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ABSTRACT 

Zhang, Yifan, MS in Geology, Department of Geology & Geophysics, Dec, 2014 

 

A physics-based inverse method is proposed for simultaneous parameter, boundary 

condition, and flow fields (which includes hydraulic head field, Darcy flux fields, and 

streamlines) estimation for a discrete fractured aquifer. By sampling synthetic aquifer 

problems (i.e., forward models) containing various fracture patterns to provide observation 

data for inversion, the inverse method is tested for parameter estimation under varying 

observation data quality, data density, and the ratio of fracture conductivity (Kf) to matrix 

conductivity (Km). This method can achieve stable parameter estimations for measurement 

errors up to +/- 10% of the total hydraulic head variation of the forward model. But the 

accuracy of parameter estimation is sensitive to data density. In addition, hydraulic heads, 

Darcy fluxes, streamlines, and boundary conditions are also recovered by inversion and are 

found to capture the major characteristics of the flow field. The scientific importance of 

recovering boundary conditions by inversion is also verified by running a set of test problems 

with PEST and comparing its solutions with those obtained with the direct method. 

Furthermore, effective hydraulic conductivity to represent flow in a fractured aquifer is also 

successfully estimated by inverse method. 
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CHAPTER 1   INTRODUCTION 

Fractures are defined as “displacement discontinuities in rocks, which appear as local breaks in 

the natural sequence of the rock’s properties” (Tiab & Donaldson, 2011). They are 

discontinuities where minerals and rocks are broken. Fractures can be characterized as reduction 

or loss of cohesion in most cases (Fossen, 2010). They are formed when the stress in rocks 

exceeds a certain limit, and thus the rocks fail mechanically. Natural fractures range on a scale 

from micro-cracks to crustal rifts (Bonnet et al., 2001). Normally fractures are preferential flow 

paths, but when less permeable material is contained in fractures, fractures may form flow 

barriers. 

Fractured geological formations exist almost everywhere in the world (Berkowitz, 2002). 

Although fractures only make up a small percent of the volume of the entire formation, they have 

a major influence on the formation’s properties. The properties influenced by fractures most 

significantly are porosity and permeability, which are the key parameters controlling the flow 

performance in water and hydrocarbon reservoir production. Characterizing fractured formations 

is one of the most challenging tasks for hydrologists and production geologists (Faybishenko, 

Witherspoon, & Benson, 2000).  

During the history of sedimentary process, nearly all sedimentary formations in the upper part of 

the earth’s crust have been fractured to some extent. As a result, the definition of “fractured 

reservoir” does not rely on the presence of fractures, but depends on the influence of fractures on 

fluid flow behavior (Bourbiaux, 2010). By this definition, it is estimated that 20% of world oil 
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reserves lies in fractured reservoirs (Abbas, 2000). Other people have estimated that 40% of 

world’s oil reserves are contained in carbonate formations, which are highly likely fractured 

(Perrodon, 1980). Even when production is performed in un-fractured formations, artificial 

fractures (e.g. hydraulic fractures) may be generated to enhance production. 

Naturally fractured reservoirs are the most complicated water and hydrocarbon reserves. To 

reveal how natural fractures impact reservoir performance, fluid flow modeling and reservoir 

simulation is widely applied and investigated. Reservoir simulation can be performed to optimize 

water and hydrocarbon recovery, to calculate economic worth of a reservoir, and to evaluate the  

risk (Lemonnier & Bourbiaux, 2010). As a result, reservoir simulation is a crucial tool for 

reservoir management. 

Past works have proven that models that treat fractured formations as uniform or non-uniform 

isotropic continuum usually cannot always predict flow and transport in those formations 

successfully. Instead, models must honor the heterogeneity of fractured rocks. One method is to 

represent the rock by a discreet fracture network, and the other is to depict the rock as a 

stochastic medium (Shlomo P. Neuman, 2005). In this thesis, the discreet fracture method is 

applied as every single fracture is assumed to be known by its location, shape, size, and 

orientation.  

The heterogeneities of fractured aquifers may range across multiple scales (Bonnet et al., 2001). 

To test the performance of the physics-based inverse method under multiple scales of 

heterogeneity, parameters are estimated when the ratio between fracture conductivity (Kf) and 

matrix conductivity (Km) ranges from ten to a million. On the other hand, flow generally takes 

place in preferential flow paths in fractured formations (Tsang & Neretnieks, 1998). To 
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investigate the significance of the preferential flow paths, streamlines are generated using 

inversed conductivities and boundary conditions (BC) to compare to the true streamlines.  

This thesis performs model calibrations with observation data of hydraulic heads and Darcy flux 

vectors to estimate hydraulic conductivities. Hydraulic heads are easy to measure in wells, while 

Darcy flux can be tested by a point velocity probe (PVP) which is a new tool and can be used to 

measure groundwater velocities at the centimeters scale (Labaky, Devlin, & Gillham, 2009). 

Darcy flux can also be calculated from direct flow rate measurements, which can also be 

obtained in the field (Bayless, Mandell, & Ursic, 2011; Devlin et al., 2012). The hydraulic 

conductivity can be inverted if the observation data provided are sufficiently sensitive to the 

property of interest (Kowalsky et al., 2012). However, observation data can be expensive to 

obtain and thus measurements available are very limited. Calibration of groundwater models 

without enough measurements is an underdetermined inverse problem (Mclaughlin & Townley, 

1996). To overcome this problem, a common method is to make simplifying assumptions 

regarding spatial variability (Moore & Doherty, 2006). In this thesis, deterministic models are 

defined where the exact spatial distribution of hydraulic conductivities is known and the 

nonuniqueness problem is avoided.  

In most parameter estimation studies, the focus point has been on the indirect inverse method 

solving a boundary value problem to optimize an objective function, which aims to minimize the 

measurement-to-model misfits. In these methods, the hydrologic properties of heterogeneous 

formations are inverted starting with an initial guess of parameter values and boundary 

conditions. Then observation data of hydraulic heads and flow rates are compared to the 

corresponding simulation results obtained by running the forward mathematical model. The 



4 
 

parameters (sometimes also the boundary conditions) of the mathematical model are adjusted 

after each simulation until a satisfactory match to the observation data is obtained, or the value of 

the objective function is minimized. The final parameter values are considered as a reasonable 

representation of the geologic formation (Doughty, Long, Hestir, & Benson, 1994). Such 

approaches satisfy the known physics and mathematical constraints, are easily adaptable, and 

have proven to be robust and efficient in many situations. But they require the assumption of 

boundary conditions which are usually unknown and will cause great uncertainty. Also 

parameter estimation via those indirect methods are often an iterative procedure involving 

repeated simulations of the boundary value problem as stated before, which is a computationally 

intense task especially when the model size is large. On the other hand, even though both 

parameters (hydraulic conductivities) and boundary conditions can be modified and updated by 

iterations, the inverse problem can be ill posed, e.g., instability, nonuniqueness, and failure to 

converge could happen. Furthermore, an infinite number of boundary conditions may fit the 

observation data equally well; thus the inferred boundary conditions are generally non-unique. 

