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Abstract

Department of Geology and Geophysics

Master of Science

by Guang Yang

Geologic Carbon Sequestration (GCS) is a proposed means to reduce atmospheric car-

bon dioxide (CO2). In Wyoming, GCS is proposed for the Nugget Sandstone, an eolian

sandstone exhibiting permeability heterogeneity. Using subsets of static site character-

ization data, this study builds a suite of increasingly complex geologic model families

for the Nugget Sandstone in the Wyoming Overthrust Belt, which is an inclined deep

saline aquifer. These models include: a homogeneous model (FAM1), a stationary geo-

statistical facies model with constant petrophyscial properties in each facies (FAM2a), a

stationary geostatistical petrophysical model (FAM2b), a stationary facies model with

sub-facies petrophysical variability (FAM3), and a non-stationary facies model (with

sub-facies variability) conditioned to soft data (FAM4). These families, representing

increasingly sophisticated conceptual models built with increasing amounts of site data,

were simulated with the same CO2 injection test (50-year duration at ∼1/3 Mt per

year), followed by a 2000-year monitoring phase.

Based on the Design of Experiment (DOE), an efficient sensitivity analysis (SA) is con-

ducted for all model families, systematically varying uncertain input parameters, while

assuming identical production scenario (i.e., well configuration, rate, BHP constraint)

and boundary condition (i.e., model is part of a larger semi-infinite system where the

injected gas can flow out). Results are compared among the families at different time

scales to identify parameters that have first order impact on select simulation outcomes.

For predicting CO2 storage ratio (SR) and brine leakage, at both time scales (i.e., end of

injection and end of monitoring), more geologic factors are revealed to be important as

model complexity is increased, while the importance of engineering factors is simultane-

ously diminished. In predicting each of the trapped and dissolved gases, when model is

of greater complexity, more geologic factors are identified as important with increasing

time. This effect, however, cannot be revealed by simpler models.

Based on results of the SA, a response surface (RS) analysis is conducted next to generate

prediction envelopes of the outcomes which are further compared among the model

families. Results suggest a large uncertainty range in the SR given the uncertainties

of the parameter and modeling choices. At the end of injection, SR ranges from 0.18

to 0.38; at the end of monitoring, SR ranges from 0.71 to 0.98. In predicting the SR,
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during the entire simulation time, uncertainty ranges of FAM2b, FAM3, and FAM4

are larger than those of FAM1 and FAM2a, since the former models incorporate more

geological complexities. The uncertainty range also changes with time and with the

model families. By the end of injection, prediction envelops of all families are more or

less similar. Over this shorter time scale, where heterogeneities near the injection site are

not significantly different among the different model representations, simpler models can

capture the uncertainty in the predicted SR. During the monitoring phase, prediction

envelope of each family deviates gradually from one another, reflecting the different

(evolving) large scale heterogeneity experienced by each family as plume migrates and

grows continuously. Compared to FAM4 (i.e., the most sophisticated model), all other

families estimate higher mean SRs. The lesser the amount of site data are incorporated

(i.e., lesser geological complexities), the greater the estimated mean SR. In terms of

magnitude and range of the uncertainty, prediction envelop of FAM3 is the closest to

that of FAM4, while FAM2b’s uncertainty range is the largest and FAM1 and FAM2a’s

ranges are small.

Finally, end-member gas plume footprint for each family is established from results of the

RS designs (i.e., corresponding to SR minimum, median, and maximum). For FAM1

and FAM2a, at each time scale inspected, the end-member gas plume footprints are

not as drastically different as in FAM2b, 3, and 4, since their SR uncertainty range is

comparatively small. However, for families of greater geological complexity (i.e., FAM2b,

FAM3, and FAM4), the differences are much more significant: gas plume of minimum

SR sits around the wellbore and doesn’t migrate far, while gas plume of maximum SR

migrates a great distance from the wellbore.

To summarize, geologic factors and associated conceptual model uncertainty can domi-

nate the uncertainty in predicting SR, brine leakage, and plume footprint. At the study

site, better characterization of geologic data such as porosity-permeability transform

and facies correlation structure, can lead to significantly reduced uncertainty in predic-

tions. Given the current uncertainty in parameters and modeling choices, CO2 plume

predicted by the majority of the simulation runs is either trapped near the injection

site (e.g., due to low formation permeability and its heterogeneity) or is gravity-stable

under conditions of higher permeability and lower temperature gradient, suggesting a

low leakage risk. The inclined Nugget Sandstone at the study site appears to be a viable

candidate for safe GCS in this region.
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Chapter 1

Introduction

Carbon dioxide (CO2) is believed to be the main cause of global climate change. Due

to human activities, the level of CO2 in the Earth’s atmosphere is rising with severe

implications for the environment. The International Panel on Climate Change (IPCC)

predicts that the CO2 concentration in the atmosphere may reach 570 ppmv by the year

2100, resulting in a rise of mean global temperature of around 3.42 ◦F (1.9 ◦C) and an

increase in mean sea level of 38m [3].

To reduce the amount of CO2 entering the atmosphere, a variety of actions have to be

taken. Geological carbon sequestration (GCS) into deep saline aquifers is considered

a promising option to mitigate global climate change [3]. Wyoming produces approxi-

mately 40% of the nation’s coal and in 2000, coal-fired power plants in the state emitted

a total of 51 million tons of CO2 into the atmosphere. The emission rate is projected

to increase with new energy demand [4], thus these power plants are chief targets for

conversion to allow the capture of CO2 and subsequent sequestration underground. To

achieve large scale sequestration, deep saline aquifers with large storage capacity are

needed. As part of a larger study investigating suitability of various geologic formations

for GCS in Wyoming [5], this study investigates the Nugget Sandstone in the Over-

thrust Belt, which is a deep saline aquifer with a large storage potential (Figure 1.1).

The study site is situated close to the 30 MW Green River Power Plant and the 2.1 GW

Jim Bridger Power Plant.

In evaluating a GCS storage site, reservoir simulation is commonly performed using

a geologic site model which describes subsurface structure, facies, and heterogeneity

[3]. However, unlike petroleum reservoir modeling, GCS is a “cost center”. To resolve

detailed subsurface heterogeneity, expensive characterization effort is required. The

greater the detail, the higher the cost. For the type, amount, and accessibility of data at

a proposed storage site, different geologic models can be built, ranging from simple to

1
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Figure 1.2: Cross section of A-A’ showing the inclined feature of Nugget Sandstone
modeled. A schematic section is also shown below the scaled cross section. Note that
this schematic section is not drawn in true scale (the scale displayed above A-A’ cross
section doesn’t apply to the lower diagram) and spans a larger regional area. In both
figures, model extent is indicated by the dashed line. A generalized stratigraphic column

is included.
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complex. For example, petrophysical properties can be alternatively modeled assuming

homogeneity or heterogeneity, the later requiring advanced modeling techniques sup-

ported by additional detailed data. Although such data can be obtained from drilling

and logging the aquifer or high-resolution geophysical surveys, extensive borehole sam-

pling or high-resolution surveys are not realistic for large aquifers designated for com-

mercial CO2 storage due to the significant cost constraint characterizing such data-poor

settings. Thus, an important issue in GCS site assessment studies is to determine the

right types of data to collect, and, based on these data, the right type of geologic model

to construct, leading to a cost-effective strategy in data collection. An appropriate geo-

logic model, as input to reservoir simulation, will ideally lead to adequate or sufficiently

accurate predictions of the desired GCS performance measures, while models are not

overly detailed and thus cost-prohibitive to construct.

In evaluating a GCS site, in addition to the cost issue, storage security in terms of leakage

risk of the injected CO2 back to the surface is an important concern [3]. At the typical

depths considered for GCS (1∼3 km), CO2 is a supercritical fluid (referred to as “gas”

herein) with a lower density than that of formation brine, thus its migration is driven by

buoyancy, where the injected gas rises and flows toward the caprock. However, in large-

scale storage where footprint of the injected gas is significant, finding perfect caprock at

regional scales is problematic, as a variety of leakage pathways can exist in the caprock,

including faults and fractures, lateral facies changes, and abandoned and possibly leaky

wellbores [6]. To reduce the leakage risk, deeper injection where CO2 is gravity-stable

provides an attractive alternative: when the aquifer is sufficiently deep, CO2 injected

under high pressure may have a density exceeding that of formation brine [7], thus the

injected gas can sink to the bottom of the aquifer instead of rising upwards [8]. Deeper

injection also gives rise to a higher storage capacity, as more CO2 mass can be stored per

unit pore volume [9]. To date, deeper injection has not been investigated extensively in

GCS field pilots or numerical simulation studies [10], though limited evidence suggests its

viability. For example, in the Moxa Arch east of the Overthrust Belt, acid gas disposal

into the Madison Limestone has been ongoing since 2005 without reporting leakage. At

the Shute Creek gas plant (acid gas injection facility), Madison Limestone lies at a depth

of ∼5 km [5], greatly exceeding the depths typically considered for GCS.

This study aims to understand geologic model complexity and the associated data needs

for simulating GCS in an inclined Nugget Sandstone formation in the Overthrust Belt.

Here, the formation is a deep regional aquifer buried at depths up to 20,000 ft (6 km)

(Figure 1.2). Although multiple Nugget Sandstone horizons occur in the region, this

particular one is of interest for this study to investigate CO2 storage and potential leak-

age from an inclined formation: when the injection depth is moderate, CO2 density
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could be lower than that of the formation brine and an inclined formation will accel-

erate up-dip migration, thus increasing leakage risk [11]; when the injection depth is

higher, gravity-stable injection is possible due to increased CO2 density (downdip mi-

gration is now possible, contributing to greater storage security). In addition, besides

depth, other factors can influence CO2 density, thus the direction of migration. For

example, increasing reservoir temperature may reduce CO2 density, offsetting the effect

of increased depth. Low-permeability structures near the injector may create barriers to

flow, regardless of its migration direction. These factors are uncertain at the proposed

site and need to be analyzed systematically.

Within an uncertainty analysis framework, this study analyzes both model complexity in

predicting GCS performance measures and the competing processes and effects that can

influence CO2 migration and leakage. For the Nugget Sandstone, the potential of gravity-

stable CO2 migration within it will be evaluated. The gravity-stable CO2 migration here

is defined as CO2 migrating downward instead of upward, which would minimize leakage

risk. The inclined formation may serve as an analog site for other deep saline aquifers

in basins where connections to the surface or shallow subsurface exist. Here, though

a site-specific study is presented, the uncertainty analysis methodology is applicable to

analyzing other depositional environments. Though GCS is the application of interest,

the methodology can be applied to oil/gas operations to facilitate the evaluation of

important uncertainty factors influencing key economic metrics. In the next chapter,

a review of the uncertainty analysis is introduced, before the study methodology is

presented. Results are summarized leading to our conclusion and future research.

Introduction



Chapter 2

A Review of Uncertainty Analysis

In building and simulating a GCS model, a variety of uncertainty factors exist, including

geological factors and conceptual modeling choices that influence reservoir heterogene-

ity, and engineering/environmental factors that influence gas trapping and migration.

Numerous simulation studies have been conducted to model CO2 flow in a variety of set-

tings. The most frequent assumption made at various scales is aquifer homogeneity, as

constrained by the quality and accessibility of site-specific data. However, permeability

heterogeneity is the rule rather than the exception in natural aquifers [12], which exerts

a significant impact on the subsurface behavior of the injected CO2 [13]. Considering

that the effective or equivalent parameters are routinely used to model field injections,

understanding of the impact of effective parameterization on model predictions is needed

[14]. Detailed characterization of heterogeneity, if available, is often limited to those of

site-specific borehole data, which can be too sparse to resolve the main heterogeneity

features. Facies modeling can be used to capture reservoir-scale geological features that

are relevant to GCS. However, different geostastical methods can create different degrees

of heterogeneity and connectivity (i.e. well-connected facies versus poorly connected fa-

cies).

Engineering and environmental factors can also influence CO2 flow and its storage/trap-

ping behavior in the formation. For example, there appear to be increasing concerns

about the effect of relative permeability hysteresis on CO2 residual trapping in the gas

phase [15] [16] [17] [11]. Based on this effect, different injection strategies have been

proposed to enhance residual trapping [18] [19]. A storage method that does not rely

on impermeable cap rock to contain the CO2 has been proposed by injecting CO2 and

brine into an aquifer together, followed by brine injection alone [20]. Due to CO2 rel-

ative permeability hysteresis, 80 to 95% of the CO2 can be immobilized in the form of

6
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pore-scale droplets in the porous rock. While research is ongoing to determine the ap-

propriate relative permeability model within the continuum framework, CO2 modeling

has invoked both hysteric and non-hysteric formulations. Furthermore, in sedimentary

basins, aquifers considered suitable for GCS exist at different depths, exhibiting a wide

range of temperature and pressure conditions. By exerting a significant effect on the

injection behavior (i.e., pressure, phase separation), the in-situ CO2 fluid properties

(density, viscosity) need to be better understood [21]. Also, differences in formation

brine salinity can affect CO2 solubility: the greater the salinity, the lesser the dissolved

CO2 in brine. In addition, injection response also differs with boundary condition(BC):

reservoir pressure will build up in closed and semi-closed systems, limiting the amount

of CO2 that can be injected [22].

Difference in simulation outcomes can be caused by the various settings of the fluid

flow simulators. Industrial simulation software offers the industry’s most complete and

robust set of numerical solutions for fast and accurate prediction of dynamic behavior for

all types of reservoirs and degrees of complexity including structure, geology, fluids, and

development schemes. Other simulators have been developed, or are under development,

that specifically deal with CO2 storage. Stauffer et al. (2008) conducted CO2 injection

simulations on a 3D hydrostratigraphic model of the Rock Springs Uplift using FHEM

(Los Alamos National Lab) [4]. Yamamoto et al. (2009) modeled industrial-scale CO2

injection in Tokyo Bay using a parallel multiphase flow simulator TOUGH2-MP/ECO2N

(Lawrence Berkeley National Lab) [23].

All above sources of uncertainties contribute to uncertainty in predicting CO2 storage

in geologic formations. Given the limited budget and often extremely high cost of

exploring these uncertainties, an assessment of the most influential uncertainty factors is

critical. Such factors once identified, would be those that need to be better characterized,

reducing their uncertainties and thus the uncertainty in prediction. However, in building

a geologic site model, as more complexity is incorporated, more geologic uncertainty

factors come into play. As demonstrated in this study, the list of “heavy hitters” (i.e.,

factors whose variations have significant impact on a prediction outcome) can change

with the modeling choice. This issue is not limited to GCS, but reflects a key problem

in subsurface uncertainty analysis. In this research, a systematic effort is made to probe

into this issue, with the aim of obtaining insights to facilitate the development of cost-

effective GCS models that are accurate in assessing CO2 storage and leakage. In the

following discussion, a review of uncertainty analysis is presented.

