydraulic head and Darcy flux vector of each grid cell can be determined by the

ay, a1, a,, az,and a, values.

3. Advantages of the Physics-Based I nverse Method

This physics-based inverse method has several advantages: (1) model fits the data directly and
there is no need to fit an objective function so no computationally intensive iteration is
involved; (2) numerical discretization is the only source of error besides measurement error; (3)
this method can uniquely determine the hydraulic heads, flow fields, as well as the boundary

conditions, given observed hydraulic heads and Darcy flux data.

14



CHAPTER 4 RESULTS & DISCUSSIONS

The physics-based inverse method described iseappd simultaneously estimate hydraulic
conductivities and boundary conditions of 2-dimenai fractured confined aquifers under
steady state. Computational experiments are peedrfior 9 models. Groundwater in each

model flows through fractures (or flow barrierspanatrix.

1. Parameter Estimation

Five forward models are constructed for 2-dimensi@onfined aquifers with different fracture
orientations. Hydraulic conductivities of these rmalsd are estimated by inversion with
observation data of hydraulic heads and Darcy 8uxorkflow of the parameter estimation

process is described as below:

1. Forward models are built in GW Vista (Version 6,2&ich is a software package for
groundwater flow modeling, calibration, and optiation. The software utilizes the
MODFLOW suite of codes. The grid density of all Baels is 25 by 25 (25 grid cells on
both x and z directions). For MODEL 1 to MODEL #ettop boundaries are defined as
constant head boundaries with hydraulic heads aqu&00 ft; the bottom boundaries are
defined as constant head boundaries with hydrdndads equal to 500 ft; the left and
right boundaries are no flow boundaries. On theeothand, for MODEL 5, the left
boundary is defined as a constant head bounda#@®ft; the right boundary is defined
as a constant head boundary of 500 ft; the tophbatidm boundaries are defined as no

flow boundaries.
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2. After running each forward model with GW Vista, thwdraulic heads at every grid cell
are calculated and obtained.

3. Darcy fluxes are calculated for every grid celllbgrcy’s Law (Equation 6b and 6c¢).

4. Hydraulic heads and Darcy flux vectors (Darcy flasmponents in both x and z
directions) are sampled as observation data fargien in each case.

5. Hydraulic conductivity is estimated for each modéh the sampled hydraulic heads and
Darcy fluxes as observation data. The inversioasparformed with source code written

in Matlab. The code is constructed according toptimgsics-based method.

For MODEL 1 to MODEL 4 (Fig 4.1 to Fig 4.4), thensa sampling density is applied. The
figures also show locations where observation dataampled. The “x” symbol represents
locations where hydraulic heads are sampled, aad*thsymbol represents locations where
Darcy fluxes are sampled (Fig 4.4 does not showddia sampling locations, but the sampling
strategy is the same as MODEL 2 shown in Fig A B KK, ratio is fixed at 10 for MODEL 1

to MODEL 4. MODEL 1 contains a single vertical frae; MODEL 2 contains a single
horizontal fracture; MODEL 3 has a vertical and aritontal fracture; and MODEL 4 is the
same as MODEL 3, except that the fracture volungsismes greater. The parameter estimation
results of these 4 models are summarized in Tallleld these 4 models, the biggest inversion
error is 5.29% in MODEL 3. For MODEL 1, the invarsiachieves almost perfect hydraulic
conductivity estimation. The parameter estimatiesuits demonstrate that the physics-based

inverse method applied by this thesis can succgsftimate hydraulic conductivities.
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Fig 4.1: Design of MODEL 1 (cross Fig 4.2: Design of MODEL 2 (cross

symbol: heads sampling locations; star symbol: heads sampling locations; star
symbol: flux sampling locations) symbol: flux sampling locations)

Fig 4.3: Design of MODEL 3 (cross Fig 4.4: Design of MODEL 4 (data
symbol: heads sampling locations; star sampling strategy is the same as MODEL
symbol: flux sampling locations) 2 shown in Fig 4.2)
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Table 4.1: Error Summary of the Inversions wkér Km= 10

Error 4.57% 5.29% 0.70%

Instead of single horizontal or vertical fractuiesprevious models, MODEL 5 (Fig 4.5) is
designed to have a more realistic fracture distidiouwhich contains a set of diagonal fractures.
For this model, multiple parameter estimation ekpents are performed under the same
observation data density of 57 hydraulic heads HhdDarcy flux vectors (In this sampling
strategy, the idea is that adequate observatiam idadvailable for parameter estimation, so the
data locations are not specified in Fig 4.5). Pat@mestimation is performed under different
Ki/Km values (ranging from f@o 1¢). The inversion results of MODEL 5 are summariied
Table 4.2. When fracture conductivity is 10 timesajer than matrix conductivity, hydraulic
conductivity is underestimated by 4.44%; when freetconductivity is 100 times greater than
matrix conductivity, hydraulic conductivity is owstimated by 2.49%; when fracture
conductivity is 1000 times greater than matrix aaottvity, hydraulic conductivity is
overestimated by 4.92%: and when fracture condigtis 10° to 10 times of matrix
conductivity, hydraulic conductivity is overestiredtby approximately 5.24% to 5.27%. With
the 6 parameter estimation experiments, the acguralsydraulic conductivity estimation by the
physics-based inverse method is found to be naitbem to the variability between fracture

conductivity and matrix conductivity.
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Fig 4.5: Design of MODEL 5
|