Direct methods can also be used to solve the inverse problems. The direct methods are 

mathematically straightforward and computationally efficient. However, the direct methods have 

not been widely adopted due to their instability of the estimated parameters when the observation 

data contains error. In hydrogeology, initial attempts were made to directly determine 

transmissibility from streamlines by inverting the flow equation along these lines, but this 

method was found sensitive to measurement errors and thus cannot obtain reliable parameter 

estimation (Nelson, 1960, 1961, 1968). Though parameter uncertainty can be controlled by 

imposing bounds on the observation errors (Kleinecke, 1971), solutions are often unreliable. 

Other direct methods such as the direct matrix method create a set of superdeterminate algebraic 
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equations from discretizing the boundary value problem (S. P. Neuman, 1973; Sagar, Yakowitz, 

& Duckstein, 1975). In a two-dimensional problem, when random noise is added to the 

observation data, the direct matrix method is found accurate when the parameter dimension is 

small (Yeh, Yoon, & Lee, 1983). Sun (Sun, 1994) stated that the necessary condition for 

parameter identifiability is that the number of parameters is smaller than the number of 

observation data. 

This thesis tests the liability of the physics-based direct method for parameter estimation. This 

method does not require the presumption of boundary conditions; instead it can recover 

boundary conditions by inversion along with the hydraulic parameters. This method is 

mathematically straightforward and computationally efficient. It discretizes the problem domain 

into elements and state variables are approximated by a function satisfying the governing 

equation, the Laplace’s equation. State variables at the observation points are then directly 

incorporated. The unknown hydraulic conductivity is estimated together with parameters in the 

head and flux functions. To ensure head and flux continuity at element boundaries, a collocation 

technique is used; elements within one hydro face assume continuous heads and fluxes in all 

directions, while elements separated by a material interface assume continuity in head and 

continuity of the normal flux. The inversion problem is thus stated with correct physical 

constraints. Using Laplace’s solution with unknown coefficients, the method in effect estimates 

the coefficients by “bending” the approximate solution toward the true solution, following the 

observations with their weights. Unlike the existing indirect and direct methods, this method 

does not discretize a boundary value problem; thus a priori knowledge of the boundary condition 

is not required. Also this method does not attempt to fit boundary conditions to observation data, 

avoiding the nonuniqueness problem. In a single step (i.e., single matrix solve), model 
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parameters and model state variables are simultaneously estimated, and boundary conditions of 

the modeling region can be inferred by the inverted hydraulic heads along the boundary (Irsa & 

Zhang, 2012). 

In this thesis, steady state groundwater flow in heterogeneous isotropic confined aquifers 

characterized by fractures and flow barriers are investigated by the physics-based direct inverse 

method.  
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CHAPTER 2   BACKGROUND 

1. Nonuniqueness in Fitting Boundary Conditions to a Steady State Problem 

Most existing methods utilize the solution of a boundary value problem with prescribed 

boundary conditions which can be modified and updated during inversion, along with the 

parameters of the model. The main issue of these methods is that the fitted boundary conditions 

are not unique. The other issue of these methods is that they are computationally intensive as 

numerous forward simulations are involved until a good fit between the forward simulation 

results and the observation data is obtained. 

The severity of the nonuniqueness depends on the quantity and quality of the observation data. 

When enough data is available and the data quality is high, the nonuniqueness is less pronounced. 

But even in this case, there still exists more than one set of boundary conditions providing 

solutions that satisfy the observed data and prior information. On the other hand, it is commonly 

assumed that by adding flow rate data, the nonuniqueness in fitting the hydraulic heads can be 

reduced and perhaps a unique solution is possible because a flow rate measured at any point in 

the aquifer would impose an additional constraint on the solution. However, the addition of flow 

rate data does not guarantee a unique solution. 

The nonuniqueness issue can be demonstrated by a two-dimensional example of steady state 

groundwater flow in a homogeneous isotropic aquifer (Irsa & Zhang, 2012). In this example, the 

hydraulic heads satisfy the Laplace’s equation. Figure 2.1(a) shows that 3 hydraulic heads are 

sampled in the study domain, with two located at the corners on the left and the other one located 

at the middle of the right boundary. In addition, a flow rate is also obtained analytically along the 
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y axis on the right boundary. Figure 2.1(b) shows that two different sets of boundary conditions 

are specified along the study domain. Both boundary conditions honor the observation data of 3 

hydraulic heads and 1 flow rate. However, these 2 different sets of boundary conditions lead to 

totally different reconstructed flow fields as shown by Figure 2.1(c) and Figure 2.1(d). The 

smoother boundary condition represented by the red line in Figure 2.1(b) leads to the smoother 

flow field in Figure 2.1(c). On the other hand, the more fluctuated boundary condition 

represented by the green line in Figure 2.1(b) leads to the less smooth flow field in Figure 2.1(d). 

In this example, the observation data of 3 hydraulic heads and 1 flow rate do not lead to a unique 

estimation of hydraulic heads along the same boundary. This example shows that the methods 

involving the solution of a boundary value problem with assumed boundary conditions cannot 

obtain unique estimation of flow fields as more than one set of boundary conditions will satisfy 

the same observation data. This issue is one of the major concerns with current inversion 

methods. Even though a unique estimation of hydraulic conductivity can be achieved, extremely 

different flow fields will be obtained due to different presumed boundary conditions. As a result, 

a great amount of uncertainty will be caused in the following prediction analysis. 
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Figure 2.1: Nonuniqueness in Fitting Boundary Condition in 

a 2-Dimensional Homogeneous and Isotropic Aquifer 
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CHAPTER 3   METHODOLOGY 

1. Flow Equations 

The physics-based inverse method presented below is not based on solving a boundary value 

problem. As a result, it does not require the presumption of boundary conditions and does not 

involve iteration. This method can provide the best fit to the observation data with stable 

convergence.  

The 3-dimensional groundwater flow equation in a confined aquifer with source/sink effects is 

written as: 

�
�� ���

�ℎ
��� +

�
�	 ��


�ℎ
�	� +

�
�� ���

�ℎ
��� = �� �ℎ�� 																																																																										(1) 

Where h(x,y,z) is hydraulic head [L], K represents hydraulic conductivity [L/T], �� ����  is the 

source/sink term [L/T].  

When the formation is homogeneous, ��,  �
  and ��  do not vary with space, and the flow 

equation can be simplified as:  

�� �
�ℎ

��� + �
 �
�ℎ

�	� + �� �
�ℎ

��� = �� �ℎ�� 																																																																																																		(2) 

Furthermore, if the formation is isotropic which means that hydraulic conductivities in all 

directions are the same (�� = �
 = �� = �), then the flow equation can be simplified as: 

��ℎ
��� +

��ℎ
�	� +

��ℎ
��� =

��
�
�ℎ
�� 																																																																																																																			(3) 
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Under the condition of homogeneous and isotropic formations, if the flow is steady state which 

means that the hydraulic heads do not vary with time (
��
�� = 0), then the flow equation can be 

further simplified as: 

��ℎ
��� +

��ℎ
�	� +

��ℎ
��� = 0																																																																																																																											(4) 

At last, the 2-dimensional steady-state flow equation of a homogeneous and isotropic aquifer is: 

��ℎ
��� +

��ℎ
��� = 0																																																																																																																																								(5) 

Equation (5) is commonly known as the Laplace’s equation. In this thesis, steady-state 

groundwater flow in homogeneous and isotropic aquifers, which is governed by the Laplace’s 

equation, is investigated. 