In subsurface modeling, uncertainty analysis is usually initiated with a parameter sensi-

tivity analysis (SA). Traditionally, SA is conducted one parameter at a time to evaluate

the sensitivity of model outcomes in response to parameter variation [24]. For each
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parameter varied, 3 values are typically defined (e.g., P10, P50, P90), reflecting a prior

assessment of parameter uncertainty. A base-case simulation run is defined with all

parameters assuming P50 levels. In additional runs, a parameter is set at its P10 level

and then its P90 level, while all other parameters are kept at their P50 levels. (Given

N parameters varied, 2N+1 simulations are needed.) Tornado diagrams are generated

to rank the effect of each parameter on a given outcome, although this ranking can be

biased, since the runs do not explore the full parameter space, e.g., parameter combi-

nations on parameter space boundary are not evaluated. The SA also assumes that all

parameters varied are independent from one another, although in reality parameters are

often correlated. To overcome these issues, alternative techniques are developed based

on Monte Carlo (MC) sampling. For example, uncertainty of an outcome is estimated

by assuming probability density functions (pdfs) for all uncertain input parameters. In

MC sampling, values of the uncertain parameters are randomly drawn from these pdfs.

Based on the sampling, a reservoir simulation is conducted. Distribution of the outcome

is evaluated by repeated MC calls and thus repeated simulations. However, this method,

though conceptually straightforward, is computationally intensive as often hundreds, if

not thousands, of runs are needed to adequately sample the parameter space. This

becomes an issue with large models requiring long simulation times. A practical way

to overcome this is to develop a computationally efficient proxy model for the reservoir

simulator.

Design of Experiment (DoE) methodology is a promising new tool in reservoir uncer-

tainty analysis. DoE aims to fully explore the parameter space, is computationally

efficient, and does not assume parameter independence. Its results can be used to cre-

ate a Response Surface (RS) model, an analytic function that can be quickly evaluated

for any parameter combinations. After suitable verification, the RS model becomes a

proxy model for reservoir simulation. An MC analysis can then be conducted with

the RS model to assess uncertainty in the model outcomes. This analysis is orders of

magnitude faster than that based on reservoir simulations. Due to its efficiency and flex-

ibility, DoE has been widely applied in analyzing static (i.e., pore volume) and dynamic

reservoir properties [25] [26]. For example, studies have focused on identifying geologic

factors that influence reservoir heterogeneity and flow behaviors, ignoring uncertainty

in engineering parameters [27] [28] [29] [30] [31] [32] [33]. Other studies focus on the

importance of engineering factors, while assuming a fixed geologic model [34] [35] [36]

[37] [38]. Some studies look at both sources of uncertainty [39] [40], while others have

incorporated both into reservoir history matching and optimization [41] [42] [43] [44].

In analyzing CO2 modeling (mostly in EOR applications), DoE and RS have also been

implemented, but the majority of the studies focuses on engineering factors that assume

a fixed geologic model [45] [46] [47] [48] [49] [50]. In a few cases, permeability variance
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or anisotropy ratio is varied, although reservoir heterogeneity pattern is fixed [51] [52].

It is worth noting that the majority of sensitivity analysis in GCS modeling relies on

the traditional SA approach, varying one or two parameters at a time [53] [54].

To date, few studies have investigated the full range of geologic, engineering, and en-

vironmental uncertainty in GCS modeling. For an inclined deep aquifer, this study

conducts an uncertainty analysis of GCS modeling according to the DoE methodology.

Using subsets of static site characterization data, multiple families of geologic models

are built at increasing complexities. Important uncertainty parameters are identified

for each family, before an RS analysis is conducted to assess uncertainty in predicting

CO2 storage. Results are analyzed and compared among the families, yielding insights

into the effect of model complexity on parameter importance and prediction uncertainty.

Since CO2 flow is dominated by viscous forces during injection and gravity force dur-

ing monitoring, the list of the most influential factors with regard to a selected set of

prediction outcomes may change over time, as well as the uncertainty in predictions

themselves. Thus, all uncertainty measures are evaluated at multiple time scales. In

the following section, we provide an overview of the DoE method, before the static and

dynamic modeling approaches are introduced.

A Review of Uncertainty Analysis



Chapter 3

Methodology

The uncertainty analysis is outlined below, consisting of three steps (parameters varied

in the SA are also referred to as factors):

(1) Using subsets of site characterization data, generate 4 families of geologic models

with increasing complexity, from a deterministic homogeneous model to a hierarchical

stochastic model conditioned to hard and soft data;

(2) For each family, conduct a SA with a screening design to identify key uncertainty

factors that impact select simulation outcomes, as: (a) important factors that need to

be better characterized; (b) input to an RS uncertainty analysis;

(3) For each family, after pooling together all the important factors identified over differ-

ent time scales during step (2), conduct an RS analysis to assess prediction uncertainty

of select outcomes. This analysis consists of: (a) generating an RS design based on the

important factors; (b) verifying of the RS model; (c) creating of prediction envelope of

the outcomes with the verified RS model; (d) comparing of uncertainty in the outcomes

among the families.

In steps (2) & (3), the outcomes are: brine leakage through the formation top and the

side boundary near the ground surface, residual CO2, dissolved CO2, and CO2 mass

storage ratio: SR = (dissolved + residual CO2)/(total injected CO2). Residual CO2

is gas-phase CO2 trapped in the formation pore space. In the deeply buried Nugget

Sandstone, velocity of the groundwater is expected to be low, thus most of the dissolved

CO2 is considered immobile. The dissolved and residual CO2 are immobilized, while the

10
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mobile free-phase CO2 continues its migration, driven by the density contrast with that

of the formation brine. All outcomes are examined at 7 different times, including end of

injection (EOI) and end of monitoring (EOM).

3.1 DOE Methodology

The geologic model families are created according to specifications outlined in the DoE.

For each family, a SA is conducted by simultaneously varying a subset of the uncertain

input parameters according to a design table [55]. The parameters varied can be con-

tinuous or categorical, the later often reflecting modeling choices. Results of DoE are

compiled and examined with Multivariate Analysis of Variance (MANOVA) to identify

parameters that have statistically significant effects on a simulation outcome. Though

a variety of designs are available (the same design can be used for analyzing multiple

outcomes), a two-level Plackett-Burman (PB) design is used here, which is most effec-

tive when parameters varied are orthogonal, i.e., uncorrelated. For all families, a center

run is added to the PB design, i.e., all parameters assume median values. This center

run is used to evaluate the curvature-level of parameter interaction and non-linearity.

Compared to other designs, PB is parsimonious in selecting a parameter subset for sim-

ulations, providing large savings in program execution time. However, the PB design

can only identify main effects as well as confounding interactions with the main effects.

It is the most useful as a screening tool to identify significant uncertainty factors with

minimum simulation runs. In reservoir analysis, PB design alone is used in scoping

studies to guide early data collection [28] [32] [33], while PB combined with RS designs

is effective in analyzing a variety of uncertainty measures [40] [31] [35].

The RS analysis consists of fitting an analytical function to a simulation outcome [56].

This function is generated by running reservoir simulations according to an RS design

using factors previously identified by the screening (PB) design as important to pre-

dicting the outcome. In the RS design, three values for each factor are necessary, i.e.,

-1/0/+1, which can correspond to key probabilities of a factor, though it is not a require-

ment. Based on the simulated outcomes, an RS model, here a quadratic polynomial, is

fitted using the least square method. Though other fitting methods exist (e.g., kriging,

splines, neural net), the quadratic polynomial is found accurate and robust in analyzing

reservoir models [39] [26] [35]. The RS model is first verified at points in the parameter

space that do not concur with the RS design. In this study, these points are selected at

the PB design points, which lie on the boundary of the parameter space. According to

[26], such extreme test runs can exaggerate the RS errors, though this decision can lead

to significant savings in computation. After verification, the RS model is considered a
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proxy for reservoir simulation, i.e., a predictive model of the relationship between the

important input factors and simulation outcomes (responses). MC sampling is then run

on the RS by randomly drawing the factors according to their respective pdfs, leading

to a pdf of the outcome.

It’s worth pointing out that a variety of RS designs are available, e.g., Space Filling,

fractional factorial, Latin Hypercube, D-optimal, Central-Composite, although a “best”

design is often problem dependent. Thus, researchers rely on verification to test the

robustness of the chosen design in replicating simulated values at non-design points. In

this study, Central-Composite designs are used. Results are verified at the PB design

points. In the MC analysis, to assign pdf to each uncertain input factor (including

continuous and categorical variables), a Gaussian distribution is assumed for most factors

(i.e., the +1/-1 range corresponds to ∼ 99% probability), since information on exact pdf

shapes is lacking. An uniform distribution for relative permeability model is assigned,

thus each end member function is assumed to exist in equal probability. The DoE and

RS analysis is performed with JMP 9.0, a package developed by Statistical Analysis

Software, Inc.

In the DoE, input parameters for CO2 simulation are either fixed (those that vary little

in a typical GSC site) or variable (the so-called “factors”). The later group includes ge-

ologic factors (GF) and engineering/environmental factors (EEF). GF are those whose

variations control aquifer heterogeneity; for each model family, the choice of GF depends

on its level of complexity (discussed later). EEFs for all families include: relative per-

meability model (RPM), residual gas saturation (RGS), reservoir temperature gradient

(TG), ratio of vertical to lateral intrinsic permeability (VHR), and brine salinity (SAL)

(Figure 3.11). These factors and their uncertainties are largely independent of aquifer

heterogeneity and the geologic factors contributing to it. All EEF are included in the PB

designs for all families. In the following sections, these factors and their uncertainties

will be discussed in detail.

3.2 Data Collection and Interpretations

3.2.1 Geological Cross Section and Isopach Data

To construct a regional-scale geologic model, geological cross sections [57] [58] and

three isopach maps of the Twin Creek Limestone, Nugget Sandstone, and Ankareh

Formation[59] [60] [61] are collected. These data, along with formation markers from

wells drilled at the study site (Figure 1.1), are used to interpret a regional Nugget

Sandstone structure including formation contacts.
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3.2.2 Geophysical Well Logs

Fourteen wells are used during the geologic modeling process. Among them, 8 wells

(API:2320053, 2320230, 2320231, 2320402, 2320461, 2320647, 2321634, 2321669) are lo-

cated at the model site. Unfortunately, core measurements are not available for these

wells. Therefore, 6 wells (3720422, 4120147, 4120148, 4120178, 4120643, 4120656) with

abundant core measurement data from neighboring regions are incorporated into our

database to calibrate the calculated porosity from wireline log signals to the core mea-

sured porosity (these data are referred to as ”well log porosity” and ”core porosity”

hereafter, respectively). The underlying rationale is that core porosity is treated as

more accurate, although detailed petrographical studies are needed to clarify the dis-

crepancy between core and log porosities [62]. However, image logs (e.g., Formation

MicroImager) and detailed core description are not available at the study site. The core

porosities are also used for developing facies coding and permeability(k)-porosity(ϕ)

semilog transforms. Five out of these 6 wells are located at the production fields to the

west of the Absaroka Thrust fault (Figure 1.1). Although the Nugget Sandstone in that

area is a prolific gas and condensate producer [63], in our study region, it is a deep,

inclined saline aquifer with limited and frequently incomplete data.

At the study site and nearby regions, each well on average has 4∼5 raster geophysi-

cal well logs (e.g., Density, Gamma Ray, Sonic, Neutron). All of these logs have been

digitized and used for petrophysical calculation and facies coding with Interactive Petro-

physics 3.6. For the 6 wells with both well logs and core measurements, data from both

sources are plotted together. For quality assurance, porosity data are aligned together

for depth shift and checking correlation. One example of well plot (API: 4120147) is

shown in Figure 3.1. Formulaes used here for calculating the porosity from well log sig-

nals are : ΦD=(ρm-ρb)/(ρm-ρf ), ΦCal=(ΦD+ΦN )/2. ΦD is density log derived porosity,

ΦN is porosity from neutron porosity logs, ρm is matrix/grain density, ρb is bulk density

log, and ρf is fluid density. Next the calculated porosity values are plotted against the

core porosity measurements at the same depth (Figure 3.2). The fitted transform is

used to calibrate well log derived porosity of the 8 wells at the study site without core

measurements (Figure 1.1). Although the correlation between core measured porosity

and well log derived porosity is not very good, a single transform is adopted here to

simplify the study. For facies coding, fuzzy logic implemented within Interactive Petro-

physics could be used if detailed core descriptions are available [64] [65]. Since such data

are not available, facies coding is implemented using petrophysical properties cutoffs

(details will be discussed later in facies descriptions). Finally, the well log data were

also interpreted to obtain estimates, if available, of formation fluid type, saturation con-

tent, and temperature. Well log data (e.g., spontaneous potential and resistivity logs
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Table 3.1: List of Nugget Sandstone core data collected.

Township Range Field Well API

39N 113W Wildcat 3920018
39N 114W Game Hill 3920032
39N 117W Wildcat 3920028
27N 113W Hogsback 3505128
27N 114W Dry Piney 3520218
26N 95W Wildcat 3721098
24N 120W Wildcat 2320226
19N 119W Whitney Canyon-Carter Creek 2320224
18N 118W Wildcat 4120118
18N 118W Wildcat 4120236
17N 119W Wildcat 4120065
17N 119W Ryckman Creek 4120078
16N 119W Painter 4120362
16N 119W Painter 4120178
16N 119W Painter 4120148
15N 119W Painter 4120135
15N 119W Painter 4120112
15N 120W Painter 4120147
15N 120W Painter 4120360
15N 120W Painter 4120359
13N 121W Wildcat 4120640
13N 121W Anschutz Ranch East 4120656
13N 121W Anschutz Ranch East 4120643
13N 120W Bessie Bottom 4120477

) and well production records for the Nugget Sandstone indicate that at most of the

study site, in-situ formation fluid is predominantly NaCl-type brine [5]. For some wells,

temperature measurements also exist. These data were used to provide estimates of

average formation temperature and vertical temperature gradient, based on which an

initial temperature field was assigned to the CO2 simulation model.