Table 4.2: Error Summary of the Inversions of MODEL 5

=ide -4.44% 2.49% 4.92% 5.24% 5.27/% 5.27%

2. Data Quality

The previous parameter estimations are performdiing true observation data without

Imposing measurement errors. It's possible to aelmeasurement errors from previous
inversions because synthetic true forward modets defined and the observation data are
obtained by running the true forward models. Howegit&s inevitable to include measurement
errors to observation data in real field work. Saoh¢he errors may be caused by accuracy of

the measurement equipment, and some may be caysgetators or other reasons.
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As a result, we cannot assume that the observdatautilized by inversion are 100% accurate.
Instead, errors should be applied to observatiola daanually, and the robustness of this
physics-based inverse method when the observafiten @bntain error must be tested. In this
way, the practicability of this method can be destmted. In order to find out how

measurement errors will influence the estimatedamater values, inversions are again
performed for MODEL 4 (Fig 4.4) with the observatiodata containing either 5% or 10%

measurement error.

Two different strategies are adopted to imposergriro order to get observation data with 5%
measurement error. The first strategy imposes doranerror between -5% and 5% to each
observation data while the errors sum up to Ostend strategy imposes errors of either -5% or
5% to each observation data. For both stratedieseitrors are unbiased (the errors add up to 0).
The same error imposing strategies are appliecetmigservation data with 10% measurement

errors.

The true parameter values of MODEL 4 are summariredable 4.3, and the parameter
estimation results obtained by inversions utilizotzgervation data with errors are summarized in
Table 4.4. Note that when observation data aval&t inversion contain measurement errors,
the parameter estimation results by the physicedbasverse method will degrade to a certain
extent. The parameters estimated by data with 10% are less accurate compared to the
parameters estimated by data with 5% error, noanatich error imposing strategy is applied.
As a result, the parameter estimation error witk@ase if the measurement error is greater. On
the other hand, for a fixed amount of measurementr €e.g. 5%), estimated parameters are

more accurate when thé' grror imposing strategy is applied (errors areveen -5% and 5%),
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and less accurate parameters will be obtaine@iftherror imposing strategy (errors are either -
5% or 5%) is applied. When measurement error isth&parameter estimation errors are 16%
(errors are between -5% and 5%) and 34% (erroridéiner -5% or 5%); when measurement
error is 10%, the parameter estimation errors 8% @rrors are between -5% and 5%) and 65%
(errors are either -5% or 5%). Even though the rpatar estimation accuracy degrades when
observation data contain error, the estimated pate@nvalues are still reasonable and within the
same order of true parameter values. The pararestienation results in this section indicate that
the physics-based inverse method does not collapdestill achieves acceptable parameter

estimation results when observation data contamgisas 10% measurement error.

Table 4.3: True Parameter Values of MODEL 4

Uﬂit, ft/day Kmatrix Kfralcture

Table 4.4: Inversion Results when Observation Data Contain Error

Error 5% 10%

matrlx

8.4 6.6 6.1 35
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3. Streamlines & Recovered Boundary Conditions

The knowledge of streamlines is very useful indldynamics. For MODEL 6 to MODEL 9, the
physics-based inversion is performed to recovexasttines and boundary conditions under the

same observation data density.

For MODEL 6 to MODEL 9 (Fig 4.6a to Fig 4.9a), ttap boundaries are defined as constant
head boundaries with hydraulic heads decreasireguiy from 600 ft on the left to 505 ft on the

right. The left, bottom, and right boundaries apeflow boundaries.

MODEL 6 and MODEL 7 have flow barriers with loweydraulic conductivities compared to
the formation matrix, while MODEL 8 and MODEL 9 hahighK faults with higher hydraulic
conductivities compared to the matrix. The flowrmas in MODEL 6 and MODEL 7 have
different orientations. The higK fault in MODEL 8 has the same orientation as thesbarrier
in MODEL 6, and the higlK fault in MODEL 9 has the same orientation as the foarrier in
MODEL 7. For all 4 models, the hydraulic condudivof the formation matrix is defined as 1
ft/day. Hydraulic conductivity of flow barriers IMODEL 6 and MODEL 7 is 0.1 ft/day, and

hydraulic conductivity of the higK faults in MODEL 8 and MODEL 9 is 10 ft/day.