2. Physics-Based Inverse Method 

The physics-based inversion method applied in this thesis study enforces two constraints: (1) 

global continuity of hydraulic heads and Darcy fluxes throughout the solution domain; (2) local 

conditioning of the inverse solution to observed hydraulic heads, fluxes, and flow rates (i.e., state 

variables) if available.  

For each grid cell within the study domain, the hydraulic head (h) can be represented by a second 

order polynomial which satisfies the Laplace’s equation: 

ℎ(�, �) = � + �!� + ��� + �"�� + �#(�� − ��)																																																																							(6�) 
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In this approximation, x and z are coordinates of the middle point of the grid cell; 

� , �!, ��, �", and	�#	are unknown parameters of the grid cell. With this approximation, Darcy 

fluxes can be obtained by differentiating hydraulic heads: 

)�(�, �) = −�* �ℎ
�� = −�*(�!* + �"*� + 2�#*�)																																																																												(6+) 

)�(�, �) = −�* �ℎ
�� = −�*(��* + �"*� − 2�#*�)																																																																													(6,) 

In the equations, �* represents the hydraulic conductivity of the corresponding element. With 

the fundamental solutions described for each grid cell (equation (6)), the solution must also 

satisfy the governing equation globally. This is accomplished by minimizing a residual function 

on the collocation points. The collocation technique is used to guarantee global continuity of 

hydraulic heads and Darcy fluxes. Two collocation points are assigned on every boundary 

between grid cells (Figure 3.1). Grid cells within one hydro-face (the two grid cells on both sides 

of the boundary have the same hydraulic conductivity) assume continuous hydraulic heads and 

fluxes in all directions, while grid cells separated by a material interface (the two grid cells on 

each side of the boundary have different hydraulic conductivities) assume continuity in hydraulic 

head and continuity of the normal flux (the flux whose direction is perpendicular to the material 

interface). The inversion problem is thus stated with correct physical constraints. As described in 

Figure 3.1, the left and right boundaries are no-flow boundaries, thus there only exists vertical 

flow in this case. 
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The continuity equations at interfaces that separate different materials are:  

-./�*012�*ℎ./! − �*ℎ./� 3 = 0																																																																																																																(7�)	

-./56 7)�./! − )�./� 8 = 0																																																																																																																					(7+) 

-./59 7)�./! − )�./� 8 = 0																																																																																																																						(7,) 

The continuity equations at interfaces that have same hydraulic conductivity values (K) on both 

sides of the interface are: 

-./�*012�*ℎ./! − �*ℎ./� 3 = 0																																																																																																																(8�)	

-./59 7)�./! − )�./� 8 = 0																																																																																																																						(8+) 

Where δ is a weighting function assigned to the equations to reflect the magnitude of the 

measurement errors.  

The local conditioning equations (data equations) that constrain the inverse solution to observed 

hydraulic heads and fluxes are: 

K1 

K2 

x 

z 

Figure 3.1: 

The Sampling 

Strategy of 

Collocation 

Points 
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-�*012�*ℎ0//;<�=>0�*1 − �*ℎ<?�*;@*13 = 0																																																																																	(9�) 

-BCD� 7)
0//;<�=>0�*1 − )
<?�*;@*18 = 0																																																																																						(9+) 

Equations (7), (8), and (9) together form a matrix-vector problem, which can be solved to obtain 

hydraulic conductivity (K) value and all the parameter � values. With equations (6a), (6b) and 

(6c), the hydraulic head and Darcy flux vector of each grid cell can be determined by the 

� , �!, ��, �", and	�# values. 

3. Advantages of the Physics-Based Inverse Method 

This physics-based inverse method has several advantages: (1) model fits the data directly and 

there is no need to fit an objective function so no computationally intensive iteration is 

involved; (2) numerical discretization is the only source of error besides measurement error; (3) 

this method can uniquely determine the hydraulic heads, flow fields, as well as the boundary 

conditions, given observed hydraulic heads and Darcy flux data.  
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CHAPTER 4   RESULTS & DISCUSSIONS 

The physics-based inverse method described is applied to simultaneously estimate hydraulic 

conductivities and boundary conditions of 2-dimensional fractured confined aquifers under 

steady state. Computational experiments are performed for 9 models. Groundwater in each 

model flows through fractures (or flow barriers) and matrix.   

1. Parameter Estimation 

Five forward models are constructed for 2-dimensional confined aquifers with different fracture 

orientations. Hydraulic conductivities of these models are estimated by inversion with 

observation data of hydraulic heads and Darcy fluxes. Workflow of the parameter estimation 

process is described as below: 

1. Forward models are built in GW Vista (Version 6.25), which is a software package for 

groundwater flow modeling, calibration, and optimization. The software utilizes the 

MODFLOW suite of codes. The grid density of all 5 models is 25 by 25 (25 grid cells on 

both x and z directions). For MODEL 1 to MODEL 4, the top boundaries are defined as 

constant head boundaries with hydraulic heads equal to 600 ft; the bottom boundaries are 

defined as constant head boundaries with hydraulic heads equal to 500 ft; the left and 

right boundaries are no flow boundaries. On the other hand, for MODEL 5, the left 

boundary is defined as a constant head boundary of 600 ft; the right boundary is defined 

as a constant head boundary of 500 ft; the top and bottom boundaries are defined as no 

flow boundaries. 
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2. After running each forward model with GW Vista, the hydraulic heads at every grid cell 

are calculated and obtained. 

3. Darcy fluxes are calculated for every grid cell by Darcy’s Law (Equation 6b and 6c). 

4. Hydraulic heads and Darcy flux vectors (Darcy flux components in both x and z 

directions) are sampled as observation data for inversion in each case. 

5. Hydraulic conductivity is estimated for each model with the sampled hydraulic heads and 

Darcy fluxes as observation data. The inversions are performed with source code written 

in Matlab. The code is constructed according to the physics-based method.  

For MODEL 1 to MODEL 4 (Fig 4.1 to Fig 4.4), the same sampling density is applied. The 

figures also show locations where observation data is sampled. The “×” symbol represents 

locations where hydraulic heads are sampled, and the “*” symbol represents locations where 

Darcy fluxes are sampled (Fig 4.4 does not show the data sampling locations, but the sampling 

strategy is the same as MODEL 2 shown in Fig 4.2). The Kf/Km ratio is fixed at 10 for MODEL 1 

to MODEL 4. MODEL 1 contains a single vertical fracture; MODEL 2 contains a single 

horizontal fracture; MODEL 3 has a vertical and a horizontal fracture; and MODEL 4 is the 

same as MODEL 3, except that the fracture volume is 25 times greater. The parameter estimation 

results of these 4 models are summarized in Table 4.1. In these 4 models, the biggest inversion 

error is 5.29% in MODEL 3. For MODEL 1, the inversion achieves almost perfect hydraulic 

conductivity estimation. The parameter estimation results demonstrate that the physics-based 

inverse method applied by this thesis can successfully estimate hydraulic conductivities. 
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Fig 4.1: Design of MODEL 1 (cross 

symbol: heads sampling locations; star 

symbol: flux sampling locations) 

Fig 4.2: Design of MODEL 2 (cross 

symbol: heads sampling locations; star 

symbol: flux sampling locations) 

Fig 4.3: Design of MODEL 3 (cross 

symbol: heads sampling locations; star 

symbol: flux sampling locations) 

Fig 4.4: Design of MODEL 4 (data 

sampling strategy is the same as MODEL 

2 shown in Fig 4.2) 
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MODEL 1 2 3 4 

Error 0 4.57% 5.29% 0.70% 

 

 

Instead of single horizontal or vertical fractures in previous models, MODEL 5 (Fig 4.5) is 

designed to have a more realistic fracture distribution which contains a set of diagonal fractures. 