3.2.3 Petrophysical Data

Limited core-based petrophysical data are available in the surrounding regions of the

study site [66], and some of those cores’ locations are shown in Figure 1.1. Well-log

calculated porosity and permeability were calibrated against core measurements at the

same well to obtain log-linear correlation functions. Fractures are seen in some cores [66]

[67]. A complete list of the core data collected from the neighboring regions is shown in

Table 3.1.
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Figure 3.1: Log plot of well 4120147. Phi: Φ; PhiD: ΦD; PhiN: ΦN ; ILD: deep
resistivity log; SP: spontaneous potential log. In this well, core porosity measurements
(Phi Core) have been shifted in depth to be consistent with the calculated well log
porosities (Phi Calculated), since depth information of core measurements can be in-

accurate because of the missing interval of core samples.
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and total porosity (well log calculated porosity).
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3.2.4 Engineering Data

Relative permeability is of significant interest when it comes to multiphase flow simu-

lation. As discussed in the previous review section, relative permeability of CO2 has a

remarkable effect on gas flow, mobility, and residual trapping in a CO2-brine system.

To simulate CO2 storage in the Nugget Sandstone, the gas-phase relative permeability,

its hysteresis function, and its endpoint saturations are selected from core flooding ex-

periments on sandstone cores [68] [2]. Capillary pressure function, measured on similar

cores, is also obtained [69].

3.2.5 Uncertainty in the Data

Various sources of uncertainty are commonly present during the geologic modeling and

flow simulation process. In this study, selected uncertainty factors are investigated, and

their uncertainty ranges varied in the DoE analysis are discussed in the following:

(1) From the core data analyzed in other studies [63] [70], the upper part of the Nugget

Sandstone represented in the cores studied is comprised of stacked dune and mostly

dry interdune deposits (good reservoir quality), while the lower part are mostly dry-to-

damp interdune deposits (poor reservoir quality). However, because of varied amounts

of erosion associated with the post-Jurassic unconformity, the more porous and higher

permeability stratigraphic interval is not necessarily always located at the top of the for-

mation. Therefore, this uncertainty is incorporated in building different geologic model

families.

(2) Previous studies and core measurement data of the Nugget Sandstone both indicate

the existence of fractures [66] [67]. However, the existence of fractures in situ cannot be

ascertained, since there are no core descriptions available. Image logs, e.g., Formation

MicroImager, would be needed to distinguish between diagenesis generated and drilling

induced fractures. In the Overthrust Belt, at the Anschutz Ranch East Field and the

Painter Field, the Nugget Sandstone is observed to have experienced significant struc-

tural diagenesis overprint. Here, core analyses suggest that primary Nugget Sandstone

ϕ and k (as controlled by depositional processes) have been modified by compaction,

cementation, dissolution, quartz overgrowths, molds, grain-coating, and the formation

of pore-bridging illite [71] [70] [72]. Both open and gouge-filled fractures are observed,

with widely varying strike orientations, whereas fracture dip is dominated by high angles

approaching vertical [71] [73]. Similar structural diagenesis overprints are observed in

the Frontier Sandstone in north-central Wyoming at 6.3 km depth [74]. However, in-

situ subsurface stress conditions at the study site may differ from those observed in the
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Figure 3.3: khmax and khmin from available Nugget Sandstone core measurements

neighboring regions. Fractures can become important to fluid flow when their density is

high, either forming an interconnected network as fluid barriers or pathways depending

on how connected and how open they are. Also, fracture-induced enhanced vertical per-

meability and reduced horizontal permeability can affect gas migration. Therefore, this

uncertainty is accounted for in building the geologic model, which is then propagated

into gas injection simulations. According to the core measurements, while the horizontal

directional permeability is mostly isotropic (Figure 3.3), the ratio of vertical to horizon-

tal permeability (kv/kh) exhibits a large range of variation (Figure 3.4), suggesting the

existence of both open and closed (or no) fractures. In the DoE uncertainty analysis, for

kv/kh, if facies difference is not taken into consideration, the +1 case is set to 2, while

the -1 case is set to 0.02. The +1 case could be explained by high-angle open fractures;

-1 case may correspond to matrix anisotropy, cores with sealed fractures [75], or other

mechanisms, e.g., cross bedding, cementation, deformation bands [76] [77]. End mem-

bers of kv/kh for different facies are introduced later in the facies descriptions section.
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Figure 3.4: kv and kh from available Nugget Sandstone core measurements

(3) Studies indicate that a porosity-depth trend commonly exists in formations that

extend over large depth intervals. Porosity generally decreases with increasing depth

of burial [1] [70] [78]. A possible reason for this could be the growth of orthochemical

quartz, which forms overgrowths around detrital quartz grains and fills the pore spaces

between them. Core measurements of the Nugget Sandstone in the neighboring regions

at different depths and the measurements of the equivalent Weber Sandstone are in-

tegrated to investigate a possible porosity-depth trend in-situ. After collecting all the

data, a possible porosity-depth trend is identified (Figure 3.5). However, due to subsur-

face complexity and variations in diagenetic effects, this trend is not strong compared

to those observed elsewhere.

(4) During formation structure modeling, in regions with sparse data control, formation

thickness interpolation was used. However, we did not examine this uncertainty source

in the later sensitivity analysis.
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Figure 3.5: Porosity distribution with depth, compiled from Nugget Sandstone core
measurements from the neighboring regions. A possible depth trend is fitted and used

for soft conditioning.
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(5) Paleocurrent studies suggest that the facies of Nugget Sandstone are often aligned

northeast, ranging from N20E to N70E [79]. At the Overthrust Belt, however, the in-situ

azimuth of the Nugget Sandstone facies is uncertain, which will be accounted for in the

sensitivity analysis by varying this angle from N5E to E5S.

(6) The lateral extent of various depositional facies of Nugget Sandstone is uncertain.

End members are defined based on those observed for the Navajo Sandstone, a Nugget

Sandstone equivalent in Utah [80]: The +1 case is set to 10,000 m (32,800 ft) while -1

case is set to 100 m (328 ft).

(7) kh can be populated from ϕ with a log-linear transform [32] [5]. However, data of

the Nugget Sandstone are quite scattered (Figure 3.6). To minimize bias in fitting a

single transform to averaged reservoir quality rocks, end member transforms are first

fitted to all scattered data (Figure 3.6; left). These transforms are used to populate

kh from Φ of the Nugget Sandstone, without distinguishing the rock type (i.e., good

versus poor reservoir quality rocks). However, the porosity-permeability relationship

can be different for different facies. Two major “rock type” populations of the Nugget

Sandstone were first proposed by Stan Kolodzie from porosity and water saturation

crossplots of log-derived data [63]. The first population (rock type 2) is a series of

low-angle stratifications associated with wet interdunes (corresponding to petrofacies

4) and low-relief sand sheets (corresponding to petrofacies 3) (Figure 3.6; right). The

second population (rock type 1) consists of dune grainfall (corresponding to petrofacies

1) and cross-bedded wind-ripple deposits not affected by water presence (corresponding

to petrofacies 2). Accordingly, two sets of end member transforms are defined from

the same scattered data (Figure 3.6, right). Details on categorizing 4 petrofacies are

described later in the facies description section.

(8) Since Nugget Sandstone relative permeability measurements are not available, three

different relative permeability models are chosen from [2] and are ranked by their water

saturation and relative permeability end points during the drainage period. The +1

end member is Cardium Sandstone, while the -1 end member is Berea Sandstone (Fig-

ure 3.7). In the Cardium Sandstone, CO2 can flow at nearly 3 times the speed as in the

Berea Sandstone, due to its high end-point relative permeability.

(9) End member temperature gradient is inferred from available temperature logs of

wells perforating the shallower Nugget Sandstone (Figure 3.8). Given the depth range

of the model (∼ 7,000 ft above sea-level to ∼ 12,000 ft below sea-level), the end members
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Figure 3.8: Temperature versus depth measurements from the temperature logs. Two
possible temperature-depth gradients are fitted.

generate either a cool or a warm formation, which will impact gas density, gravity effect,

and therefore gas migration.

(10) Total dissolved solids (TDS) in the Nugget Sandstone brine ranges from 10,000

to 115,000 ppm [5]. To investigate the impact of salinity on GCS, the -1 case of TDS

is set to 10,000 ppm, while +1 case of TDS is set to 100,000 ppm. Ideally, salinity

initialization in the model would be performed on a cell-by-cell basis, given the depth

range of our model. However, this is not an option in the simulator we used. There

are other simulation modules available, but they have limitations as well. Reasons of

choosing the current simulator will be discussed in section 3.4.

3.3 Static Reservoir Modeling

3.3.1 Nugget Sandstone Reservoir Description

The Jurassic eolian Nugget Sandstone in the Overthrust Belts of southwest Wyoming

and northeast Utah is a textually heterogeneous formation with anisotropic reservoir
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properties inherited primarily from the depositional environment. This extensive for-

mation was deposited primarily by eolian processes in a coastal to inland sand sea or

erg [81]. It extends from south-cental and southwestern Wyoming to southeastern Idaho

and northern Utah, increasing in thickness from east to west, from less than 100 ft to

over 2,000 ft (30∼600 m) [82]. The Nugget Sandstone are stratigraphically equivalent to

the Navajo Sandstone of Colorado, Utah, and Arizona, and to the Aztec Sandstone of

southern Nevada [82] [83]. Its original reservoir quality has been modified by diagenesis

and overprinted by tectonism [63]. Two different stratification types are usually iden-

tified, for this formation, each with characteristic porosity, permeability, permeability

directionality, and pore geometrical attributes. Dune deposits (good reservoir facies) pri-

marily consist of avalanche deposits (grainfall or grainflow) and wind-ripple cross-strata.

These high-permeability facies are commonly affected by local quartz and nodular car-

bonate cementation, chlorite precipitation, and minor framework and cement dissolution.

Low-permeability, gouge-filled micro-faults and deformation bands are the predominant

deformational overprint. Fractures are more likely to reduce horizontal permeability

and possibly redirect fluid flow through the dune facies [70]. Interdune, sand-sheet,

and other water-associated deposits (poor reservoir facies) are often characterized by

low-angle wind-ripple laminae and more irregular bedding. Water-associated Nugget

Sandstone stratification generally contains the finest grained depositional textures and

has the poorest reservoir properties. These non-dune facies contain intergranular micritic

carbonate and illite precipitates, which are most affected by compaction and pressure

solution phenomena. Open vertical fractures are somewhat more likely in this lower

permeability rock, providing local and intermittent effective permeability paths [71]. A

high degree of heterogeneity results from variations in grain size, sorting, mineralogy,

and thickness between cross stata. Porosity and permeability variations between facies

and their arrangement in stacked vertical sequences result in stratigraphic layering of

the reservior. In the Nugget Sandstone, there appears directional permeability trends

due to consistent Nugget Sandstone dune orientations, with the maximum permeability

parallel to dune slipfaces. Average porosity in this formation is approximately 12% and

permeability ranges from 0.1 to 1000 mD [5].

3.3.2 Nugget Sandstone Facies Characterization

In this study, dune and interdune were grouped into four depositional facies: Grainflow

(GF) , Cross-bedded Wind-ripple (CWR), Low-angle Wind-ripple laminae (LWR), and

Water-associated Deposits (WD). In the model building process, four petrofacies were

distinguished which correspond to these depositional facies types, as discussed below.

In this study, when petrofacies are explicitly modeled (i.e., FAM2b, FAM3, and FAM4),
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end-member kv/kh ratios will be developed separately, one set of end members for each

petrofacies.

Grainflow (GF) facies (Petrofacies 1):

Nugget grainflow deposits are either visually distinct and even-textured, or more vi-

sually indistinct and uneven in appearance [63]. The even-textured, distinct bedding

is interpreted to result from grainflow of non-cohesive dry sand. This type of stratifi-

cation has looser packing, and thus higher porosity and permeability than the uneven,

indistinct deposits. The porosity of distinct grainflow is normally higher than 15%. How-

ever, considering all of the Nugget grainflow strata present in the Thrust Belt producing

trend, porosity ranges from approximately 5% to 25% (average 12∼13%), and arithmetic

average horizontal permeability ranges from several mD to hundreds of mD. Effective

directional permeability ratios within amalgamated grainflow deposits approach 1.0, and

the texture is more homogeneous than the wind-ripple deposits. Therefore, the +1 case

of kv/kh ratio is set to 1 and -1 case is set to 0.2. In the Painter Field on the hanging

wall of the Absaroka Thrust fault, the grainflow facies is the most abundant subfacies,

comprising 45% of the Nugget Sandstone core examined and is most common in the

upper two-thirds of the Nugget Sandstone, the averaged porosity of which is 14.5% [70].

This value is used as a cutoff during the petrofacies coding process ”—” rocks with

porosity higher than 14.5% are categorized as Petrofacies 1.

Wind-ripple facies (Petrofacies 2 & 3):

Wind-ripple deposits appear texturally heterogeneous in the photomicrograph, with

porosity ≤ 12% and directional whole-core permeability ranging from several mD to tens

of mD in horizontal directions [63]. Meanwhile, vertical permeability is only hundredths

of mD. Due to their inversely graded structure, this significant directional disparity is

inherent in ripple-generated bedforms. Accordingly, wind-ripple facies is associated with

the lowest kv/kh ratio observed in our core data. The +1 case of kv/kh ratio is thus

set to be 0.2 and -1 case is set to 0.02. In the Thrust Belt producing trend, porosity

in the Nugget Sandstone wind-ripple strata ranges from about 3% to 12% (average 7

∼ 8%), and arithmetic average horizontal permeability is commonly ≤ 1mD (with a

range from hundredths to tens of mD) [63]. It appears as cross-strata (CWR) in dune

deposits and as low-angle laminae (LWR) in interdune/sandsheet deposits. Reservoir

quality of CWR is usually better than LWR. The 1mD permeability value is used as a

cutoff for differentiating CWR (Petrofacies 2, k ≥ 1mD) and LWR (Petrofacies 3, k <

1mD) during the petrofacies coding process.
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Petrofacies

Figure 3.9: Facies coded by petrophysical values cutoff (petrofacies at left) and by
neural networks (facies at right).

Water-associated Deposits (WD) (Petrofacies 4):

Water-associated Nugget Sandstone deposits generally have the poorest reservoir prop-

erties because of their finest grained depositional textures [70]. Porosity ranges from 2%

to 9% (average 5 ∼ 6%), and arithmetic average maximum kh is several hundredths of

an mD (ranging up to approximately 1 mD) [63]. The 5% porosity is used as a cutoff

for distinguishing the WD facies during the petrofacies coding process. WD facies type

has the highest kv/kh ratio because of bioturbation [63] [70], therefore the +1 case of

kv/kh ratio is set to 2 and -1 case is set to 0.2.