Inversions are performed to obtain the estimatettdwlic conductivities. The hydraulic heads of
each grid cell are calculated by the inversion essc As a result, the heads along the model
boundary can be picked out as the inverted boundamditions. This is how the physics-based
inverse method recovers boundary conditions. Theertad streamlines of MODEL 6 to
MODEL 9 are also achieved utilizing the invertedubdary conditions and inverted hydraulic
conductivities (Fig 4.6b to Fig 4.9b). The trueesinlines of MODEL 6 to MODEL 9 are

generated with true boundary conditions (constaadhboundaries and no flow boundaries) and
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true hydraulic conductivity values (Fig 4.6a to Fi@a). Both the true streamlines and the
recovered streamlines are obtained by GW vista.tiiteeboundary conditions and the inverted
boundary conditions of MODEL 6 to MODEL 9 are péattand compared in Fig 4.6¢ to Fig 4.9c.
The parameter estimation results of MODEL 6 to MQI¥are summarized in Table 4.5a and

Table 4.5b.

For Figure 4.6c to Figure 4.9c (boundary condittomparison), the bottom left grid cell of each
model domain is defined as cell number 1 (on thézbotal axis of Fig 4.6¢ to Fig 4.9c). The
cell number increases when moving up to the topckef along the left boundary, moving right
to the top right cell along the top boundary, mgvitown to the bottom right cell along the right
boundary, and finally moving left to the second lgfid cell along the bottom boundary. Red
dashed lines represent true boundary conditiorieetefn forward models, and blue dashed lines

are inverted boundary conditions.

By comparing the inverted boundary conditions teettoundary conditions, we note that
MODEL 6 and MODEL 9 have very good fits without adws discrepancies; MODEL 7 has
some misfits on the bottom boundary; and MODEL 8 same misfits on the left and bottom
boundaries. Overall, the inverted boundary condgibt the true boundary conditions very well,
especially for MODEL 9 where an almost perfecttdittrue boundary conditions is achieved.
With these 4 comparisons, the physics-based inveetbod is demonstrated to be capable of

recovering boundary conditions while estimatingapaeters by the inversion process.

MODEL 6 has the biggest parameter estimation eofol7%; MODEL 9 has the smallest
parameter estimation error of 5%. Due to the bidgeliraulic conductivity estimation error in

MODEL 6, there are some misfits between the inders¢reamlines (Fig 4.6b) and true
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streamlines (Fig 4.6a) of MODEL 6. Overall, the enfed streamlines can represent true
streamlines very well for all 4 models. Thus the/gts-based inverse method is capable of

recovering streamlines.

Table 4.5a: Parameter Estimation Results of MODEL 6 & 7

- Model 6 Model 7

ft/ d ay K matrix Kbarrier K matrix Kbarrier
1 0.1 1 0.1
0.83 0.083 0.86 0.086

Table 4.5b: Parameter Estimation Results of MODEL 8 & 9

- Model 8 Model 9
ft/ day Kmatrix Kfault Kmatrix Kfault
1.08 108 1.05 105
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Fig 4.6a: True Streamline of MODEL 6

Fig 4.7a: True Streamline of MODEL 7

Fig 4.6b: Inverted Streamline of MODEL 6

|71 &«

Fig 4.6c: True BC vs. Inverted BC of MODEL 6 Fig 4.7c: True BC vs. Inverted BC of MODEL 7

Fig 4.7b: Inverted Streamline of MODEL 7
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Fig 4.8a: True Streamline of MODEL 8 Fig 4.9a: True Streamline of MODEL 9

Fig 4.8b: Inverted Streamline of MODEL 8  Fig 4.9b: Inverted Streamline of MODEL 9

Fig 4.8c: True BC vs. Inverted BC of MODEL 8 Fig 4.9¢c: True BC vs. Inverted BC of MODEL 9
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4. Parameter Estimation by PEST with Boundary Conditions Containing Error

One of the most significant advantages of thisris&enethod is that it does not require boundary
conditions as an input; instead, this method caaver boundary conditions. In contrast, most of
the existing parameter estimation methods involwdtipie forward simulations to optimize an
objective function. The first forward simulatiomreres the assumption of boundary conditions,
which are usually (if not always) unknown. As aulgsthe presumed boundary conditions will
certainly contain errors, or sometimes the assunoethdary conditions may even be wrong and

leading to wrong parameter estimation results.

PEST is one of the most widely used source coddsv@re) in groundwater studies to perform
parameter estimation and uncertainty analysis. paemeter estimation process by PEST
requires known boundary conditions as most of thestiag techniques do. Numerical
experiments are performed in this thesis utilizRgST to find out how the errors contained in
the presumed boundary conditions affect the pammestimation results. Eight parameter
estimation experiments are performed for MODEL &lam4 different set of boundary
conditions. The inversions are started with 2 défe sets of initial guesses for each boundary
condition. One set of the initial guesses is vdoge to the true parameter values, and the other

set of the initial guesses is far away from trueapeeter values.