For this model, multiple parameter estimation experiments are performed under the same 

observation data density of 57 hydraulic heads and 10 Darcy flux vectors (In this sampling 

strategy, the idea is that adequate observation data is available for parameter estimation, so the 

data locations are not specified in Fig 4.5). Parameter estimation is performed under different 

Kf/Km values (ranging from 101 to 106).  The inversion results of MODEL 5 are summarized in 

Table 4.2. When fracture conductivity is 10 times greater than matrix conductivity, hydraulic 

conductivity is underestimated by 4.44%; when fracture conductivity is 100 times greater than 

matrix conductivity, hydraulic conductivity is overestimated by 2.49%; when fracture 

conductivity is 1000 times greater than matrix conductivity, hydraulic conductivity is 

overestimated by 4.92%; and when fracture conductivity is 104 to 106 times of matrix 

conductivity, hydraulic conductivity is overestimated by approximately 5.24% to 5.27%. With 

the 6 parameter estimation experiments, the accuracy of hydraulic conductivity estimation by the 

physics-based inverse method is found to be not sensitive to the variability between fracture 

conductivity and matrix conductivity. 

 

Table 4.1: Error Summary of the Inversions when Kf / Km = 10 
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Ratio 101 102 103 104 105 106 

Error -4.44% 2.49% 4.92% 5.24% 5.27% 5.27% 

 

 

2. Data Quality 

The previous parameter estimations are performed utilizing true observation data without 

imposing measurement errors. It’s possible to exclude measurement errors from previous 

inversions because synthetic true forward models are defined and the observation data are 

obtained by running the true forward models. However, it’s inevitable to include measurement 

errors to observation data in real field work. Some of the errors may be caused by accuracy of 

the measurement equipment, and some may be caused by operators or other reasons. 

Fig 4.5: Design of MODEL 5 

Table 4.2: Error Summary of the Inversions of MODEL 5 
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As a result, we cannot assume that the observation data utilized by inversion are 100% accurate. 

Instead, errors should be applied to observation data manually, and the robustness of this 

physics-based inverse method when the observation data contain error must be tested. In this 

way, the practicability of this method can be demonstrated. In order to find out how 

measurement errors will influence the estimated parameter values, inversions are again 

performed for MODEL 4 (Fig 4.4) with the observation data containing either 5% or 10% 

measurement error.  

Two different strategies are adopted to impose errors in order to get observation data with 5% 

measurement error. The first strategy imposes a random error between -5% and 5% to each 

observation data while the errors sum up to 0; the second strategy imposes errors of either -5% or 

5% to each observation data. For both strategies, the errors are unbiased (the errors add up to 0). 

The same error imposing strategies are applied to get observation data with 10% measurement 

errors. 

The true parameter values of MODEL 4 are summarized in Table 4.3, and the parameter 

estimation results obtained by inversions utilizing observation data with errors are summarized in 

Table 4.4. Note that when observation data available for inversion contain measurement errors, 

the parameter estimation results by the physics-based inverse method will degrade to a certain 

extent. The parameters estimated by data with 10% error are less accurate compared to the 

parameters estimated by data with 5% error, no matter which error imposing strategy is applied. 

As a result, the parameter estimation error will increase if the measurement error is greater. On 

the other hand, for a fixed amount of measurement error (e.g. 5%), estimated parameters are 

more accurate when the 1st error imposing strategy is applied (errors are between -5% and 5%), 
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and less accurate parameters will be obtained if the 2nd error imposing strategy (errors are either -

5% or 5%) is applied. When measurement error is 5%, the parameter estimation errors are 16% 

(errors are between -5% and 5%) and 34% (errors are either -5% or 5%); when measurement 

error is 10%, the parameter estimation errors are 39% (errors are between -5% and 5%) and 65% 

(errors are either -5% or 5%). Even though the parameter estimation accuracy degrades when 

observation data contain error, the estimated parameter values are still reasonable and within the 

same order of true parameter values. The parameter estimation results in this section indicate that 

the physics-based inverse method does not collapse and still achieves acceptable parameter 

estimation results when observation data contain as high as 10% measurement error. 

 

 Model 4 

Unit, ft/day Kmatrix Kfracture 

True 1 10 

. 

 

Error 5% 10% 

Strategy 
between -5% 

and 5% 
either -5% or 

5% 
between -10% 

and 10% 
either -10% or 

10% 

Kmatrix 0.84 0.66 0.61 0.35 

Kfracture 8.4 6.6 6.1 3.5 

Table 4.4: Inversion Results when Observation Data Contain Error 

Table 4.3: True Parameter Values of MODEL 4 
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3. Streamlines & Recovered Boundary Conditions 

The knowledge of streamlines is very useful in fluid dynamics. For MODEL 6 to MODEL 9, the 

physics-based inversion is performed to recover streamlines and boundary conditions under the 

same observation data density. 

For MODEL 6 to MODEL 9 (Fig 4.6a to Fig 4.9a), the top boundaries are defined as constant 

head boundaries with hydraulic heads decreasing linearly from 600 ft on the left to 505 ft on the 

right. The left, bottom, and right boundaries are no flow boundaries. 

MODEL 6 and MODEL 7 have flow barriers with lower hydraulic conductivities compared to 

the formation matrix, while MODEL 8 and MODEL 9 have high K faults with higher hydraulic 

conductivities compared to the matrix. The flow barriers in MODEL 6 and MODEL 7 have 

different orientations. The high K fault in MODEL 8 has the same orientation as the flow barrier 

in MODEL 6, and the high K fault in MODEL 9 has the same orientation as the flow barrier in 

MODEL 7. For all 4 models, the hydraulic conductivity of the formation matrix is defined as 1 

ft/day. Hydraulic conductivity of flow barriers in MODEL 6 and MODEL 7 is 0.1 ft/day, and 

hydraulic conductivity of the high K faults in MODEL 8 and MODEL 9 is 10 ft/day. 

Inversions are performed to obtain the estimated hydraulic conductivities. The hydraulic heads of 

each grid cell are calculated by the inversion process. As a result, the heads along the model 

boundary can be picked out as the inverted boundary conditions. This is how the physics-based 

inverse method recovers boundary conditions. The inverted streamlines of MODEL 6 to 

MODEL 9 are also achieved utilizing the inverted boundary conditions and inverted hydraulic 

conductivities (Fig 4.6b to Fig 4.9b). The true streamlines of MODEL 6 to MODEL 9 are 

generated with true boundary conditions (constant head boundaries and no flow boundaries) and 
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true hydraulic conductivity values (Fig 4.6a to Fig 4.9a). Both the true streamlines and the 

recovered streamlines are obtained by GW vista. The true boundary conditions and the inverted 

boundary conditions of MODEL 6 to MODEL 9 are plotted and compared in Fig 4.6c to Fig 4.9c. 

The parameter estimation results of MODEL 6 to MODEL 9 are summarized in Table 4.5a and 

Table 4.5b. 