Petrofacies defined by the above petrophysical cutoffs are very close to the result of

automatic facies coding created using Neural Networks [5]. At well 2320230, results of

these two different coding schemes are compared side-by-side (Figure 3.9), with similar

outcomes in the grouping of the facies.

3.3.3 Family Models With Increasing Geologic Complexity

Optimal CO2 geologic sequestration modeling hinges on obtaining a detailed under-

standing of reservoir complexity and on consolidating that information into whatever

level of detail is appropriate for the scale of the problem being addressed. To build a

very complex, highly detailed geological model requires great effort and is very time

consuming.

In this study, based on subsets of the characterization data, a suite of increasingly com-

plex geologic model families are built, extending from the ground surface to the footwall
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Figure 3.10: Schematic diagram of the 4 geologic modeling families

of the Absaroka Thrust: a homogeneous model (FAM1), a stationary geostatistical facies

(FAM2a) and petrophysical (FAM2b) model, a stationary facies model with sub-facies

petrophysical variability (FAM3), and a non-stationary facies model (with sub-facies

variability) conditioned to both hard and soft data (FAM4) (Figure 3.10). These fam-

ilies, representing alternative conceptual models built with increasing data, share the

same external geometry, grid, CO2 injection design (e.g., well location, injection rate/-

duration, bottomhole pressure constraints), and boundary condition (BC). The families

vary only in how aquifer heterogeneity is represented, as discussed below. In FAM1,

only EEFs are varied due to the homogeneity assumption. Model building procedure for

FAM2, FAM3, and FAM4 is dictated by the PB design and the number of FF increases

in response to increasing model complexity (Figure 3.11).

3.3.4 Geologic Modeling Procedures

In this study, the most complex model (FAM4) is built first to determine the mean

porosity and permeability for the simpler models (i.e., FAM1 and FAM2a). In this

section, the model families are described in the order of decreasing model complexity.
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Figure 3.11: Factors varied in the PB design and their ranges of variation. Numbers
indicate family ID. Engineering/Environmental factors are shared by all model families.
Facies and ϕ correlation range and azimuth are of the horizontal direction. -1: minimum

values; +1: maximum values.

The complete geological modeling workflow for building a FAM4 model is presented; the

same procedure for building the other families models are not repeated.

3.3.4.1 FAM4 Models

To create the FAM4 models, these steps are followed: (1) creation of a structural frame-

work; (2) creation of an appropriate simulation grids; (3) upscaling high-resolution well

log Φ and facies data to the simulation grid; (4) geostatistical facies modeling (in the

simulation grid) conditioned to soft data (facies probability cube); (5) facies-specific Φ

and k modeling (Φ modeling is conditioned by a Φ-depth trend).
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7500
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-12500

Figure 3.12: Regional structural model of the Nugget Sandstone. Depth is in feet at
subsea level. Positive value is above sea level, while negative value is below sea level.
Location of this model is indicated in Fig.1. Model uses 5x vertical exaggeration. The

arrow points to the north.

Structural Framework Using the structural modeling tools in Petrel [84], well logs,

cross sections, and isopach maps were integrated at the regional scale to create formation

horizon correlations. Four horizons were interpreted, each representing a major contact

between formations: top of the Twin Creek Limestone, top of the Nugget Sandstone, top

of the Ankareh Shale, and bottom of the Ankareh Shale. The top of Nugget Sandstone

and the top of Ankareh Shale are used to determine the structural framework of the

Nugget Sandstone (Figure 3.12). Though faults may exist in the study region, the

available data do not support detailed interpretations of their locations, thus faults are

not modeled.

In interpreting the horizons, two points must be acknowledged: (1) in addition to the

well logs, the horizons were constrained by geological cross sections and isopach maps.

These maps were digitized first and many control-points were imported into Petrel to

provide synthetic markers which were used, along with the digitized logs, to constrain the

horizons; (2) in regions with sparse data control, formation thickness was interpolated,

which allows physically correct extrapolation of the formation thickness throughout the

modeled region.
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Gridding By default, Petrel uses a corner grid technique for creating a model grid

within the structural framework. To shorten simulation time, we aim to keep the number

of grid cells within half a million. On the other hand, we still want to keep the number

of grid cells in the vertical direction large enough so that the upscaling of well logs can

still be accurate (discussed below). After a number of trials, a final model with 306,180

grid cells is used: NX=126; NY=162; NZ=15, NX, NY, and NZ are the number of grid

cells in the x, y, and z direction, respectively.

Upscaling of Well Logs In general, wire-line logs are recorded in one-half foot

intervals. However, flow simulation grids are typically much coarser, otherwise simula-

tions may take inordinate amount of time to complete. The usual practice in industry

(personal communication with BP geologic modeling team) is to build a fine geologic

model with a grid vertical resolution of half a foot, and then use upscaling techniques to

coarsen the fine grid to create a simulation grid with fewer cells. However, this process

is not done in this study. A simulation grid is built directly from upscaling the well logs.

Using the majority vote method, a close match between the upscaled petrofacies his-

togram and the well logs petrofacies histogram was obtained (Figure 3.13), after a num-

ber of trials setting the grid cell vertical resolution. The proportion of each petrofacies

is consistent with those observed for the Nugget Sandstone in previous studies [70].

Using the Arithmetic Average method and the neighbor cell choosing method (this

averaging option will include log values from all cells adjacent to the upscaled cell which

are at the same layer with the upscaled cell), a close match was obtained between the

upscaled Φ histogram and the well logs Φ histogram (Figure 3.14).

Petrofacies Modeling After upscaling of the well logs, petrofacies modeling is con-

ducted. In the DoE, two factors that control petrofacies population in the aquifer, i.e.,

horizontal facies correlation range (FCR) and azimuth (FCA), are varied in addition to

the EEF which are shared with all the other model families. Facies horizontal correlation

range uncertainty is determined based on the observation of the Navajo Sandstone, a

Nugget equivalent in Utah [80]. Vertical correlation range is fitted from the vertical facies

variogram model (Figure 3.15). Due to the sparsity of wells, horizontal variograms are

often constructed with fewer lag distances, thus horizontal variogram modeling suffers

greater uncertainty than vertical variogram modeling. As for the horizontal petrofacies

azimuth, its uncertainty is based on those modeled for the Nugget Sandstone in the

Moxa Arch region east of the study site [5]. In FAM4, petrofacies modeling is addition-

ally constrained by a 3D petrofacies probability cube created from interpolating well
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Figure 3.15: Experimental variogram and variogram model of vertical facies se-
quences. The gray curve represents the auto-fitted regression curve, and the blue curve

stands for the variogram used during the modeling process.

data. The method of creating petrofacies probability models from well data and how it

is used to condition petrofacies modeling is described in [85] [86] [84]. In this study, a

global vertical petrofacies proportion curve (Figure 3.16) is first generated from all the

8 wells at the study site, since there are no data indicating a distinct transition of the

depositional environment. In other words, there is no propensity zoning (also note that

Nugget Sandstone is deposited in a sand sea). Petrofacies 1 and 2, which correspond to

dune deposits, are most likely to occur in the upper Nugget Sandstone. Based on the

upscaled petrofacies types at the 8 wells, probability of finding a particular facies for

each model layer is determined by the proportion of that facies among all the facies at

that layer (depth), then the probability values between the wells are interpolated using

kriging (Figure 3.17). Combined with the global vertical petrofacies proportion curve,

a 3D petrofacies probability cube is generated which is used to constrain geostatistical

petrofacies modeling based on Sequential Indicator Simulation (SIS). A final petrofacies

model for FAM4 is shown in Figure 3.18, corresponding to the center run of the PB

design, i.e., all parameters assume their median values.

Petrophyscial Modeling The petrophysical modeling procedure follows 3 steps:

(1) geostatistical ϕ modeling for each facies based on horizontal ϕ correlation range

(PCR), horizontal ϕ azimuth (PCA), and soft conditioning data; (2) for each petrofacies,

populating kh from ϕ with a log-linear transform; (3) for each petrofacies, populating

kv from kh using different kv/kh ratios.
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Figure 3.16: A global vertical petrofacies proportion curve generated from all the 8
wells at the study site.

For ϕ modeling in each petrofacies, the “0” case (median value) of PCR is determined by

fitting a ϕ variogram model to the horizontal experimental variograms (Figure 3.19, first

two columns). The +1 case is set to two times of the median PCR and the -1 case is set

to half of the median PCR. Again, vertical correlation range is fitted and not varied since

it has enough data of support (Figure 3.19, last column). In each petrofacies, porosity

modeling is populated with Sequential Gaussian Simulation (SGS). In addition, during

porosity modeling, a porosity-depth trend (Figure 3.5) is imposed to soft condition the

data.

Next, horizontal permeability of each petrofacies is populated from ϕ with a log-linear

transform (PPT). As discussed previously, the particular PPT transform is selected

based on which of the two rock types the specific petrofacies belongs to (Figure 3.6,

right). PPT is also varied in the DoE as a GF [87], minimizing bias in fitting a single

transform to scattered data (Figure 3.6, right). Three PPT are developed for each rock
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Figure 3.18: Petrofacies model corresponding to the center run of PB design. Arrow
points North.
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Figure 3.19: Experimental variograms and variogram models of ϕ for each petrofacies
in three directions. The gray curve represents the auto-fitted regression curve, and the

blue curve stands for the variogram used during the modeling process.

Table 3.2: kv/kh ratio end members for each petrofacies.

Petrofacies type +1 case 0 case -1 case

1 1 0.5 0.2
2 1 0.5 0.2
3 0.2 0.1 0.02
4 2 1 0.2

type; petrofacies 1 & 2 are associated with rock type 1, petrofacies 3 & 4 are associated

with rock type 2. Table 3.2 summarizes the end member kv/kh ratios for each petrofacies

(detailed discussion in the selection of each is provided in 3.3.2).

From the expected petrophysical distribution in FAM4 (i.e., center run of the PB design),

average ϕ and the corresponding kh can be calculated for each petrofacies (Table 3.3).

These data reflect the mean petrophysical properties, and these values are consistent

with those described in 3.3.2 for each corresponding depositional facies [63] [70]. These

average values are assigned to each petrofacies in FAM2a.
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Table 3.3: Average ϕ and kh for each petrofacies, corresponding to the center run of
the PB design.

Petrofacies type Average ϕ Average kh
1 0.1926 382.91
2 0.1291 12.72
3 0.0915 0.33
4 0.05 0.10
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Figure 3.20: Petrofacies histogram of the geostatistical model plotted against that of
the upscaled cells at the well locations.

Quality Check (QC) After geostatistical modeling of petrofacies and ϕ in the in-

terwell region, QC is an essential step to make sure all input data and constraints are

properly honored. For FAM4 models, four QC steps are conducted:

Petrofacies Proportion Petrofacies histogram of the model is plotted against that

of the upscaled cells at the well locations (Figure 3.20). We can see that the proportions

of each facies is well maintained, except for a somewhat lower estimate for petrofacies

4.
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Figure 3.21: Porosity histogram of the geostatistic model plotted against that of the
upscaled cells at the well locations.

Porosity Distribution To check whether porosity distribution is honored, a his-

togram of the geostatistic ϕ model is plotted against the input porosity histogram of

the upscaled ϕ at the well locations (Figure 3.21). These two histograms are closely

matched.

Petrofacies Model A cross section of the model is shown to determine if the petro-

facies model is honoring the vertical proportion curve (Figure 3.22). Petrofacies 1 and 2

are mostly situated in the upper Nugget Sandstone, while petrofacies 4 is mostly located

in the lower Nugget Sandstone. This is consistent with the specified vertical petrofacies

proportion curve.

Porosity Depth Trend ϕ change with depth for each petrofacies is shown in Fig-

ure 3.23. In each petrofacies, porosity decreases with increasing depth. Thus, the

porosity-depth trend is properly honored.

Uncertain Factors Varied In The PB design All uncertain factors considered

for FAM4 are summarized in Figure 3.11. In addition, facies probability cube and

a porosity-depth trend are imposed during the modeling process. These two factors,
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Figure 3.22: A petrofacies model cross section corresponding to the center run of the
PB design. Arrow points north.

considered soft data, are incorporated into the model building process, but not in the

PB design. Their impact is evaluated by comparing the outcomes of FAM4 with those

of FAM3 (no conditioning). The PB design for FAM4 is shown in Table 3.4.

3.3.4.2 FAM3 Models

In FAM3, the modeling process is the identical to that of FAM4, except it doesn’t

incorporate soft conditioning data, i.e., the facies probability cube for facies modeling

and the depth trend for porosity modeling. The PB design table for FAM3 is shown in

Table 3.5.
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Figure 3.23: Porosity change with depth of: (a) petrofacies 1 (b) petrofacies 2 (c)
petrofacies 3 (d) petrofacies 4. Arrow points north.

Table 3.4: PB design for FAM4, -1/0/1 indicate different levels of values assigned to
a factor.

Runs FCA FCR PCA PCR PPT VHR SAL RGS RPM TG

Run 1 1 1 1 -1 1 -1 1 -1 -1 -1
Run 2 1 1 1 1 -1 1 -1 1 -1 -1
Run 3 1 -1 1 -1 1 -1 -1 -1 -1 1
Run 4 -1 -1 -1 -1 1 1 -1 -1 1 -1
Run 5 0 0 0 0 0 0 0 0 0 0
Run 6 -1 -1 1 -1 -1 1 1 1 1 -1
Run 7 -1 -1 1 1 1 1 -1 1 -1 1
Run 8 1 -1 -1 -1 -1 1 1 -1 -1 1
Run 9 -1 -1 -1 1 1 -1 -1 1 -1 -1
Run 10 1 1 -1 -1 1 -1 -1 1 1 1
Run 11 -1 1 -1 -1 1 1 1 1 -1 1
Run 12 -1 1 1 -1 -1 1 -1 -1 1 1
Run 13 1 1 -1 1 -1 1 -1 -1 -1 -1
Run 14 -1 1 -1 1 -1 -1 -1 -1 1 1
Run 15 1 -1 -1 1 1 1 1 -1 1 -1
Run 16 -1 -1 1 1 -1 -1 1 -1 -1 1
Run 17 -1 1 1 1 1 -1 1 -1 1 -1
Run 18 -1 1 -1 -1 -1 -1 1 1 -1 -1
Run 19 1 -1 1 -1 -1 -1 -1 1 1 -1
Run 20 1 -1 -1 1 -1 -1 1 1 1 1
Run 21 1 1 1 1 1 1 1 1 1 1
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Table 3.5: PB design for FAM3.