The true matrix conductivity of MODEL 8 is 1 ft/dagnd the true fracture conductivity is 10
ft/day, which can be found in Table 4.5b. THebbundary condition tested is the true boundary
condition which is represented by the blue lineBig4.10. The % boundary condition contains
5% or -5% error applied to the hydraulic heads achegrid cell along the boundary, which is
represented by the red line in Fig 4.10a. THd8undary condition contains an overall 5% error

applied along the entire boundary, and the erranisased and adds up to O. It is represented by
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the green line in Fig 4.10b. Th& &oundary condition contains an overall 10% erppliad to
hydraulic heads along the boundary. The error lier4" boundary condition is also unbiased,

and the boundary condition is represented by ttidime in Fig 4.10c.

The inversion results of the eight numerical expents performed by PEST are summarized in
Table 4.6a and Table 4.6b. The results demondtratd®EST can converge to the true parameter
values when it is given the true boundary condjtiom matter if the initial guess of parameter
values is close to or far away from the true valieg when PEST is given a boundary condition
that contains error, it will only converge to thrae parameter values when the initial guess is
close enough to the true values. If the initialspues very different from true parameter values,

PEST will not converge to the true values.

If the boundary condition that is given to PEST teams error on every grid cell along the
boundary as in the"2case, PEST will converge to values with the sarderoof true parameter
values when the initial guess is close enoughedrine values. However, when the initial guess
is far from the true values, the parameter valugtimated by PEST are 2 orders smaller
compared to the true values. This example showtsutider the ?' kind of boundary condition,
PEST will only achieve an acceptable (but not \gopd) parameter estimation result when the

initial guess is close enough to the true parametieres.

On the other hand, when the boundary conditionrgteePEST is smooth as in th€ 8ase and

in the 4" case, PEST will converge to the true parameteregaif the initial guess is close to the
true values, no matter if the amount of error coa@ in the boundary condition is 5% or 10%.
When the initial guess is far away from true par@mealues, the estimated values by PEST are

still within the same order of the true values. But percent of error is large. The parameter
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estimation error is about 40% when the boundaryditiem contains 5% error. The errors
increase to 120% (matrix conductivity) and 218%gture conductivity) when then boundary

condition contains 10% error.

The results demonstrate that PEST is only relitdri@stimating parameters when true boundary
conditions are known. In contrast, as the physasel inverse method does not require known

boundary conditions in advance, it is more relidblgparameter estimations.

Fig 4.10a: True BC vs BC with 5% Error Applied to Each Grid along
Boundary
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Table 4.6a: Inversion Results with True BC by PEST
Initial value TrueBC
(ft/day)

10

o 104 104

Table 4.6b: Inversion Results with Different BCs by PEST
Initial value 5% noisy 5% smooth | 10% smooth

(ft/day)

Kfrac m Kf Km Kf Km Kf
- 10 19 5.3 1 10 1 10

T 0.06 013 056 6.07 22 318

5. Effective Conductivity Estimation

Hydraulic conductivity heterogeneity is one of theost significant factors that influence
groundwater flow. Studies have proved that spafahtion of hydraulic conductivity (similar to
permeability in petroleum engineering) exists imaltural sedimentary deposits. The importance
of conductivity heterogeneity depends on the sacdig@roblems. For example, conductivity
heterogeneity is less crucial for estimating bldikvfcharacteristics. In typical regional to basin-

scale groundwater studies, conductivity heterodgnisi usually not incorporated into flow
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models because the cost of conducting detailed lsagngver large spatial scales is very high.
However, reasonable results can still be obtaingdowt detailed heterogeneity information.
Also it's very difficult to incorporate detailed wductivity heterogeneity into models due to
current computational limits. Sedimentary deposits commonly represented by a series of
internally homogeneous hydrogeological units (ZhaBgble, & Person, 2006). Lateral and
vertical conductivity heterogeneity within each turd ignored. The equivalent conductivity
represents a fictitious homogeneous deposit forvanghead gradient. The estimation of the
equivalent conductivity can be performed by numsrmethods. The equivalent conductivity

depends on the boundary condition, thus it is nadue when the boundary condition changes.

All the previous parameter estimations are perfarfioe deterministic models, where the spatial
distribution of hydraulic conductivity is known. iBhis the ideal case as the forward models are
defined synthetically, and the exact distributidnhgdraulic conductivity is known. However,
when the spatial distribution of hydraulic conduityi is unknown, the effectiv& (upscale)

on both the x direction and the z direction cares@mated. As the true forward model is known,
the true boundary conditions are also known andqueiAs a result, the analytically calculated
effective hydraulic conductivity is also unique.iFtanalytical effective conductivity value is

used as the criteria to test the accuracy of tlee®fe conductivity estimated by inversion.