For Figure 4.6c to Figure 4.9c (boundary condition comparison), the bottom left grid cell of each 

model domain is defined as cell number 1 (on the horizontal axis of Fig 4.6c to Fig 4.9c). The 

cell number increases when moving up to the top left cell along the left boundary, moving right 

to the top right cell along the top boundary, moving down to the bottom right cell along the right 

boundary, and finally moving left to the second left grid cell along the bottom boundary. Red 

dashed lines represent true boundary conditions defined in forward models, and blue dashed lines 

are inverted boundary conditions. 

By comparing the inverted boundary conditions to true boundary conditions, we note that 

MODEL 6 and MODEL 9 have very good fits without obvious discrepancies; MODEL 7 has 

some misfits on the bottom boundary; and MODEL 8 has some misfits on the left and bottom 

boundaries. Overall, the inverted boundary conditions fit the true boundary conditions very well, 

especially for MODEL 9 where an almost perfect fit to true boundary conditions is achieved. 

With these 4 comparisons, the physics-based inverse method is demonstrated to be capable of 

recovering boundary conditions while estimating parameters by the inversion process. 

MODEL 6 has the biggest parameter estimation error of 17%; MODEL 9 has the smallest 

parameter estimation error of 5%. Due to the bigger hydraulic conductivity estimation error in 

MODEL 6, there are some misfits between the inverted streamlines (Fig 4.6b) and true 
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streamlines (Fig 4.6a) of MODEL 6. Overall, the inverted streamlines can represent true 

streamlines very well for all 4 models. Thus the physics-based inverse method is capable of 

recovering streamlines.  

 

 

 Model 6 Model 7 

ft/day Kmatrix Kbarrier Kmatrix Kbarrier 

True 1 0.1 1 0.1 

Inverted 0.83 0.083 0.86 0.086 

  

 

 

 

 

 Model 8 Model 9 

ft/day Kmatrix K fault Kmatrix K fault 

True 1 10 1 10 

Inverted 1.08 10.8 1.05 10.5 

 

 

 

Table 4.5a: Parameter Estimation Results of MODEL 6 & 7 

Table 4.5b: Parameter Estimation Results of MODEL 8 & 9 
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Fig 4.6a: True Streamline of MODEL 6  

Fig 4.6b: Inverted Streamline of MODEL 6  

Fig 4.6c: True BC vs. Inverted BC of MODEL 6 Fig 4.7c: True BC vs. Inverted BC of MODEL 7 

Fig 4.7a: True Streamline of MODEL 7  

Fig 4.7b: Inverted Streamline of MODEL 7 
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Fig 4.8a: True Streamline of MODEL 8 

Fig 4.8b: Inverted Streamline of MODEL 8 

Fig 4.8c: True BC vs. Inverted BC of MODEL 8 

Fig 4.9a: True Streamline of MODEL 9 

Fig 4.9b: Inverted Streamline of MODEL 9 

Fig 4.9c: True BC vs. Inverted BC of MODEL 9 
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4. Parameter Estimation by PEST with Boundary Conditions Containing Error 

One of the most significant advantages of this inverse method is that it does not require boundary 

conditions as an input; instead, this method can recover boundary conditions. In contrast, most of 

the existing parameter estimation methods involve multiple forward simulations to optimize an 

objective function. The first forward simulation requires the assumption of boundary conditions, 

which are usually (if not always) unknown. As a result, the presumed boundary conditions will 

certainly contain errors, or sometimes the assumed boundary conditions may even be wrong and 

leading to wrong parameter estimation results. 

PEST is one of the most widely used source codes (software) in groundwater studies to perform 

parameter estimation and uncertainty analysis. The parameter estimation process by PEST 

requires known boundary conditions as most of the existing techniques do. Numerical 

experiments are performed in this thesis utilizing PEST to find out how the errors contained in 

the presumed boundary conditions affect the parameter estimation results. Eight parameter 

estimation experiments are performed for MODEL 8 under 4 different set of boundary 

conditions. The inversions are started with 2 different sets of initial guesses for each boundary 

condition. One set of the initial guesses is very close to the true parameter values, and the other 

set of the initial guesses is far away from true parameter values. 

The true matrix conductivity of MODEL 8 is 1 ft/day, and the true fracture conductivity is 10 

ft/day, which can be found in Table 4.5b. The 1st boundary condition tested is the true boundary 

condition which is represented by the blue lines in Fig 4.10. The 2nd boundary condition contains 

5% or -5% error applied to the hydraulic heads on each grid cell along the boundary, which is 

represented by the red line in Fig 4.10a. The 3rd boundary condition contains an overall 5% error 

applied along the entire boundary, and the error is unbiased and adds up to 0. It is represented by 
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the green line in Fig 4.10b. The 4th boundary condition contains an overall 10% error applied to 

hydraulic heads along the boundary. The error for the 4th boundary condition is also unbiased, 

and the boundary condition is represented by the red line in Fig 4.10c.  

The inversion results of the eight numerical experiments performed by PEST are summarized in 

Table 4.6a and Table 4.6b. The results demonstrate that PEST can converge to the true parameter 

values when it is given the true boundary condition, no matter if the initial guess of parameter 

values is close to or far away from the true values. But when PEST is given a boundary condition 

that contains error, it will only converge to the true parameter values when the initial guess is 

close enough to the true values. If the initial guess is very different from true parameter values, 

PEST will not converge to the true values. 

If the boundary condition that is given to PEST contains error on every grid cell along the 

boundary as in the 2nd case, PEST will converge to values with the same order of true parameter 

values when the initial guess is close enough to the true values. However, when the initial guess 

is far from the true values, the parameter values estimated by PEST are 2 orders smaller 

compared to the true values. This example shows that under the 2nd kind of boundary condition, 

PEST will only achieve an acceptable (but not very good) parameter estimation result when the 

initial guess is close enough to the true parameter values. 

On the other hand, when the boundary condition given to PEST is smooth as in the 3rd case and 

in the 4th case, PEST will converge to the true parameter values if the initial guess is close to the 

true values, no matter if the amount of error contained in the boundary condition is 5% or 10%. 

When the initial guess is far away from true parameter values, the estimated values by PEST are 

still within the same order of the true values. But the percent of error is large. The parameter 
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estimation error is about 40% when the boundary condition contains 5% error. The errors 

increase to 120% (matrix conductivity) and 218% (fracture conductivity) when then boundary 

condition contains 10% error. 

The results demonstrate that PEST is only reliable for estimating parameters when true boundary 

conditions are known. In contrast, as the physics-based inverse method does not require known 

boundary conditions in advance, it is more reliable for parameter estimations. 
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Fig 4.10a: True BC vs BC with 5% Error Applied to Each Grid along 
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Fig 4.10b: True BC vsBC with 5% Overall Error 
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Initial value 
(ft/day) 

True BC 

Kmatrix Kfrac Km Kf 

1 10 1 10 

0.01 1000 1.04 10.4 

 

 

Initial value 
(ft/day) 

5% noisy 5% smooth 10% smooth 

Kmatrix Kfrac Km Kf Km Kf Km Kf 

1 10 1.9 5.3 1 10 1 10 

0.01 1000 0.06 0.13 0.56 6.07 2.2 31.8 

 

 

5. Effective Conductivity Estimation 

Hydraulic conductivity heterogeneity is one of the most significant factors that influence 

groundwater flow. Studies have proved that spatial variation of hydraulic conductivity (similar to 

permeability in petroleum engineering) exists in all natural sedimentary deposits. The importance 

of conductivity heterogeneity depends on the scale of problems. For example, conductivity 

heterogeneity is less crucial for estimating bulk flow characteristics. In typical regional to basin-

scale groundwater studies, conductivity heterogeneity is usually not incorporated into flow 

Table 4.6b: Inversion Results with Different BCs by PEST 

Table 4.6a: Inversion Results with True BC by PEST 
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models because the cost of conducting detailed sampling over large spatial scales is very high. 