Runs FCA FCR PCA PCR PPT VHR SAL RGS RPM TG

Run 1 1 1 1 -1 1 -1 1 -1 -1 -1
Run 2 1 1 1 1 -1 1 -1 1 -1 -1
Run 3 1 -1 1 -1 1 -1 -1 -1 -1 1
Run 4 -1 -1 -1 -1 1 1 -1 -1 1 -1
Run 5 0 0 0 0 0 0 0 0 0 0
Run 6 -1 -1 1 -1 -1 1 1 1 1 -1
Run 7 -1 -1 1 1 1 1 -1 1 -1 1
Run 8 1 -1 -1 -1 -1 1 1 -1 -1 1
Run 9 -1 -1 -1 1 1 -1 -1 1 -1 -1
Run 10 1 1 -1 -1 1 -1 -1 1 1 1
Run 11 -1 1 -1 -1 1 1 1 1 -1 1
Run 12 -1 1 1 -1 -1 1 -1 -1 1 1
Run 13 1 1 -1 1 -1 1 -1 -1 -1 -1
Run 14 -1 1 -1 1 -1 -1 -1 -1 1 1
Run 15 1 -1 -1 1 1 1 1 -1 1 -1
Run 16 -1 -1 1 1 -1 -1 1 -1 -1 1
Run 17 -1 1 1 1 1 -1 1 -1 1 -1
Run 18 -1 1 -1 -1 -1 -1 1 1 -1 -1
Run 19 1 -1 1 -1 -1 -1 -1 1 1 -1
Run 20 1 -1 -1 1 -1 -1 1 1 1 1
Run 21 1 1 1 1 1 1 1 1 1 1

3.3.4.3 FAM2b Models

FAM2b is a geostatistical petrophysical model, without considering modeling the 4 petro-

facies. After upscaling well logs ϕ to the simulation grid, ϕ is directly populated in the

interwell region using SGS, using a single set of ϕ variogram models fitted to all (up-

scaled) ϕ at the well locations (not shown). kh is then populated from ϕ using end

members of PPT. It should be emphasized that since FAM2b doesn’t model facies, only

a single set of kh-ϕ transform end members is used (Figure 3.6; left). Similarly, the

kv/kh ratio end members are developed for the entire Nugget Sandstone, based on data

shown in Figure 3.4. For each cell, the -1 case is set to 0.02 and the +1 case is set to 2.

The PB design table for FAM2b is shown in Table 3.6.

3.3.4.4 FAM2a Models

FAM2a is a geostatistical petrofacies model, without considering sub-facies petrophyscial

variations. Four discrete petrofacies are categorized and modeled in an identical proce-

dure as described above for FAM4. In FAM2a, ϕ and k are homogeneous within each

petrofacies, their values shown in Table 3.3. The PB design table for FAM2a is shown

in Table 3.7.
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Table 3.6: PB design for FAM2b.

Runs PCA PCR PPT VHR SAL RGS RPM TG

Run 1 0 0 0 0 0 0 0 0
Run 2 -1 -1 -1 1 -1 -1 1 -1
Run 3 1 -1 1 1 1 -1 -1 -1
Run 4 1 1 1 -1 -1 -1 1 -1
Run 5 -1 1 -1 1 1 1 -1 -1
Run 6 1 -1 -1 -1 1 -1 -1 1
Run 7 -1 -1 1 -1 1 1 1 -1
Run 8 1 -1 -1 1 -1 1 1 1
Run 9 -1 1 1 1 -1 -1 -1 1
Run 10 -1 1 -1 -1 1 -1 1 1
Run 11 -1 -1 1 -1 -1 1 -1 1
Run 12 1 1 -1 -1 -1 1 -1 -1
Run 13 1 1 1 1 1 1 1 1

Table 3.7: PB design for FAM2a.

Runs FCA FCR VHR SAL RGS RPM TG

Run 1 1 -1 -1 -1 1 -1 -1
Run 2 -1 -1 -1 1 -1 -1 1
Run 3 1 1 -1 -1 -1 1 -1
Run 4 1 1 1 1 1 1 1
Run 5 -1 -1 1 -1 1 1 1
Run 6 0 0 0 0 0 -1 -1
Run 7 -1 1 -1 1 1 1 -1
Run 8 -1 -1 1 -1 -1 1 -1
Run 9 1 1 1 -1 -1 -1 1
Run 10 1 -1 -1 1 -1 1 1
Run 11 1 -1 1 1 1 -1 -1
Run 12 -1 1 -1 -1 1 -1 1
Run 13 -1 1 1 1 -1 -1 -1

3.3.4.5 FAM1 Models

FAM1 is a simple homogeneous model, with a mean ϕ (0.13) and a mean kh (123.2 mD)

established from averaging those of FAM4. The PB design table for FAM1 is shown in

Table 3.8.

3.3.4.6 Comparison Between Model Families

A realization of horizontal permeability from each model family is shown (Figure 3.24),

corresponding to the center run of the PB design, i.e., all parameters assume their

median values. Depending on the modeling choice and the amount of supporting data,

different heterogeneity patterns are created. FAM1 and FAM2 models have less internal



Chapter 3. Methodology 42

Table 3.8: PB design for FAM1.

Runs VHR SAL RGS RPM TG

Run 1 -1 1 -1 1 1
Run 2 0 0 0 -1 -1
Run 3 -1 -1 1 -1 -1
Run 4 1 -1 -1 1 -1
Run 5 1 1 1 -1 -1
Run 6 -1 -1 -1 1 -1
Run 7 1 1 -1 -1 -1
Run 8 1 -1 1 1 1
Run 9 1 1 1 1 1
Run 10 1 -1 -1 -1 1
Run 11 -1 1 -1 -1 1
Run 12 -1 1 1 1 -1
Run 13 -1 -1 1 -1 1
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Figure 3.24: A kh model realization, one for each family.

structure than models of FAM3 and FAM4 as expected. In FAM3, facies distribution is

statistically homogeneous throughout the reservoir and as mean kh does not vary across

the layers. In FAM4, reservoir rocks with good quality are observed in the upper Nugget

Sandstone because of the conditioning by facies probability cube. Thus, permeability

is much higher in the lower reservoir layers. In addition, due to the porosity-depth

trend imposed in FAM4, permeability of models in this family gradually decreases with

increasing depth, while this effect is absent in all the other families. Figure 3.24 here

serves to illustrate the difference in mean heterogeneity representation among the model

families. Additional variability also exists among the models created for each family,

when geologic parameters and modeling choices are varied according to the DoE.
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3.4 Dynamic Modeling of CO2 Injection &Monitoring (Sim-

ulation)

The same CO2 storage scenario is simulated in all models using GASWAT of Eclipse 300,

a multiphase compositional simulator that can incorporate temperature variation with

depth. Other simulators such as CO2STORE are also available. However, due to the fact

that our study site is a deep inclined aquifer, other simulators are generally not suitable.

For example, CO2STORE module is limited by temperature (maximum: 100◦C (212

◦F)) and pressure (maximum: 600 bar) ranges as constrained by existing experimental

data. Temperature and pressure conditions at our study site generally exceed these

maximum values when depth is greater than 3 km. GASWAT models gas/aqueous

phase equilibrium through an equation of state. Three components: CO2, H2O, NaCl,

are defined. Initial pressure in the model is hydrostatic, with a reference pressure set

at 5412 psi at depth =12,000 ft (a brine density of 1.04 g/cm3 is assumed). Reservoir

temperature is assigned based on interpolated temperature log data (Figure 3.8). Model

boundaries are represented by a Carter-Tracy analytical aquifer of a large radius and

thickness [88], which ensures an open boundary that allows the formation brine, and

later CO2, to flow out. Model is considered part of a larger semi-infinite system where

the injected gas and formation brine can flow out from the top, bottom, and sides of the

formation. This is consistent with the known regional geologic framework. The lower

BC at the Absaroka Fault is uncertain and is assumed open in this study, based on

the hydrocarbon charging history of the Nugget Sandstone of oil fields to the west of

the thrust fault (Figure 1.1). Source rock for these oil fields is thought to be subthrust

Cretaceous shales [63] [70] and the Absaroka thrust formed during late Cretaceous [89]

(Figure 1.2). The Absaroka Thrust existed at the time when hydrocarbons first began

to migrate (Eocene or later) [70], thus the thrust fault (i.e., the lower boundary of

the model) should be leaky so that hydrocarbons could migrate to the Jurassic Nugget

Sandstone reservoirs above the hanging wall. For the present time, however, precise

nature of this fault-bounded boundary is not clear. Additional simulations are run,

setting this BC to no-flow, without significantly changing the simulation outcomes. It

is well known that flow disturbance is generally not significantly influenced by the BC

type, if the boundary lies far from the center of disturbance [90].

The choice of BC ensures that excessive pressure buildup will not occur near the injection

well, which is perforated at a depth of 13,500 ft. A fixed mass injection rate of 1/3 M

tons/year is used and the injection phase lasts 50 years. An injector bottomhole pressure

constraint is set at 180 % hydrostatic pressure to prevent hydraulically fracturing the

formation [5]. Due to the open BC, pressure buildup in the reservoir is modest, and the

constant injection rate was maintained by all families. Thus, all models have injected
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the same amount of CO2 over a 50-year period. A total of 17 Mt of CO2 has been

injected, corresponding to 1/3 the emission rate of a small power plant (note that the

total amount of CO2 injected is largely constrained by the lower end member of the

kh-ϕ transform). To achieve a higher injection rate, multiple injectors can be utilized,

whereas pressure buildup can be additionally controlled by adding brine producers [14].

These scenarios are not investigated in this study. Since the effect of model complexity

on the long-term fate of the injected CO2 is also of interest, a post-injection monitoring

phase is simulated for 1950 years. This time frame is selected so that the CO2 plume will

migrate far enough from the injector, thus the effect of large-scale heterogeneity on CO2

migration and trapping can be evaluated. For each family, at increasing time scales,

parameters important to predicting brine leakage, trapped gas, dissolved gas, and CO2

storage ratio (SR) are identified, along with the uncertainty in selected outcomes.

Finally, different equations of state (EOS) are available in describing phase density and

mutual solubility of free-phase CO2 and formation brine of difference salinities. However,

due to low solubility of H2O in gaseous or supercritical CO2, differences in phase density

estimates by different EOS do not appear to significantly influence simulation results

[8]. Thus, potential differences in EOS as adopted by different reservoir simulators is

not investigated (though the SA methodology can accommodate this uncertainty as a

categorical factor), and all simulations are conducted with GASWAT.

Methodology
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Results and Discussion

Results of this study are presented in four sections: (1) screening test outcomes; (2) RS

modeling and verification; (3) MC analysis assessing uncertainty in the outcomes; (4)

end-member plume footprint for each model family.

4.1 Screening Tests

Screening test results of all model families are examined for 4 outcomes (Table 4.1). For

predicting the SR at EOM, t-ratio of each factor is listed for FAM4, which is used to

determine the significance of this factor in predicting the SR (Figure 4.1). The statistical

tests are conducted for all outcomes, and at different times (not shown).

Outcome: Storage Ratio FAM4 (EOM)

Term Estimate Std Error t Ratio Prob>|t|
PPT

FCR

RGS

PCA

RPM

SAL

VHR

TG
FCA

PCR

0.0987

-0.0845

0.0595

-0.0359

0.034678

-0.0236

0.018

-0.010422
0.0104

-0.0084

0.017782

0.017782

0.017782
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Figure 4.1: An example screening test result for FAM4 at a 90% significance level.
Outcome is the SR at EOM. Statistically significant factors here include ϕ-k transform,
petrofacies range, and residual gas saturation. Negative t-ratio means increasing value

of this factor will reduce SR.

45
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Table 4.1: Significant factors identified by the PB design for each family that impact
the prediction of different outcomes. Significance level = 90%; EOI: end of injection;

EOM: end of monitoring.

Brine Leakage EOI EOM Number of Runs

FAM1 RPM/SAL RPM/SAL 13
FAM2a FCR FCR 13
FAM2b PPT/PCA PPT 13
FAM3 PPT PPT 21
FAM4 PPT/FCR/FCA/VHR PPT/FCR/FCA/VHR 21

Trapped Gas EOI EOM Number of Runs

FAM1 TG SAL/RPM/RGS 13
FAM2a RPM RGS/SAL/RPM 13
FAM2b RPM/PPT/RGS PPT/SAL/PCA/RGS 13
FAM3 RPM/PPT PPT/RGS 21
FAM4 RPM/PPT/RGS/TG PPT/SAL/FCR/RGS 21

Dissolved Gas EOI EOM Number of Runs

FAM1 SAL/RPM/TG SAL/RPM/VHR 13
FAM2a SAL SAL 13
FAM2b PPT/SAL/TG/RPM/PCA PPT/SAL 13
FAM3 PPT/SAL PPT/PCA 21
FAM4 PPT/SAL/FCR PPT/FCR/SAL 21

SR EOI EOM Number of Runs

FAM1 TG SAL 13
FAM2a RPM VHR 13
FAM2b PPT/TG PPT/RGS 13
FAM3 PPT/RPM PPT/RPM 21
FAM4 PPT/RPM/RGS PPT/FCR/RGS 21

In FAM4, PPT, FCR, FCA, VHR are the 4 most important factors predicting brine

leakage over the entire simulation time, indicating that brine leakage is dominated by

permeability distribution. This is expected, because permeability distribution deter-

mines the evolution of reservoir pressure, which controls the flow of formation brine. In

predicting trapped gas, results at EOI are somewhat different from those at EOM, re-

flecting changing dominant flow process in the reservoir over time: after injection ceases,

gravity gradually out-competes viscous drive. The relative permeability model and the

temperature gradient are the most important during injection but become unimportant

by EOM. During monitoring, PPT and FCR have a dominant effect on increasing the

amount of trapped gas: higher mean permeability and greater lateral continuity of the

high-k facies contribute to more lateral plume spreading period. More brine is in contact

with the gas, thus more residual trapping during imbibition. Moreover, these factors are

consistently dominating the prediction of the trapped gas, because gas is continuously

migrating along the tilted reservoir. In predicting dissolved gas, PPT and FCR are the
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most important factors, due to similar reasons described: more lateral plume spreading

causes more gas to contact brine, and therefore more dissolution.

For each family, results are compared at different timescales. In predicting brine leakage,

the important factors remain the same for all families, indicating that this outcome is

consistently controlled by the pressure behavior of the model. In predicting trapped gas,

results differ among the families to some degree. For FAM2, 3, and 4, RPM is important

by EOI but becomes unimportant by EOM, suggesting a competing relationship between

viscous force and gravity during the transition from injection to monitoring. The same

explanation goes for FAM1, where TG is important during injection but not during mon-

itoring. In predicting dissolved gas, spreading of the gas plume becomes more important

during monitoring. For example, for FAM3 and FAM4, PCA and FCR becomes more

important than SAL by EOM. Over all timescales, SAL consistently exerts a negative

effect on the amount of dissolved gas, as expected.