In MODEL 8 and MODEL 5, when the fracture hydrautienductivity is 10 times greater than
matrix conductivity, the effectiv& on x and z directions are estimated both numdyieald by
inversion. The estimated by inversion is obtained by the physics-basedrsevenethod. Before
estimating effective conductivity, the forward mtdare redefined. First, the left and right

boundaries are defined as constant head boundtreespp and bottom boundaries are no flow
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boundaries (both MODEL 8 and MODEL 5). In this ga$®wv only occurs on x direction. Then
this new defined forward model is run to obtain eslation data of hydraulic heads and
horizontal Darcy fluxes. Then the entire study asassumed to be homogeneous and all the
grid cells have the same hydraulic conductivityuealUnder this assumption, the physics-based
inversion is again performed and the calculatedrduylec conductivity value is the effective
conductivity on the x direction. Second, the lefdaight boundaries of the forward models are
defined as no flow boundaries; the top and bott@unbaries are constant head boundaries. In
this case, only vertical flow occurs. Then the tfistep is repeated to obtain the effective

conductivity on the z direction.

The results of effectivi estimation for MODEL 8 are summarized in Table Zi7e effectivek
estimation on the x direction is less accurate tineneffectiveK estimation on the z direction.
This is because MODEL 8 exhibits more heterogeneitythe x direction. The results of
effective K estimation for MODEL 5 are summarized in Table. 4lBis model exhibits equal
heterogeneity on the x and z directions. As a teshé effectiveK estimations are almost
equally accurate on both directions. On the otlaeidhthe estimated effectikeof MODEL 5 is
more accurate than the estimated effedtivid MODEL 8. The reason is due to the more equally
distributed heterogeneity in MODEL 5 compared tattbf MODEL 8. In other words, the
formation represented by MODEL 5 is closer to a bgemeous medium than the formation
represented by MODEL 8. So the effectiie of the more homogeneous medium can be

estimated more accurately by inversion.

The results in Table 4.7 and Table 4.8 indicateé tha physics-based inverse method can

achieve good estimations of effective hydraulicdugiivities.
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Table 4.7: Inversion Results of Upscaled K of MODEL 8

Model 8

Unit, ft/day Kxx KZZ
Numerically upscaled K 1.27 2.27
I nver sed upscaled K 0.93 2.36

Table 4.8: Inversion Results of Upscaled K of MODEL 5

Model 5

Unit, ft/day Kxx K,,
Numerically upscaled K 1.77 1.88

Inversion upscaled K 1.80 1.88

6. Comparison of True Flow Fieldsand Inverted Flow Fields

The physics-based inversion can also be applie@dover flow fields, as well as to estimate
hydraulic conductivities. The inverted flow fieldse obtained by running forward models with
inverted hydraulic conductivities and inverted bdary conditions. Then the inverted flow fields

are compared to the true flow fields to determioe kvell they fit each other.

velocity vector fields (Fig 4.11a) are comparednweerted streamlines (Fig 4.6b) and inverted
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velocity vector fields (Fig 4.11b). The comparisiows that the inverted streamlines fit the true
streamlines very well. The main discrepancy betweea and inverted velocity vector fields
occurs within the flow barrier area. The true vélpm the flow barrier is much lower than the
velocity in the matrix. However, there is no sigraht difference between the inverted velocity
in the flow barrier and the velocity in the matriklso the contour of the true head field (Fig
4.12a), contour of true horizontal fluxes (Fig 4},2and contour of true vertical fluxes (Fig. 12c)
are plotted for comparison with the contour of theerted head field (Fig 4.13a), contour of
inverted horizontal fluxes (Fig 4.13b), and contof@innverted vertical fluxes (Fig 4.13c). The
contour of the inverted head field represents th@aur of the true head field very well with the
major difference occurring around the flow barmegion. The contours of true fluxes (both
horizontal and vertical) are very smooth. Howevtbe, contours of inverted fluxes are noisier.
But overall the inverted contours recover the naharacters of the true contours, with all the
major differences located within the flow barriegion. This comparison shows that when the
ratio between two different flow units’ hydrauliorductivities is 10, the physics-based inverse

method can recover the major flow characters well.