However, reasonable results can still be obtained without detailed heterogeneity information. 

Also it’s very difficult to incorporate detailed conductivity heterogeneity into models due to 

current computational limits. Sedimentary deposits are commonly represented by a series of 

internally homogeneous hydrogeological units (Zhang, Gable, & Person, 2006). Lateral and 

vertical conductivity heterogeneity within each unit is ignored. The equivalent conductivity 

represents a fictitious homogeneous deposit for a given head gradient. The estimation of the 

equivalent conductivity can be performed by numerous methods. The equivalent conductivity 

depends on the boundary condition, thus it is not unique when the boundary condition changes. 

All the previous parameter estimations are performed for deterministic models, where the spatial 

distribution of hydraulic conductivity is known. This is the ideal case as the forward models are 

defined synthetically, and the exact distribution of hydraulic conductivity is known. However, 

when the spatial distribution of hydraulic conductivity is unknown, the effective K (upscaled K) 

on both the x direction and the z direction can be estimated. As the true forward model is known, 

the true boundary conditions are also known and unique. As a result, the analytically calculated 

effective hydraulic conductivity is also unique. This analytical effective conductivity value is 

used as the criteria to test the accuracy of the effective conductivity estimated by inversion. 

In MODEL 8 and MODEL 5, when the fracture hydraulic conductivity is 10 times greater than 

matrix conductivity, the effective K on x and z directions are estimated both numerically and by 

inversion. The estimated K by inversion is obtained by the physics-based inverse method. Before 

estimating effective conductivity, the forward models are redefined. First, the left and right 

boundaries are defined as constant head boundaries; the top and bottom boundaries are no flow 
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boundaries (both MODEL 8 and MODEL 5). In this case, flow only occurs on x direction. Then 

this new defined forward model is run to obtain observation data of hydraulic heads and 

horizontal Darcy fluxes. Then the entire study area is assumed to be homogeneous and all the 

grid cells have the same hydraulic conductivity value. Under this assumption, the physics-based 

inversion is again performed and the calculated hydraulic conductivity value is the effective 

conductivity on the x direction. Second, the left and right boundaries of the forward models are 

defined as no flow boundaries; the top and bottom boundaries are constant head boundaries. In 

this case, only vertical flow occurs. Then the first step is repeated to obtain the effective 

conductivity on the z direction. 

The results of effective K estimation for MODEL 8 are summarized in Table 4.7. The effective K 

estimation on the x direction is less accurate than the effective K estimation on the z direction. 

This is because MODEL 8 exhibits more heterogeneity on the x direction. The results of 

effective K estimation for MODEL 5 are summarized in Table 4.8. This model exhibits equal 

heterogeneity on the x and z directions. As a result, the effective K estimations are almost 

equally accurate on both directions. On the other hand, the estimated effective K of MODEL 5 is 

more accurate than the estimated effective K of MODEL 8. The reason is due to the more equally 

distributed heterogeneity in MODEL 5 compared to that of MODEL 8. In other words, the 

formation represented by MODEL 5 is closer to a homogeneous medium than the formation 

represented by MODEL 8. So the effective K of the more homogeneous medium can be 

estimated more accurately by inversion. 

The results in Table 4.7 and Table 4.8 indicate that the physics-based inverse method can 

achieve good estimations of effective hydraulic conductivities. 
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 Model 8 

Unit, ft/day Kxx Kzz 

Numerically upscaled K 1.27 2.27 

Inversed upscaled K 0.93 2.36 

 

 

 

 

 Model 5 

Unit, ft/day Kxx Kzz 

Numerically upscaled K 1.77 1.88 

Inversion upscaled K 1.80 1.88 

 

 

6. Comparison of True Flow Fields and Inverted Flow Fields 

The physics-based inversion can also be applied to recover flow fields, as well as to estimate 

hydraulic conductivities. The inverted flow fields are obtained by running forward models with 

inverted hydraulic conductivities and inverted boundary conditions. Then the inverted flow fields 

are compared to the true flow fields to determine how well they fit each other. 

In MODEL 6 (Kbarrier = 0.1 ft/day; Kmatrix = 1 ft/day), true streamlines (Fig 4.6a) and true 

velocity vector fields (Fig 4.11a) are compared to inverted streamlines (Fig 4.6b) and inverted 

Table 4.7: Inversion Results of Upscaled K of MODEL 8 

Table 4.8: Inversion Results of Upscaled K of MODEL 5 
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velocity vector fields (Fig 4.11b). The comparison shows that the inverted streamlines fit the true 

streamlines very well. The main discrepancy between true and inverted velocity vector fields 

occurs within the flow barrier area. The true velocity in the flow barrier is much lower than the 

velocity in the matrix. However, there is no significant difference between the inverted velocity 

in the flow barrier and the velocity in the matrix. Also the contour of the true head field (Fig 

4.12a), contour of true horizontal fluxes (Fig 4.12b), and contour of true vertical fluxes (Fig. 12c) 

are plotted for comparison with the contour of the inverted head field (Fig 4.13a), contour of 

inverted horizontal fluxes (Fig 4.13b), and contour of inverted vertical fluxes (Fig 4.13c). The 

contour of the inverted head field represents the contour of the true head field very well with the 

major difference occurring around the flow barrier region. The contours of true fluxes (both 

horizontal and vertical) are very smooth. However, the contours of inverted fluxes are noisier. 

But overall the inverted contours recover the main characters of the true contours, with all the 

major differences located within the flow barrier region. This comparison shows that when the 

ratio between two different flow units’ hydraulic conductivities is 10, the physics-based inverse 

method can recover the major flow characters well. 

Then in order to explore how the inverted flow fields recover the true flow fields when the ratio 

of hydraulic conductivities is higher, the same analysis is performed for MODEL 7. The 

parameter values are adjusted to Kbarrier = 0.001 ft/day and Km = 1 ft/day. True streamlines (Fig 

4.14a) and true velocity vector fields (Fig 4.15a) are compared to inverted streamlines (Fig 4.14b) 

and inverted velocity vector fields (Fig 4.15b). The inverted streamlines fit the true streamlines 

on the large scale, with some local misfits. The main discrepancies between true and inverted 

velocity vectors locate around the flow barrier region and along part of the model boundary. Also 

the contour of the true hydraulic head field (Fig 4.16a), contour of true horizontal fluxes (Fig 
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4.16b), and contour of true vertical fluxes (Fig 4.16c) are plotted to compare with the contour of 

the inverted hydraulic head field (Fig 4.17a), contour of inverted horizontal fluxes (Fig 4.17b), 

and contour of inverted vertical fluxes (Fig 4.17c). The contour of inverted heads is quite 

different from the contour of true heads around the flow barrier region. Other than that, the 

inverted head contour fit the true head contour well. On the other hand, the contours of inverted 

horizontal and vertical fluxes are noisy and have a lot of discrepancies with the true contours of 

fluxes. These discrepancies occur in different regions of the model domain and are not limited to 

the flow barrier. This comparison shows that when the ratio between matrix conductivity and 

flow barrier conductivity increases to 1000, the physics-based inverse method can recover some 

of the flow characters. Even though there are some misfits, the inverted velocities fall in the 

same range with true velocities. The horizontal flow velocities (both true and inverted) are 

between -0.4 ft/day and 1.2 ft/day, and the vertical flow velocities (both true and inverted) are 

approximately between -0.5 ft/day and 0.5 ft/day. 