When comparing results across model families at the same time, we observe: as model

complexity increases, compared to the EEFs varied, geologic factors which determine

permeability distribution in the reservoir become increasingly important for predicting

the performance metrics, especially by EOM. This is revealed when we examine PPT,

which is a geologic factor incorporated in FAM2b, 3, and 4. For each family, PPT is

dominantly important for all the outcomes evaluated at all the time scales considered.

However, many reservoir simulation studies are conducted based on a fixed geological

model (e.g., a deterministic layered model). A sensitivity study is then conducted vary-

ing a variety of EEFs. Given a simple geologic model (e.g., FAM1), some EEFs may

be identified as dominant factors influencing the outcomes. However, as demonstrated

here, when complexity is built into the geologic model reflecting increasing knowledge

of the site condition (which can be obtained at the increased cost of characterization),

the sensitivity study should incorporate additional uncertain geological factors. These

factors become dominant while some of the EEFs become far less important. For ex-

ample, in our simple families, RPM and RGS are identified as key factors. But as more

geologic complexity is incorporated, these factors are giving way to factors such as PPT

and FCR.

Clearly, the notion that residual gas saturation exerts a dominant control on predicting

trapped gas is true only when the geologic model is known. For deep saline aquifers

where site data are extremely sparse, uncertainty in building the site model will likely

dominate the prediction outcomes over uncertainty of such factors as residual gas. This

is because permeability can vary over many orders of magnitude, thus uncertainty fac-

tors influencing its magnitude, orientation, and connectivity can induce large changes

in the permeable pathways through which gas migrates. Magnitude of permeability also
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influences the speed of gas migration and reservoir pressure. Parameters such as RGS

only vary within 1 order of magnitude, exerting much less impact on the prediction

uncertainty. For a data-sparse system being considered for gas disposal or other appli-

cations, resources should be first devoted to characterizing geologic uncertainty factors

such as ϕ-k transform and facies correlation structure.

4.2 RS Modeling & Verification

For each family, at two time scales (EOI and EOM), the PB design has identified a set of

important uncertainty parameters. After pooling together all the important parameters,

an RS design based on these parameters is generated to develop a proxy model for

reservoir simulation. The pooling result is an union of all the parameters identified

important for each selected simulation outcome over the two time scales (EOI and EOM).

For example, if PPT is not important at EOI but becomes important at EOM, PPT is

included in the RS design. Also, if PPT is not important regarding trapped gas but is

important with regard to dissolved gas, it is included in the RS design as well. The RS

designs are typically of higher resolution than the screening design, thus more simulation

runs are needed. For the families, the number of runs dictated by the RS design is 44

(FAM1), 44 (FAM2a), 46 (FAM2a), 44 (FAM3), 80 (FAM4) (Table 4.2 ∼ Table 4.6). For

each family, the RS model is a 2nd order polynomial that is fitted to these simulation

outcomes. Storage ratio RS models are created at different timescales: 2011(start of

injection), 2041, 2061(EOI), 2310, 2810, 3210, 3610, and 4010(EOM). An example 2nd

order polynomial RS model of storage ratio for FAM4 at EOI is shown in Table 4.7.

The RS models are first verified by comparing their predictions to simulation outcomes

that were not used in generating the RS model, i.e., the PB design points. Follow-

ing the example, the predicted SR values using fitted RS model are compared to the

simulated SR values at PB design points for FAM4 at EOI (Table 4.8). Though such

selection may overestimate the RS error, this comparison still yields small differences

(Table 4.9). Means of the errors are close to 0.0, standard deviations are generally small

and decrease with time, and the error distributions are frequently symmetric around

the means (Figure 4.2). Furthermore, had the verification points been selected internal

to the parameter space, the RS error would be expected to be even smaller. Given the

above results, the RS models are considered adequate proxy models and will be used in

the MC uncertainty analysis.
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Table 4.2: Response surface design for FAM1.

Runs TG RPM RGS SAL VHR

Run 1 1 1 1 1 1
Run 2 0 1 0 0 0
Run 3 1 -1 -1 -1 1
Run 4 -1 1 -1 1 1
Run 5 0 0 0 0 0
Run 6 1 -1 -1 -1 -1
Run 7 0 0 -1 0 0
Run 8 0 0 0 0 -1
Run 9 -1 1 -1 1 -1
Run 10 -1 1 1 -1 -1
Run 11 -1 1 1 1 -1
Run 12 -1 -1 -1 -1 1
Run 13 1 0 0 0 0
Run 14 -1 1 -1 -1 1
Run 15 -1 -1 -1 -1 -1
Run 16 1 1 -1 1 -1
Run 17 1 -1 1 -1 1
Run 18 0 0 0 0 0
Run 19 1 1 1 1 -1
Run 20 1 1 -1 -1 1
Run 21 -1 0 0 0 0
Run 22 -1 -1 1 -1 1
Run 23 1 -1 -1 1 -1
Run 24 1 1 1 -1 -1
Run 25 -1 1 -1 -1 -1
Run 26 0 -1 0 0 0
Run 27 -1 1 1 -1 1
Run 28 -1 1 1 1 1
Run 29 -1 -1 -1 1 -1
Run 30 0 0 0 0 1
Run 31 1 -1 1 -1 -1
Run 32 -1 -1 1 1 -1
Run 33 -1 -1 1 -1 -1
Run 34 1 1 -1 -1 -1
Run 35 1 -1 1 1 -1
Run 36 -1 -1 -1 1 1
Run 37 1 1 -1 1 1
Run 38 0 0 0 1 0
Run 39 1 -1 -1 1 1
Run 40 -1 -1 1 1 1
Run 41 1 -1 1 1 1
Run 42 0 0 0 -1 0
Run 43 0 0 1 0 0
Run 44 1 1 1 -1 1
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Table 4.3: Response surface design for FAM2a.

Runs FCR RPM RGS SAL VHR

Run 1 -1 -1 1 1 1
Run 2 -1 -1 -1 -1 1
Run 3 1 1 1 -1 1
Run 4 0 0 1 0 0
Run 5 0 0 0 0 0
Run 6 -1 -1 1 1 -1
Run 7 0 0 -1 0 0
Run 8 -1 1 1 1 -1
Run 9 1 1 1 1 -1
Run 10 1 -1 -1 -1 -1
Run 11 -1 1 -1 -1 1
Run 12 -1 1 1 1 1
Run 13 1 -1 -1 1 1
Run 14 -1 0 0 0 0
Run 15 1 1 -1 1 -1
Run 16 1 -1 1 1 1
Run 17 1 -1 1 -1 1
Run 18 0 1 0 0 0
Run 19 -1 1 -1 1 1
Run 20 1 0 0 0 0
Run 21 -1 -1 -1 1 -1
Run 22 0 0 0 0 0
Run 23 -1 1 1 -1 -1
Run 24 1 1 -1 1 1
Run 25 1 1 1 -1 -1
Run 26 1 -1 -1 1 -1
Run 27 1 1 -1 -1 1
Run 28 -1 1 -1 1 -1
Run 29 -1 1 -1 -1 -1
Run 30 1 1 1 1 1
Run 31 1 -1 -1 -1 1
Run 32 1 1 -1 -1 -1
Run 33 0 0 0 1 0
Run 34 0 0 0 -1 0
Run 35 -1 -1 1 -1 1
Run 36 -1 -1 -1 1 1
Run 37 0 -1 0 0 0
Run 38 -1 -1 1 -1 -1
Run 39 0 0 0 0 -1
Run 40 0 0 0 0 1
Run 41 1 -1 1 -1 -1
Run 42 -1 1 1 -1 1
Run 43 -1 -1 -1 -1 -1
Run 44 1 -1 1 1 -1
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Table 4.4: Response surface design for FAM2b.

Runs PPT PCA RPM RGS SAL TG

Run 1 1 1 1 1 1 -1
Run 2 -1 -1 -1 -1 1 -1
Run 3 0 0 0 0 1 0
Run 4 -1 1 1 -1 -1 1
Run 5 1 0 0 0 0 0
Run 6 1 1 -1 -1 -1 1
Run 7 0 0 0 0 0 -1
Run 8 1 -1 1 1 -1 -1
Run 9 1 -1 -1 -1 1 1
Run 10 0 1 0 0 0 0
Run 11 -1 1 1 -1 1 -1
Run 12 -1 -1 1 -1 1 1
Run 13 0 0 0 0 0 0
Run 14 -1 -1 1 -1 -1 -1
Run 15 1 -1 -1 1 -1 1
Run 16 -1 -1 -1 -1 -1 1
Run 17 1 1 -1 1 -1 -1
Run 18 -1 1 1 1 -1 -1
Run 19 0 0 0 -1 0 0
Run 20 1 1 -1 -1 1 -1
Run 21 -1 1 -1 -1 1 1
Run 22 -1 1 -1 1 -1 1
Run 23 -1 0 0 0 0 0
Run 24 -1 -1 -1 1 -1 -1
Run 25 1 -1 -1 -1 -1 -1
Run 26 0 0 0 0 0 0
Run 27 1 1 1 -1 1 1
Run 28 -1 -1 1 1 -1 1
Run 29 -1 -1 -1 1 1 1
Run 30 0 0 0 0 -1 0
Run 31 -1 1 -1 1 1 -1
Run 32 -1 -1 1 1 1 -1
Run 33 1 -1 1 -1 -1 1
Run 34 0 0 1 0 0 0
Run 35 1 -1 -1 1 1 -1
Run 36 0 0 0 1 0 0
Run 37 0 0 -1 0 0 0
Run 38 -1 1 -1 -1 -1 -1
Run 39 1 1 1 -1 -1 -1
Run 40 1 -1 1 -1 1 -1
Run 41 1 -1 1 1 1 1
Run 42 1 1 -1 1 1 1
Run 43 0 0 0 0 0 1
Run 44 -1 1 1 1 1 1
Run 45 1 1 1 1 -1 1
Run 46 0 -1 0 0 0 0
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Table 4.5: Response surface design for FAM3.

Runs PPT RPM RGS SAL PCA

Run 1 1 1 1 1 -1
Run 2 -1 -1 -1 1 1
Run 3 -1 -1 -1 -1 1
Run 4 0 0 0 0 0
Run 5 1 1 -1 1 -1
Run 6 1 -1 1 1 -1
Run 7 0 0 0 1 0
Run 8 -1 1 -1 -1 -1
Run 9 1 -1 1 -1 1
Run 10 0 1 0 0 0
Run 11 0 -1 0 0 0
Run 12 1 -1 -1 -1 -1
Run 13 -1 1 1 -1 -1
Run 14 0 0 0 0 -1
Run 15 -1 1 -1 1 1
Run 16 1 -1 1 1 1
Run 17 1 -1 -1 1 -1
Run 18 1 1 1 -1 1
Run 19 0 0 0 0 1
Run 20 0 0 0 0 0
Run 21 1 1 1 1 1
Run 22 -1 -1 -1 -1 -1
Run 23 -1 1 -1 -1 1
Run 24 0 0 -1 0 0
Run 25 -1 -1 -1 1 -1
Run 26 1 -1 1 -1 -1
Run 27 0 0 1 0 0
Run 28 1 -1 -1 -1 1
Run 29 -1 -1 1 1 1
Run 30 1 1 -1 -1 1
Run 31 1 1 -1 -1 -1
Run 32 -1 1 1 -1 1
Run 33 1 0 0 0 0
Run 34 1 1 1 -1 -1
Run 35 -1 -1 1 1 -1
Run 36 -1 1 1 1 -1
Run 37 -1 1 1 1 1
Run 38 -1 1 -1 1 -1
Run 39 1 -1 -1 1 1
Run 40 0 0 0 -1 0
Run 41 -1 0 0 0 0
Run 42 -1 -1 1 -1 1
Run 43 1 1 -1 1 1
Run 44 -1 -1 1 -1 -1



Chapter 4. Results and Discussion 53

Table 4.6: Response surface design for FAM4.

Runs PPT FCR FCA VHR RPM RGS SAL

Run 1 -1 1 1 1 1 -1 -1

Run 2 1 1 -1 -1 -1 1 1

Run 3 1 1 1 1 -1 -1 -1

Run 4 1 -1 1 -1 1 -1 1

Run 5 -1 -1 -1 -1 -1 -1 -1

Run 6 -1 0 0 0 0 0 0

Run 7 -1 1 -1 -1 1 -1 -1

Run 8 1 1 -1 -1 -1 -1 -1

Run 9 1 1 1 1 -1 1 1

Run 10 1 -1 1 -1 -1 -1 -1

Run 11 1 -1 1 1 -1 -1 1

Run 12 1 1 -1 -1 1 -1 1

Run 13 0 1 0 0 0 0 0

Run 14 -1 1 1 1 -1 1 -1

Run 15 0 0 0 1 0 0 0

Run 16 -1 -1 -1 1 -1 -1 1

Run 17 0 0 0 0 -1 0 0

Run 18 1 -1 -1 1 -1 -1 -1

Run 19 -1 -1 1 -1 -1 1 -1

Run 20 1 1 1 -1 1 -1 -1

Run 21 -1 1 1 -1 -1 1 1

Run 22 0 0 0 0 0 -1 0

Run 23 -1 1 -1 1 1 -1 1

Run 24 -1 -1 -1 1 1 -1 -1

Run 25 1 -1 1 1 1 -1 -1

Run 26 1 1 -1 -1 1 1 -1

Run 27 -1 1 -1 -1 1 1 1

Run 28 1 1 -1 1 1 1 1

Run 29 -1 1 1 1 1 1 1

Run 30 -1 1 -1 1 1 1 -1

Run 31 1 1 1 -1 -1 -1 1

Run 32 1 1 -1 1 -1 -1 1

Run 33 0 0 0 0 0 1 0

Run 34 0 0 0 0 0 0 0

Continued on Next Page. . .
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Table 4.6 – (Continued)