Then in order to explore how the inverted flow diglrecover the true flow fields when the ratio
of hydraulic conductivities is higher, the same Igsia is performed for MODEL 7. The
parameter values are adjustedKiQier = 0.001 ft/day andK,, = 1 ft/day. True streamlines (Fig
4.14a) and true velocity vector fields (Fig 4.18e9 compared to inverted streamlines (Fig 4.14b)
and inverted velocity vector fields (Fig 4.15b).eTimverted streamlines fit the true streamlines
on the large scale, with some local misfits. Thanhscrepancies between true and inverted
velocity vectors locate around the flow barrierioegand along part of the model boundary. Also

the contour of the true hydraulic head field (Fig6&), contour of true horizontal fluxes (Fig
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4.16b), and contour of true vertical fluxes (Fid@&kt) are plotted to compare with the contour of
the inverted hydraulic head field (Fig 4.17a), comtof inverted horizontal fluxes (Fig 4.17b),
and contour of inverted vertical fluxes (Fig 4.17¢he contour of inverted heads is quite
different from the contour of true heads around floev barrier region. Other than that, the
inverted head contour fit the true head contoul.v@h the other hand, the contours of inverted
horizontal and vertical fluxes are noisy and havet af discrepancies with the true contours of
fluxes. These discrepancies occur in differentaegiof the model domain and are not limited to
the flow barrier. This comparison shows that whiea tatio between matrix conductivity and
flow barrier conductivity increases to 1000, theg/gibs-based inverse method can recover some
of the flow characters. Even though there are somsdits, the inverted velocities fall in the
same range with true velocities. The horizontaivfleelocities (both true and inverted) are
between -0.4 ft/day and 1.2 ft/day, and the verfiloav velocities (both true and inverted) are

approximately between -0.5 ft/day and 0.5 ft/day.

In MODEL 5 (K¢{Kn equals 10), true streamlines (Fig 4.18a) are coedpdo inverted
streamlines (Fig 4.18b). In this comparison, thesrted streamlines achieve an almost perfect fit
to true streamlines. This is probably caused byntloee linear true streamlines in MODEL 5
compared to the highly non-linear streamlines inMER 6 and MODEL 7. There is no obvious
discrepancy between the true and inversed streamlifllso the contour of the true hydraulic
head field (Fig 4.19a), contour of true horizorftakes (Fig 4.19b), and contour of true vertical
fluxes (Fig 4.19c) are plotted to compare with toatour of the inverted hydraulic head field
(Fig 4.20a), contour of inverted horizontal fluxgsg 4.20b), and contour of inverted vertical
fluxes (Fig 4.20c). For all three pairs of companis, the inverted contours recover the true

contours very well, both in the fracture region dnhe matrix. Although the recovered contours
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are a little noisier compared to the true contqespecially the inverted contour of hydraulic

heads), there is no obvious discrepancy.

This amalshows that the physics-based inverse

method can recover the flow characteristics ofttnacsystems well, when the ratio between the

fracture conductivity and the medium conductivigyuals 10.

Furthermore, by comparing the contour analysis /DML 5, MODEL 6, and MODEL 7, it's

obvious that the physics-based inverse method egsothe flow fields better when the true

streamlines are more linear (as of MODEL 5).

Fig 4.11a: True Velocity Vector Field of
MODEL 6

Fig 4.11b: Inverted Velocity Vector Field of
MODEL 6
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Fig 4.12a: Contour of True
Head Field of MODEL 6
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Fig 4.14a: True Streamline of MODEL 7
(Parameter Values AdjustedK@arrier =
0.001 ft/dayKm = 1 ft/day)

Fig 4.14b: Inverted Streamline of MODEL 7
(Parameter Values AdjustedK@arier =
0.001 ft/dayKm = 1 ft/day)

Fig 4.15a: True Velocity Vector Field of
MODEL 7 (Kbarrier = 0.001 ft/dame = 1
ft/day)

Fig 4.15b: Inverted Velocity Vector Field of
MODEL 7 (Kbarrier = 0.001 ft/dame = 1
ft/day)
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Fig 4.16a: Contour of True
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Fig 4.18a: True Streamline of
MODEL 5 (K{/Kn, = 10)

Fig 4.18b: Inverted Streamline of
MODEL 5 (Ki/Kny, = 10)



Fig 4.19a: Contour of True Fig 4.20a: Contour of Inverted

Head Field of MODEL 5 Head Fleld of MODEL 5
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Fig 4.19b: Contour of True Fig 4.20b: Contour of Inverted
Horizontal Flux of MODEL 5 Horizontal Flux of MODEL 5

Fig 4.19¢: Contour of True Fig 4.20c: Contour of Inverted
Vertical Flux of MODEL 5 Vertical Flux of MODEL 5
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7. Uncertainty Analysis

Observation data (hydraulic heads and Darcy flukeshis thesis) sampling density is a major
factor influencing parameter estimation accuracgually, parameter estimation results will
approach the true parameter values if more observdata is sampled. But sampling additional
observation data will usually cost more. As a regstlis crucial to find out the optimum data
density at which parameters can be estimated \atibfging accuracy and the cost of sampling
data is also acceptable. So it will be useful twl fout the trend of how parameter estimation

accuracy changes with different observation datesithe

A global inverse sensitivity analysis is performey increasing the number of observation
hydraulic heads from 10 to 250. A single Darcy fitector is applied for inversion. Under each
data density, 20 random simulations are perforni@d. each simulation, hydraulic heads are
randomly sampled from the entire domain based end#ta density. Hydraulic conductivity is

then estimated utilizing the randomly sampled hylicaheads and the fixed Darcy flux vector.