In MODEL 5 (Kf/Km equals 10), true streamlines (Fig 4.18a) are compared to inverted 

streamlines (Fig 4.18b). In this comparison, the inverted streamlines achieve an almost perfect fit 

to true streamlines. This is probably caused by the more linear true streamlines in MODEL 5 

compared to the highly non-linear streamlines in MODEL 6 and MODEL 7. There is no obvious 

discrepancy between the true and inversed streamlines. Also the contour of the true hydraulic 

head field (Fig 4.19a), contour of true horizontal fluxes (Fig 4.19b), and contour of true vertical 

fluxes (Fig 4.19c) are plotted to compare with the contour of the inverted hydraulic head field 

(Fig 4.20a), contour of inverted horizontal fluxes (Fig 4.20b), and contour of inverted vertical 

fluxes (Fig 4.20c). For all three pairs of comparisons, the inverted contours recover the true 

contours very well, both in the fracture region and the matrix. Although the recovered contours 



37 
 

are a little noisier compared to the true contours (especially the inverted contour of hydraulic 

heads), there is no obvious discrepancy. This analysis shows that the physics-based inverse 

method can recover the flow characteristics of fracture systems well, when the ratio between the 

fracture conductivity and the medium conductivity equals 10.  

Furthermore, by comparing the contour analysis of MODEL 5, MODEL 6, and MODEL 7, it’s 

obvious that the physics-based inverse method recovers the flow fields better when the true 

streamlines are more linear (as of MODEL 5). 

 

 

 

 

 

 

 

 

 

 

 

Fig 4.11a: True Velocity Vector Field of 

MODEL 6 
Fig 4.11b: Inverted Velocity Vector Field of 

MODEL 6 
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Fig 4.12a: Contour of True 

Head Field of MODEL 6 
Fig 13a: Contour of Inverted 

Head Field of MODEL 6 

Fig 4.12b: Contour of True 

Horizontal Flux of MODEL 6 
Fig 4.13b: Contour of Inverted 

Horizontal Flux of MODEL 6 

Fig 4.12c: Contour of True 

Vertical Flux of MODEL 6 
Fig 4.13c: Contour of Inverted 

Vertical Flux of MODEL 6 
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Fig 4.14a: True Streamline of MODEL 7 
(Parameter Values Adjusted to Kbarrier = 
0.001 ft/day; Km = 1 ft/day) 

Fig 4.14b: Inverted Streamline of MODEL 7 

(Parameter Values Adjusted to Kbarrier = 
0.001 ft/day; Km = 1 ft/day) 

Fig 4.15a: True Velocity Vector Field of 

MODEL 7 (Kbarrier = 0.001 ft/day; Km = 1 
ft/day) 

Fig 4.15b: Inverted Velocity Vector Field of 

MODEL 7 (Kbarrier = 0.001 ft/day; Km = 1 
ft/day) 
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Fig 4.16a: Contour of True 

Head Field of MODEL 7 
Fig 4.17a: Contour of Inverted 

Head Field of MODEL 7 

Fig 4.17b: Contour of Inverted 

Horizontal Flux of MODEL 7 
Fig 4.16b: Contour of True 

Horizontal Flux of MODEL 7 

Fig 4.16c: Contour of True 

Vertical Flux of MODEL 7 
Fig 4.17c: Contour of Inverted 

Vertical Flux of MODEL 7 
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Fig 4.18a: True Streamline of 

MODEL 5 (Kf/Km = 10) 

Fig 4.18b: Inverted Streamline of 

MODEL 5 (Kf/Km = 10) 
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Fig 4.19a: Contour of True 

Head Field of MODEL 5 
Fig 4.20a: Contour of Inverted 

Head Field of MODEL 5 

Fig 4.19b: Contour of True 

Horizontal Flux of MODEL 5 
Fig 4.20b: Contour of Inverted 

Horizontal Flux of MODEL 5 

Fig 4.19c: Contour of True 

Vertical Flux of MODEL 5 
Fig 4.20c: Contour of Inverted 

Vertical Flux of MODEL 5 
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7. Uncertainty Analysis 

Observation data (hydraulic heads and Darcy fluxes, in this thesis) sampling density is a major 

factor influencing parameter estimation accuracy. Usually, parameter estimation results will 

approach the true parameter values if more observation data is sampled. But sampling additional 

observation data will usually cost more. As a result, it is crucial to find out the optimum data 

density at which parameters can be estimated with satisfying accuracy and the cost of sampling 

data is also acceptable. So it will be useful to find out the trend of how parameter estimation 

accuracy changes with different observation data density. 

A global inverse sensitivity analysis is performed by increasing the number of observation 

hydraulic heads from 10 to 250. A single Darcy flux vector is applied for inversion. Under each 

data density, 20 random simulations are performed. For each simulation, hydraulic heads are 

randomly sampled from the entire domain based on the data density. Hydraulic conductivity is 

then estimated utilizing the randomly sampled hydraulic heads and the fixed Darcy flux vector. 

The objective of this global uncertainty analysis is to find out the sensitivity of the parameter 

estimation accuracy to observation data density of this physics-based inverse method, and 

potentially find out the optimum observation data density. 

The results of this global uncertainty analysis are summarized in Figure 4.21. The horizontal axis 

represents the number of observed hydraulic heads ranging from 10 to 250. The vertical axis on 

the left represents the inverted hydraulic conductivity values in the unit of ft/day. The inverted 

conductivity ranges from 0.25 ft/day to 0.285 ft/day. The true hydraulic conductivity equals 

0.283 ft/day. The vertical axis on right represents the absolute values of parameter estimation 

errors ranging from 3% to 8%.  
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The stacked columns in this figure are the uncertainty analysis results. Under each observation 

data density, the lower boundary of the vertical error bar represents the smallest value of 

estimated hydraulic conductivity (corresponds to the vertical axis on the left), and the upper 

boundary of the vertical error bar represents the largest value of estimated hydraulic conductivity. 

The lower boundary of the red column represents the 25 percentile of the range of estimated 

hydraulic conductivity values at that data density; the boundary between the red column and the 

green column represents the 50 percentile of the range; and the upper boundary of the green 

column represents the 75 percentile of the range. At the data density of 10, the estimated 

hydraulic conductivity ranges from about 0.255 ft/day to more than 0.27 ft/day. Then as the data 

density increases, the range of estimated hydraulic conductivity values decreases. When the 

range decreases, the uncertainty of parameter estimation also decreases. When the hydraulic 

heads density reaches 250, the variation of estimated hydraulic conductivity values are very 

small, ranging between 0.27 ft/day and 0.275 ft/day. As a result, observation data density is 

critical for parameter estimation. The uncertainty of parameter estimation decreases when the 

observation data density increases. 