Runs PPT FCR FCA VHR RPM RGS SAL

Run 35 0 0 -1 0 0 0 0

Run 36 -1 -1 1 -1 1 -1 -1

Run 37 -1 1 1 1 -1 -1 1

Run 38 0 0 1 0 0 0 0

Run 39 -1 1 -1 1 -1 1 1

Run 40 -1 -1 -1 -1 1 1 -1

Run 41 -1 -1 -1 1 -1 1 -1

Run 42 1 -1 -1 1 1 -1 1

Run 43 -1 -1 1 1 1 1 -1

Run 44 1 1 1 1 1 1 -1

Run 45 1 -1 1 1 -1 1 -1

Run 46 0 -1 0 0 0 0 0

Run 47 1 -1 1 1 1 1 1

Run 48 -1 -1 1 1 -1 1 1

Run 49 -1 -1 1 -1 -1 -1 1

Run 50 -1 -1 -1 -1 -1 1 1

Run 51 1 -1 - 1 1 1 1 -1

Run 52 -1 1 1 -1 1 -1 1

Run 53 -1 1 -1 -1 -1 -1 1

Run 54 1 1 1 1 1 -1 1

Run 55 1 1 1 -1 1 1 1

Run 56 -1 -1 1 1 1 -1 1

Run 57 0 0 0 0 0 0 0

Run 58 1 1 1 -1 -1 1 -1

Run 59 -1 -1 1 1 -1 -1 -1

Run 60 -1 1 -1 1 -1 -1 -1

Run 61 1 -1 -1 -1 1 1 1

Run 62 0 0 0 0 0 0 -1

Run 63 1 -1 1 -1 -1 1 1

Run 64 1 0 0 0 0 0 0

Run 65 0 0 0 0 0 0 1

Run 66 1 -1 -1 -1 -1 1 -1

Run 67 -1 1 1 -1 -1 -1 -1

Run 68 -1 1 -1 -1 -1 1 -1

Continued on Next Page. . .
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Table 4.6 – (Continued)

Runs PPT FCR FCA VHR RPM RGS SAL

Run 69 -1 -1 1 -1 1 1 1

Run 70 0 0 0 0 1 0 0

Run 71 1 -1 -1 -1 1 -1 -1

Run 72 1 1 -1 1 -1 1 -1

Run 73 1 1 -1 1 1 -1 -1

Run 74 1 -1 -1 -1 -1 -1 1

Run 75 -1 -1 -1 -1 1 -1 1

Run 76 1 -1 -1 1 -1 1 1

Run 77 0 0 0 -1 0 0 0

Run 78 -1 1 1 -1 1 1 -1

Run 79 1 -1 1 -1 1 1 -1

Run 80 -1 -1 -1 1 1 1 1

4.3 MC Analysis

For each family, the RS models (at 7 different timescales) are used to assess the prediction

uncertainty of the SR, which arises from uncertainty of the input parameters — both

GF and EEF. This is accomplished by running 500,000 MC simulations with the RS

model, through randomly sampling the input parameters (i.e., axes of the RS model)

according to their respective univariate pdfs. A random drawing of a vector of the input

parameters gives rise to one RS-predicted outcome. Therefore, after 500,000 drawings,

500,000 RS-predicted SR values would be generated (Figure 4.3). After ranking these

500,000 outcomes, a cdf of the SR can be created (e.g., Figure 4.4; solid line). Typically,

a set of MC runs takes less than one second to run on a PC workstation.

From the cdf, certain quantiles could be drawn. In this study, a prediction envelope

is defined by an interval between P10 and P90 quantiles. Prediction envelope of the

RS-predicted SR is compared among the families over the entire simulation time (Fig-

ure 4.5). Results suggest a large uncertainty range in the SR, given the uncertainties

in parameters and modeling choices. At the end of injection, SR ranges from 0.18 to
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Table 4.7: Parameter estimates of a 2nd order polynomial RS model of storage ratio
for FAM4 at EOI.

Terms Estimate Std Error

Intercept 0.2285063 0.012458
PPT 0.0718446 0.005365
FCR -0.008572 0.005365
FCA 0.0130932 0.005365
VHR 0.0341801 0.005365
RPM -0.097358 0.005365
RGS 0.0122996 0.005365
SAL -0.022164 0.005365
PPT*FCR -0.007941 0.005448
PPT*FCA 0.0115555 0.005448
FCR*FCA 0.0062935 0.005448
PPT*VHR 0.0335989 0.005448
FCR*VHR -0.019132 0.005448
FCA*VHR -0.009681 0.005448
PPT*RPM -0.003863 0.005448
FCR*RPM 0.0017663 0.005448
FCA*RPM -0.00324 0.005448
VHR*RPM -0.001706 0.005448
PPT*RGS 0.0113343 0.005448
FCR*RGS -0.001621 0.005448
FCA*RGS -0.001088 0.005448
VHR*RGS 0.0033376 0.005448
RPM*RGS 0.0029401 0.005448
PPT*SAL -0.007479 0.005448
FCR*SAL 0.0009748 0.005448
FCA*SAL -0.005545 0.005448
VHR*SAL -0.00302 0.005448
RPM*SAL -0.004809 0.005448
RGS*SAL -0.003945 0.005448
PPT*PPT 0.010062 0.028601
FCR*FCR -0.004114 0.028601
FCA*FCA -0.000762 0.028601
VHR*VHR 0.0122268 0.028601
RPM*RPM -0.008793 0.028601
RGS*RGS 0.0202575 0.028601
SAL*SAL 0.0162771 0.028601
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Table 4.8: An example of RS predicted SR values versus simulated SR values at PB
design points for FAM4 at EOI. Comparison is for verification of the RS fitted model.

PB runs PPT FCR FCA VHR RPM RGS SAL RS pre-
dicted
SR

PB
simu-
lated
SR

Run 1 1 1 1 -1 -1 -1 1 0.385 0.402
Run 2 -1 1 1 1 -1 1 -1 0.298 0.319
Run 3 1 -1 1 -1 -1 -1 -1 0.414 0.418
Run 4 1 -1 -1 1 1 -1 -1 0.335 0.392
Run 5 0 0 0 0 0 0 0 0.229 0.246
Run 6 -1 -1 -1 1 1 1 1 0.131 0.094
Run 7 1 -1 -1 1 -1 1 -1 0.596 0.662
Run 8 -1 -1 1 1 -1 -1 1 0.291 0.281
Run 9 1 -1 -1 -1 -1 1 -1 0.386 0.633
Run 10 1 1 1 -1 1 1 -1 0.281 0.383
Run 11 1 1 -1 1 -1 1 1 0.453 0.438
Run 12 -1 1 -1 1 1 -1 -1 0.100 0.119
Run 13 -1 1 1 1 -1 -1 -1 0.292 0.299
Run 14 -1 1 -1 -1 1 -1 -1 0.121 0.121
Run 15 1 -1 1 1 1 -1 1 0.279 0.236
Run 16 -1 -1 -1 -1 -1 -1 1 0.272 0.272
Run 17 1 1 -1 -1 1 -1 1 0.102 0.118
Run 18 -1 1 -1 -1 -1 1 1 0.279 0.285
Run 19 -1 -1 1 -1 1 1 -1 0.119 0.120
Run 20 -1 -1 1 -1 1 1 1 0.065 0.0917
Run 21 1 1 1 1 1 1 1 0.276 0.8

Table 4.9: Summary of the RS error at the PB design points: Error = RS-predicted
SR - simulated SR at PB points.

Family EOI [min, mean, max, std] EOM [min, mean, max, std]

FAM1 [-2.1×10−1, 1.0×10−4, 2.1×10−1,
1.3×10−1]

[-3.5×10−2, 1.0×10−2, 5.0×10−2,
2.0×10−2]

FAM2a [-5.5×10−1, -4.0×10−2, 1.6×10−1,
1.6×10−1]

[-8.2×10−2, 1.0×10−3, 1.1×10−1,
4.0×10−2]

FAM2b [-5.4×10−1, -4.0×10−2, 3.0×10−2,
1.5×10−1]

[-1.6×10−1, -9.0×10−3, 8.8×10−2,
6×10−2]

FAM3 [-1.2×10−1, -9.6×10−3, 5.0×10−2,
4.0×10−2]

[-3.6×10−1, -4.0×10−2, 1.7×10−1,
1.5×10−1]

FAM4 [-5.2×10−1, -4.0×10−2, 4.0×10−2,
1.2×10−1]

[-1.9×10−1, -2.0×10−2, 7.0×10−2,
6.0×10−2]
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Figure 4.2: Verification of the RS storage ratio at the screening design points for each
family: (left) EOI; (right) EOM.
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Figure 4.3: Schematic of MC simulations based on the RS proxy model generated
from the RS design.

0.38. At the end of monitoring, SR ranges from 0.71 to 0.99. At all times, uncer-

tainty ranges of FAM2b, FAM3, and FAM4 are larger than those of FAM1 and FAM2a,

since the former models incorporate more geological complexities. However, the degree

of variation in capturing the uncertainty range changes both with time and with the

model complexity. By EOI, prediction envelops of all families are more or less similar:

during this shorter time frame, where plume migration is limited, heterogeneities near

the injection site are not significantly different among the different model representa-

tions, thus simpler models can predict SR uncertainty that is similar to the complex

models. During monitoring, prediction envelopes of each family deviate gradually from

one another, reflecting different (evolving) large scale heterogeneity experienced by each

family as the plume migrates and grows continuously. Compared to FAM4 (i.e., the

most sophisticated model), all other families estimate higher mean SRs: the simpler the

model, the greater the estimated mean SR. When comparing both magnitude and range

of the uncertainty, prediction envelop of FAM3 is the closest to that of FAM4 (FAM2b’s

uncertainty range is the largest and FAM1 and FAM2a’s ranges are much smaller).
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Figure 4.4: cdf of the RS-predicted SR for each family: (left) EOI; (right) EOM.
“MC w/ RS” is generated with 500,000 MC simulations (exhaustive cdf); “RS design”

is cdf constructed using results from RS runs.
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4.4 Plume Footprint

From the RS design runs, a non-exhaustive cdf is also constructed, at two time scales

(e.g., Figure 4.4; dashed line). Compared to the exhaustive cdf, its shape is much less

smooth, as expected (the full parameter space is not sampled by the RS design), though

it has captured, for the most part, the minimum and maximum SRs of the exhaustive

cdf. This suggests that end-member simulation outcomes other than the SR may be

identified from these design runs. One particular outcome of interest is the footprint of

the gas-phase CO2 plume, defined as the model layer with the maximum lateral plume

size. When the SR is the highest, plume shape tends to be more laterally extensive, which

contributes to more dissolution and residual trapping, and vice versa. Thus, estimates

of end-member plume footprints can be established by visualizing the RS design runs

corresponding to the minimal, median, and maximum SRs: at EOI (Figure 4.6) and

EOM (Figure 4.7). For FAM1 & 2a, at each time scale, the end-member gas plumes are

not as drastically different as in FAM2b, 3, and 4, since their SR uncertainty range is

comparatively small. In FAM2b, 3, and 4, the differences are much more significant: gas

plume of minimum SR sits around the wellbore and doesn’t migrate far (which results

in minimum dissolution and trapping), while gas plume of maximum SR migrates far

away from the wellbore. This explains why PPT is always of prime importance for these

families. PPT determines the mean permeability of the model: the higher the mean, the
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Figure 4.6: Gas saturation (mobile + trapped CO2) predicted by each family (arrow
points North) at EOI: (Left) Minimum SR; (Middle) Median SR; (Right) Maximum

SR.

faster the CO2 can migrate, and the more gas dissolution and trapping per unit time.

In FAM4, at the maximum SR (∼1), little trapped and mobile gas remains at EOM

(Figure 4.7; bottom right). In this case, mean permeability is high and salinity is low,

the gas plume spreads widely and quickly and is mostly dissolved by EOM.

Moreover, in cases where the temperature gradient is low (i.e., a cool basin), the gas

plume migrates downdip. Due to low temperature and high fluid pressure, gas density
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is higher than brine density, constituting a form of gravity-stable migration, which has

been proposed under high injection pressure. Depending on the EOS, when temperature

is higher than 120 ◦C (248 ◦F, which corresponds to a large section of our model),

CO2 dissolution in brine may reduce brine density compared to the original brine [8].

This effect is not calculated by the EOS of GASWAT, suggesting that if a different

EOS is implemented, the simulated gravity-stable migration could be more pronounced.

However, alternative EOS implemented by Eclipse 300 (i.e., CO2STORE module) is

limited by temperature (maximum: 100 ◦C (212 ◦F)) and pressure (maximum: 600 bar)

ranges as constrained by existing experimental data. CO2STORE cannot currently be

extended to our model depth, nor does it account for depth-dependent temperature,

which is essential for modeling an inclined reservoir. Clearly, future work can refine this

study by testing alternative EOS models constrained by new experiments conducted

under higher temperature and pressure conditions. Here, we demonstrate that in a cool

basin, gravity-stable migration is possible when the depth of injection is sufficiently deep.

Greater injection depth, though more expensive to operate, may offer greater storage

security.

Finally, while the majority of the simulations predicts downdip migrations, a few runs

are predicting up-dip migration due to high temperature gradient end member (e.g.,

median SR in FAM4 at EOM). At the study site, reduced uncertainty of TG is needed

to evaluate whether gravity-stable migration is the most likely scenario.

Results and Discussion
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Conclusions

Injection of supercritical CO2 into deep saline aquifers is considered a promising option

to mitigate global climate change. To evaluate a storage site, reservoir simulation is

performed using a geologic site model. However, GCS is a cost center. To resolve detailed

aquifer heterogeneity, expensive subsurface characterization is required. The greater the

detail, the higher the cost. Research is needed to develop a cost-effective strategy of

data collection to support the building of site models. In this study, we evaluate the

impact of different geologic, engineering, and environmental uncertainties on parameter

importance and prediction uncertainty in modeling GCS in a deep inclined aquifer.

Effect of geologic model complexity is investigated by building and simulating 4 model

families according to experimental design. A response surface analysis then generates

accurate proxy models for reservoir simulation with which uncertainty of predicting GCS

performance metrics is evaluated. Results and insights are summarized below.

When model complexity is low, the most important uncertainty parameters influencing

these performance metrics are engineering/environmental factors. When model increases

in complexity, geologic uncertainty factors become more important. Clearly, key uncer-

tainty factors are influenced by the modeling choice. For the CO2 storage ratio, predic-

tion uncertainty is large: 0.18∼0.38 at end of injection, 0.71∼0.99 at end of monitoring.