The objective of this global uncertainty analysisto find out the sensitivity of the parameter
estimation accuracy to observation data densityhaf physics-based inverse method, and

potentially find out the optimum observation datmsity.

The results of this global uncertainty analysisammarized in Figure 4.21. The horizontal axis
represents the number of observed hydraulic heattgmg from 10 to 250. The vertical axis on
the left represents the inverted hydraulic conditgtivalues in the unit of ft/day. The inverted
conductivity ranges from 0.25 ft/day to 0.285 fy/dd@he true hydraulic conductivity equals
0.283 ft/day. The vertical axis on right represeis absolute values of parameter estimation

errors ranging from 3% to 8%.
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The stacked columns in this figure are the unaetgaanalysis results. Under each observation
data density, the lower boundary of the verticabretbar represents the smallest value of
estimated hydraulic conductivity (corresponds te ttertical axis on the left), and the upper
boundary of the vertical error bar represents éingdst value of estimated hydraulic conductivity.
The lower boundary of the red column represents2theercentile of the range of estimated
hydraulic conductivity values at that data dendity boundary between the red column and the
green column represents the 50 percentile of thgeraand the upper boundary of the green
column represents the 75 percentile of the rangethA data density of 10, the estimated
hydraulic conductivity ranges from about 0.255d{/do more than 0.27 ft/day. Then as the data
density increases, the range of estimated hydragiductivity values decreases. When the
range decreases, the uncertainty of parameter agiimalso decreases. When the hydraulic
heads density reaches 250, the variation of estunhydraulic conductivity values are very
small, ranging between 0.27 ft/day and 0.275 ft/day a result, observation data density is
critical for parameter estimation. The uncertaiofyparameter estimation decreases when the

observation data density increases.

Within each stacked column, the purple cross symégmiesents the average value of estimated
hydraulic conductivities under that data density. &nnecting all cross symbols, the purple
trend is achieved. It shows how the average pammestimation values change with
observation data density. When data density isti®,average value of estimated hydraulic
conductivities is about 0.26 ft/day. Then as theéaddensity increases, the average value
increases and approaches the true hydraulic camdyctalue of 0.283 ft/day. When data

density reaches 250, the average value is aboub (fttday. This is very close to the true
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parameter value. This trend shows that when obBervdata density increases, the expected

value of the estimated parameter will approachrie parameter value.

The blue star symbol represents the absolute valiparameter estimation errors (calculated
using the average parameter estimation value ueaen data density). The expected error is
about 8% (reading from the vertical axis on thétligvhen only 10 hydraulic heads are sampled.
Then as the data density increases, the expected @ecreases significantly. When 250
hydraulic heads are utilized for inversion, the extpd parameter estimation error is less than
3.5%. This trend shows that a lower parameter esibm error is guaranteed when more

observation data is sampled.

Results of this global uncertainty analysis suggest K; estimation error is significantly
influenced by the density of observed hydraulicdse@rig 4.21). The inversion accuracy is very
sensitive to observation data density. With indreatieadsK; estimation accuracy increases

and the estimation uncertainty decreases.
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Inverted Conductivity, ft/day

Fig 4.21: Uncertainty & Mean of Inverted Kf Values, and Inversion Errors
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CHAPTER 5 CONCLUSION

The physics-based inverse method is tested fonpeteat and boundary condition estimations of
steady state groundwater flow in fractured confiagdifers. The most significant advantage of
this method lies in its computational efficiencyrasrepeated forward simulations are required.
The noisy observation data (hydraulic heads comgimmeasurement error) are directly
incorporated into the solution matrix, which is\aa in a one-step procedure to obtain both

formation parameters and state variables.

This method is not sensitive to the ratio betweeactiire conductivity Ks) and matrix
conductivity Ky) as hydraulic conductivities have been succegsdtimated when this ratio
ranges from 10 to £0 This method is also tested to be robust to datare Parameter
estimations have achieved reasonable results whssrwation data (hydraulic heads) applied for

inversion contain error up to 10%.