Within each stacked column, the purple cross symbol represents the average value of estimated 

hydraulic conductivities under that data density. By connecting all cross symbols, the purple 

trend is achieved.  It shows how the average parameter estimation values change with 

observation data density. When data density is 10, the average value of estimated hydraulic 

conductivities is about 0.26 ft/day. Then as the data density increases, the average value 

increases and approaches the true hydraulic conductivity value of 0.283 ft/day. When data 

density reaches 250, the average value is about 0.275 ft/day. This is very close to the true 
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parameter value. This trend shows that when observation data density increases, the expected 

value of the estimated parameter will approach the true parameter value. 

The blue star symbol represents the absolute values of parameter estimation errors (calculated 

using the average parameter estimation value under each data density). The expected error is 

about 8% (reading from the vertical axis on the right) when only 10 hydraulic heads are sampled. 

Then as the data density increases, the expected error decreases significantly. When 250 

hydraulic heads are utilized for inversion, the expected parameter estimation error is less than 

3.5%. This trend shows that a lower parameter estimation error is guaranteed when more 

observation data is sampled. 

Results of this global uncertainty analysis suggest that Kf estimation error is significantly 

influenced by the density of observed hydraulic heads (Fig 4.21). The inversion accuracy is very 

sensitive to observation data density. With increasing heads, Kf estimation accuracy increases 

and the estimation uncertainty decreases.  
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CHAPTER 5   CONCLUSION 

The physics-based inverse method is tested for parameter and boundary condition estimations of 

steady state groundwater flow in fractured confined aquifers. The most significant advantage of 

this method lies in its computational efficiency as no repeated forward simulations are required. 

The noisy observation data (hydraulic heads containing measurement error) are directly 

incorporated into the solution matrix, which is solved in a one-step procedure to obtain both 

formation parameters and state variables. 

This method is not sensitive to the ratio between fracture conductivity (Kf) and matrix 

conductivity (Km) as hydraulic conductivities have been successfully estimated when this ratio 

ranges from 10 to 106. This method is also tested to be robust to data errors. Parameter 

estimations have achieved reasonable results when observation data (hydraulic heads) applied for 

inversion contain error up to 10%.  

Boundary conditions have been recovered for problems that either include high conductivity 

fractures or low conductivity flow barriers. The recovered boundary conditions are compared to 

the true boundary conditions (boundary conditions defined in true forward models), and the 

misfits are found to be negligible. In addition, streamlines are also obtained using estimated 

hydraulic conductivities and recovered boundary conditions. The recovered streamlines capture 

the major characters of the true streamlines, though some misfits exist adjacent to the high 

conductivity (fractures) or low conductivity (flow barriers) zones. 
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Furthermore, the scientific importance of estimating boundary conditions is verified by PEST. 

Most of the traditional inverse methods require the presumption of boundary conditions. The 

assumed boundary conditions are essentially false observation data on each grid cell along the 

entire boundary. As a result, the inversion process is actually conducted with both true 

observation data and a significant amount of false observation data. Numerical simulations have 

been performed by PEST when the presumed boundary conditions contain either 5% or 10% 

error. The results suggest that the inversion will only converge to the true parameter values when 

the initial guesses are close enough to the true values. Other than that, the parameter estimation 

results are not satisfying. 

Upscaled effective hydraulic conductivities that can represent flow in fractured aquifers are also 

estimated. Effective conductivities of two different models are estimated by inversion and then 

compared to theoretically calculated, effective conductivities. For both models, the estimated 

effective conductivities on both directions are very close to the theoretical values. As a result, 

this physics-based method is applicable to estimate effective hydraulic conductivities for 

fractured aquifers. 

For three different models, the contour maps of inverted state variables (hydraulic head, 

horizontal Darcy flux, and vertical Darcy flux) are plotted and compared to the contours of 

corresponding true state variables. The inverted flux vectors are also compared to the true flux 

vectors. The contour maps of inverted values recover the most significant characteristics of the 

true contours with the major discrepancies located around the high conductivity fracture or low 

conductivity flow barrier zone. The main difference between the true and inverted flux vector 
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fields also lies in these areas. The inverted contours fit the true contours much better when the 

true streamlines in the forward model is more linear. 

Finally, an uncertainty analysis is also conducted by increasing the number of observation 

hydraulic heads, while using a single Darcy flux vector for inversion. Results of this uncertainty 

analysis suggest that the parameter estimation error is significantly influenced by the density of 

observation data. With increasing heads (from 10 to 250) parameter estimation accuracy 

increases while its uncertainty decreases. As a result, the inversion accuracy is determined to be 

sensitive to data density. 
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APPENDIX 

Reynolds Number (Re) 

There are two basic types of fluid flow. When all molecules within the fluid move parallel to 

each other in the direction of flow, the flow is named laminar flow. If molecules in the fluid 

move in all directions but with a net movement in the flow direction, then the flow is named 

turbulent flow. There are also transition state flows between laminar flow and turbulent flow. In 

heterogeneous fluids, almost no mixing happens in laminar flows. On the other hand, 

heterogeneous fluids are thoroughly mixed when the flow state is turbulent flow. 

For this thesis, Darcy’s law is applied to calculate groundwater fluxes. There are two main issues 

associated with the usage of Darcy’s law. The continuum assumption assumes that the 

microscopic pore-scale velocity variation can be represented by the volume-averaged 

macroscopic properties, such as flow rate, Darcy flux, and average linear velocity. In other words, 

microscopic pore-scale velocity variations are overlooked. The second issue is that Darcy’s law 

applies only to laminar flows. It can be inappropriate to use Darcy’s law if the groundwater 

velocity is large and the flow state is turbulent, which could be the case when groundwater flows 

through rocks with large pores.  

In fluid mechanics, one of the most important parameters that characterize flows is the Reynolds 

number (Re). This parameter is named after Osborne Reynolds who documented the distinction 

between laminar and turbulent motion in the late 19th century. The Reynolds number is defined 

as the ratio of inertial forces to viscous forces and consequently quantifies the relative 

importance of these two types of forces for any given flow condition. The Reynolds number is a 
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dimensionless quantity that indicates the extent to which a flow is laminar or turbulent. The 

Reynolds number is defined by the following equation: 

E* = F)G
H  

ρ: water density, M/L3; constant, 1000 kg/m3 at 4 °C; 

q: magnitude of Darcy flux, L/T; 

d: mean pore size, L; 

µ: water viscosity, M/LT; constant, 0.001002 kg/(ms) at 20 °C; 

Fluid flow is found to be laminar when the Reynolds number is low (<10) and turbulent when 

the Reynolds number is high (>2000). There is a transition from laminar flow to turbulent flow 

in the middle. With increased velocity, the Reynolds number will increase correspondingly, and 

the flow is more likely to be turbulent. But it is widely accepted that the flow state is laminar 

when the Reynolds number is no larger than 10. 

In this thesis, as Darcy’s law will be applied to calculate fluxes, the Reynolds number of each 

model is carefully investigated. As discussed before and the definition of the Reynolds number 

indicates, high values of Darcy fluxes may lead to a Reynolds number that is higher than 10 and 

Darcy’s law is no longer applicable. The hydraulic head gradient of each model in this thesis is 

set to be not too large over the problem domain in order to guarantee that the Reynolds number 

of each model is smaller than 10, as thus Darcy’s law stands.  
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