Boundary conditions have been recovered for problémat either include high conductivity
fractures or low conductivity flow barriers. Thecowered boundary conditions are compared to
the true boundary conditions (boundary conditioefingéd in true forward models), and the
misfits are found to be negligible. In additiontestmlines are also obtained using estimated
hydraulic conductivities and recovered boundaryditions. The recovered streamlines capture
the major characters of the true streamlines, thosgme misfits exist adjacent to the high

conductivity (fractures) or low conductivity (flobarriers) zones.
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Furthermore, the scientific importance of estimgtboundary conditions is verified by PEST.
Most of the traditional inverse methods require gpinesumption of boundary conditions. The
assumed boundary conditions are essentially fdisergation data on each grid cell along the
entire boundary. As a result, the inversion processactually conducted with both true
observation data and a significant amount of falsgervation data. Numerical simulations have
been performed by PEST when the presumed boundengitmns contain either 5% or 10%
error. The results suggest that the inversionavily converge to the true parameter values when
the initial guesses are close enough to the triieesaOther than that, the parameter estimation

results are not satisfying.

Upscaled effective hydraulic conductivities thaih capresent flow in fractured aquifers are also
estimated. Effective conductivities of two diffetanodels are estimated by inversion and then
compared to theoretically calculated, effective dugstivities. For both models, the estimated
effective conductivities on both directions arewelose to the theoretical values. As a result,
this physics-based method is applicable to estinstective hydraulic conductivities for

fractured aquifers.

For three different models, the contour maps oferted state variables (hydraulic head,
horizontal Darcy flux, and vertical Darcy flux) aptotted and compared to the contours of
corresponding true state variables. The inverter ¥lectors are also compared to the true flux
vectors. The contour maps of inverted values recthe most significant characteristics of the
true contours with the major discrepancies locatedind the high conductivity fracture or low

conductivity flow barrier zone. The main differenisetween the true and inverted flux vector
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fields also lies in these areas. The inverted aastdit the true contours much better when the

true streamlines in the forward model is more linea

Finally, an uncertainty analysis is also conducbhgdincreasing the number of observation
hydraulic heads, while using a single Darcy fluxtee for inversion. Results of this uncertainty
analysis suggest that the parameter estimatiom srignificantly influenced by the density of

observation data. With increasing heads (from 1025®) parameter estimation accuracy
increases while its uncertainty decreases. Asudtrése inversion accuracy is determined to be

sensitive to data density.
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APPENDIX

Reynolds Number (Re)

There are two basic types of fluid flow. When albletules within the fluid move parallel to
each other in the direction of flow, the flow isnmad laminar flow. If molecules in the fluid
move in all directions but with a net movement e flow direction, then the flow is named
turbulent flow. There are also transition statevBdoetween laminar flow and turbulent flow. In
heterogeneous fluids, almost no mixing happens amidar flows. On the other hand,

heterogeneous fluids are thoroughly mixed wherifltve state is turbulent flow.

For this thesis, Darcy’s law is applied to calcaelgtoundwater fluxes. There are two main issues
associated with the usage of Darcy’'s law. The oomtn assumption assumes that the
microscopic pore-scale velocity variation can beresented by the volume-averaged

macroscopic properties, such as flow rate, Dancy, find average linear velocity. In other words,
microscopic pore-scale velocity variations are maked. The second issue is that Darcy’s law
applies only to laminar flows. It can be inappragei to use Darcy’'s law if the groundwater

velocity is large and the flow state is turbulemhich could be the case when groundwater flows

through rocks with large pores.

In fluid mechanics, one of the most important pagtars that characterize flows is the Reynolds
number (Re). This parameter is named after OsbRaymolds who documented the distinction
between laminar and turbulent motion in the lat& ¢éntury. The Reynolds number is defined
as the ratio of inertial forces to viscous forcesd aconsequently quantifies the relative

importance of these two types of forces for anyegiflow condition. The Reynolds number is a
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dimensionless quantity that indicates the extenwviich a flow is laminar or turbulent. The
Reynolds number is defined by the following equatio

_ pad

Re ==

p: water density, M/E; constant, 1000 kg/frat 4 °C;
g: magnitude of Darcy flux, L/T;
d: mean pore size, L;

w: water viscosity, M/LT; constant, 0.001002 kg/(ratp0 °C;

Fluid flow is found to be laminar when the Reynotdsnber is low (<10) and turbulent when
the Reynolds number is high (>2000). There is asiteon from laminar flow to turbulent flow

in the middle. With increased velocity, the Reymsofdumber will increase correspondingly, and
the flow is more likely to be turbulent. But it veidely accepted that the flow state is laminar

when the Reynolds number is no larger than 10.

In this thesis, as Darcy’s law will be applied @iaulate fluxes, the Reynolds number of each
model is carefully investigated. As discussed befamd the definition of the Reynolds number
indicates, high values of Darcy fluxes may leaa@ teeynolds number that is higher than 10 and
Darcy’s law is no longer applicable. The hydradlead gradient of each model in this thesis is
set to be not too large over the problem domaiorder to guarantee that the Reynolds number

of each model is smaller than 10, as thus Daraysdtands.
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