By the end of injection, prediction envelope of the storage ratio differs little among the

different model families; however, over the monitoring period, the prediction envelop de-

viates gradually from one another, reflecting different evolving large-scale heterogeneity

experienced by each as plume migrates continuously. The simpler models predict nar-

rower uncertainty ranges compared to those of the more complex models. At EOM, the

difference between P10 storage ratio and P90 storage ratio in simpler models is less than

0.04 while the difference of that in complex models is greater than 0.14. In summary,

65
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geologic factors and the associated conceptual model uncertainty can dominate the un-

certainty in predicting storage ratio, brine leakage, and plume footprint. At the study

site, better characterization of geologic data such as porosity-permeability transform

and facies correlation structure can lead to reduced prediction uncertainty. Moreover,

when reservoir temperature is relatively low (the -1 case temperature gradient), gravity-

stable migration is possible. Given the current uncertainty in parameter and modeling

choices, CO2 plume predicted by the majority of simulations is either trapped near

the injection site (e.g., due to low formation permeability and its heterogeneity) or is

gravity-stable under conditions of higher permeability and lower temperature gradient,

suggesting a low leakage risk. The inclined formation appears to be a viable candidate

for safe GCS. Greater injection depth, though more expensive to operate, offers greater

storage security in addition to enhanced storage capacity.

In this study, realization-based uncertainty analysis is not conducted to save computa-

tion time. Potential variability in the outcomes due to stochastic fluctuations is generally

considered smaller than that due to facies variation, petrophysical property correlation,

and other geologic considerations [5] [91]. Although DoE can evaluate correlated factors,

MC analysis outcomes can lose accuracy when the degree of correlation is high [39]. Fu-

ture work will investigate alternate techniques to develop conditional pdfs, in addition to

updating the factor pdfs with new characterization data. Moreover, if an injection test is

carried out at the study site, RS-based history matching can be conducted to reduce the

current static model uncertainty, leading to more accurate future reservoir predictions.

Finally, this study relies on statistical correlations of petrophysical properties developed

from site or analog data, although such correlations may fail to be representative for

locations away from the observed data [92]. Given our sensitivity analysis results (e.g.,

porosity-permeability transform is important when model complexity is accounted for),

future research will aim to develop accurate and site-specific predictive petrophysical

relations based on data such as sediment texture, composition, cement attributes, and

burial history reconstruction [78].

Future work can also access other sources, for example, the uncertainty of estimated

coefficients in the RS function. Clearly there could be multiple possible models for a

second-order polynomial RS function, thus these coefficients in the RS function are un-

certain. Confidence intervals of these coefficients could be established using statistical

tests. Another uncertainty of particular interest could be process uncertainty in mod-

eling CO2 storage in geological formations, e.g., fluid/rock reactions, coupled flow and

geomechanics, coupled flow with heat transfer (the energy balance equation and the

flow equation are solved together), density-driven convection by CO2-saturated brine,

etc. These processes may exert profound influences on the fate of CO2 flow, storage, and

possible leakage from the reservoir, although they have not been evaluated in this study
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where simulation runs are conducted with a single simulator (i.e., GASWAT). GASWAT

cannot currently model many of these processes, though its capability may expand with

time as we gain insights concerning the importance of these processes. For example,

given a fixed petrophysical model, CO2 storage can be simulated using different simula-

tors with different levels of capabilities [93]. The results can be analyzed with the DoE

to assess the importance of individual or combined processes (e.g., flow is coupled with

reaction, which is further coupled to thermal and/or geomechanical processes). Such an

analysis can be accomplished in future research to better understand process uncertainty

and their importance in determining the fate of CO2 in the subsurface. Conclusions
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Example Script of Eclipse 300

GASWAT simulation

RUNSPEC

TITLE

BASE CASE STRUCTURAL

WELLDIMS

1 15 2 1 /

START

1 JAN 2011 /

GASWAT

PETOPTS

INITNNC /

MONITOR

UNIFIN

UNIFOUT

FIELD

68
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DIMENS

126 162 15 /

–used for debug

–NOSIM

SATOPTS

HYSTER/

REGDIMS

1 /

TABDIMS

2 1 60 5* 1 1* 1* 1* 1 /

COMPS

2/

NSTACK

50/

AQUDIMS

– 4* analytical-aquifers connection-blocks

4* 6 2430 /

—————————————————————-

GRID

INCLUDE

’CASE GRID.INC’ /

INCLUDE

’CASE GRID.GRDECL’ /

INCLUDE

’CASE PROP PERMX.GRDECL’ /

INCLUDE

’CASE PROP PERMY.GRDECL’ /
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INCLUDE

’CASE PROP PERMZ.GRDECL’ /

INCLUDE

’CASE PROP PORO.GRDECL’ /

INCLUDE

’CASE PROP NTG.GRDECL’ /

—————————————————————

EDIT

—————————————————————

PROPS

EOS

PR/

–Reservoir salinity (unit in molarity)

SALINITY

1.9013/

–Regional Reservoir salinity

SALINITR

1.9013/

EHYSTR

1* 0 1* 1* KR/

GSF

– GASWAT case (primary drainage curve of gas phase)

– Gas saturation function Hystersis(drainage cruve)

–TABLE 1: drainage curve of gas phase for saline formation

– Source: SPE99326,Viking formation, data is modified

– Sg krg,drn

0.000 0.0000 0

0.060 0.0000 0

0.152 0.0230 0

0.205 0.0350 0

0.273 0.0370 0
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0.342 0.0570 0

0.430 0.0980 0 /

–table 2 (imbibition curve)

– Gas Bounding imbition curve(different from the primary drainage cruve)

– Sg’ krg, ibm

0.200 0.0000 0

0.320 0.0080 0

0.340 0.0180 0

0.360 0.0310 0

0.380 0.0460 0

0.400 0.0630 0

0.430 0.0980 0 /

WSF

– for GASWAT case (primary drainage of water phase)

–TABLE 1: drainage curve of water phase for saline formation

– Source: SPE99326,(Viking formation)

– Sw krw

0.570 0.0000

0.658 0.0960

0.727 0.1860

0.795 0.2660

0.848 0.3410

0.940 0.5280

1.000 1.0000 /

– bounding imbibition (assume the same as the primary drainage curve)

– table 2 (imbibition curve)

– Sw Krw

0.570 0.0000

0.658 0.0960

0.727 0.1860

0.795 0.2660

0.848 0.3410

0.940 0.5280
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1.000 1.0000 /

CNAMES

CO2 H2O /

TCRIT

548.46 1165.14 /

PCRIT

1071.33808767417 3197.84866773523 /

VCRIT

1.50573524 0.89703376 /

ZCRIT

0.27408 0.22942 /

VCRITVIS

1.50573524 0.89703376 /

ZCRITVIS

0.27408 0.22942 /

MW

44.01 18.015 /

ACF

0.225 0.344 /

OMEGAA

0.457235529 0.457235529 /
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OMEGAB

0.077796074 0.077796074 /

SSHIFT

-0.0427303384582379 0.014263521541762 /

BIC

0.0 /

PARACHOR

78 53.1 /

ROCKOPTS

1* 1* ROCKNUM /

ROCK

5801.5 9.8141E-007 /

————————————————————–

REGIONS

SATNUM

306180*1 /

IMBNUM

306180*2 /

ROCKNUM

306180*1 /

PVTNUM

306180*1 /

FIPNUM

306180*1 /

—————————————————————-



Appendix A. Example script of Eclipse 300 GASWAT simulation 74

SOLUTION

INCLUDE

’CASE SOL PROPS.GRDECL’ /

SWAT

306180*1 /

SGAS

306180*0 /

ZMF

306180*0

306180*1 /

AQUCHWAT

1 14272.56 PRESSURE 10126.77 20 1* 1* 2* YES /

2 5151.82 PRESSURE 6096.34 20 1* 1* 2* YES /

3 5151.82 PRESSURE 6096.34 20 1* 1* 2* YES /

4 0 PRESSURE 3819.76 20 1* 1* 2* YES /

5 5151.82 PRESSURE 6096.34 20 1* 1* 2* YES /

6 5151.82 PRESSURE 6096.34 20 1* 1* 2* YES /

/

AQUANCON

–We mostly care about 3 & 4 (brine leakage)

4 126 126 1 162 1 15 I+ 2* YES /

1 1 1 1 162 1 15 I- 2* YES /

5 1 126 1 1 1 15 J- 2* YES /

2 1 126 162 162 1 15 J+ 2* YES /

6 1 126 1 162 15 15 K+ 2* YES /

3 1 126 1 162 1 1 K- 2* YES /

/

—————————————————————-

SUMMARY
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RUNSUM

–Aquifer influx rate

AAQR

/

–Cumulative aquifer influx

AAQT

/

–Aquifer pressure

AAQP

/

–Res Volume Injection Rate

FVIR

–Res Volume Injection Total

FVIT

–Gas Injection Total at well

WGIT

/

– Molar amount of specified component dissolved in water

FCWM

1 / – component 1 (CO2)

– Molar amount of specified component mobile in gas

FCGMM

1 /

– Molar amount of specified component trapped in gas

FCGMI

1 /

– Component Molar Injection Total

FCMIT

1 /

PERFORMA

FGIPL – Gas in place (liquid phase) solution gas

FGIPG – free gas in place

FGIP – total gas in place (liquid+gas)

FGIT – total gas injected

FGIR – Field gas injection rate

FWCD – Dissolved in water

FGCDI –immobile gas

FGCDM –mobile gas

FPR –Field Pressure
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–Flowing bottom hole pressure

WBHP

/

–regional gas in place, but we have only 1 region

–RGIP

–/

–AACMR

–2 1 /

–/

—————————————————————-

SCHEDULE

TSCRIT

– INIT MIN MAX

– STEP STEP STEP

0.1 1E-3 1* /

CVCRIT

– 1* MAX 1* MAX

– NEWTON LINEAR

1* 1* 1* 150 /

RPTSCHED

/

RPTRST

–XMF Liquid CO2 composition

–AQSP output of aqueous speciation

BASIC=2 FIP TEMP PRES SGAS SGTRH SWAT XMF XFW CFW YMF YFW

DENG DENW VWAT VGAS AQPH AQSP /

WELSPECS

–’INJ1’ is the simulation well name used to describe flow from ’INJ1’

INJ1 ’GROUP 1’ 38 112 1* GAS 3* NO /

/



Appendix A. Example script of Eclipse 300 GASWAT simulation 77

COMPDAT

INJ1 38 112 1 1 OPEN 1* 0.1161 0.62500 97.48 0.00 1* Z 119.16 /

INJ1 38 112 2 2 OPEN 1* 0.1286 0.62500 107.91 0.00 1* Z 119.16 /

INJ1 38 112 3 3 OPEN 1* 0.1630 0.62500 136.78 0.00 1* Z 119.16 /

INJ1 38 112 4 4 OPEN 1* 0.4046 0.62500 339.54 0.00 1* Z 119.16 /

INJ1 38 112 5 5 OPEN 1* 1.2726 0.62500 1068.04 0.00 1* Z 119.16 /

INJ1 38 112 6 6 OPEN 1* 0.8120 0.62500 681.53 0.00 1* Z 119.16 /

INJ1 38 112 7 7 OPEN 1* 0.1138 0.62500 95.52 0.00 1* Z 119.16 /

INJ1 38 112 8 8 OPEN 1* 0.1216 0.62500 102.06 0.00 1* Z 119.16 /

INJ1 38 112 9 9 OPEN 1* 0.1462 0.62500 122.70 0.00 1* Z 119.16 /

INJ1 38 112 10 10 OPEN 1* 0.0851 0.62500 71.42 0.00 1* Z 119.16 /

INJ1 38 112 11 11 OPEN 1* 0.0029 0.62500 2.48 0.00 1* Z 121.59 /

INJ1 38 112 12 12 OPEN 1* 0.0031 0.62500 2.64 0.00 1* Z 121.59 /

INJ1 38 112 13 13 OPEN 1* 0.0028 0.62500 2.39 0.00 1* Z 121.59 /

INJ1 38 112 14 14 OPEN 1* 0.0028 0.62500 2.34 0.00 1* Z 121.59 /

INJ1 38 112 15 15 OPEN 1* 0.0027 0.62500 2.30 0.00 1* Z 121.59 /

/

GRUPTREE

’GROUP 1’ FIELD /

/

WELLSTRE

– CO2 H2O

seqCO2 1.0 0.0 /

/

WINJGAS

INJ1 STREAM seqCO2/

/

WCONINJE

INJ1 GAS 1* RATE 19300.00 1* 10973.4120 /

/

DATES

1 JAN 2021 /

/
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DATES

1 JAN 2031 /

/

DATES

1 JAN 2041 /

/

DATES

1 JAN 2051 /

/

DATES

1 JAN 2061 /

/

WCONINJE

INJ1 GAS SHUT RATE 0.00 1* 10973.4120 /

/

TSCRIT

– INIT MIN MAX

– STEP STEP STEP

0.1 1E-3 365 /

DATES

1 JAN 2070 /

/

DATES

1 JAN 2090 /

/

DATES

1 JAN 2130 /

/

DATES

1 JAN 2170 /

/

DATES

1 JAN 2210 /

/

DATES

1 JAN 2250 /

/

DATES

1 JAN 2290 /
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/

DATES

1 JAN 2330 /

/

DATES

1 JAN 2370 /

/

DATES

1 JAN 2410 /

/

DATES

1 JAN 2450 /

/

DATES

1 JAN 2490 /

/

DATES

1 JAN 2530 /

/

DATES

1 JAN 2570 /

/

DATES

1 JAN 2610 /

/

DATES

1 JAN 2650 /

/

DATES

1 JAN 2690 /

/

DATES

1 JAN 2730 /

/

DATES

1 JAN 2770 /

/

DATES

1 JAN 2810 /
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/

DATES

1 JAN 2850 /

/

DATES

1 JAN 2890 /

/

DATES

1 JAN 2930 /

/

DATES

1 JAN 2970 /

/

DATES

1 JAN 3010 /

/

DATES

1 JAN 3050 /

/

DATES

1 JAN 3090 /

/

DATES

1 JAN 3130 /

/

DATES

1 JAN 3170 /

/

DATES

1 JAN 3210 /

/

DATES

1 JAN 3250 /

/

DATES

1 JAN 3290 /

/

DATES

1 JAN 3330 /



Appendix A. Example script of Eclipse 300 GASWAT simulation 81

/

DATES

1 JAN 3370 /

/

DATES

1 JAN 3410 /

/

DATES

1 JAN 3450 /

/

DATES

1 JAN 3490 /

/

DATES

1 JAN 3530 /

/

DATES

1 JAN 3570 /

/

DATES

1 JAN 3610 /

/

DATES

1 JAN 3650 /

/

DATES

1 JAN 3690 /

/

DATES

1 JAN 3730 /

/

DATES

1 JAN 3770 /

/

DATES

1 JAN 3810 /

/

DATES

1 JAN 3850 /
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/

DATES

1 JAN 3890 /

/

DATES

1 JAN 3930 /

/

DATES

1 JAN 3970 /

/

DATES

1 JAN 4010 /

/

Example script of Eclipse 300 GASWAT simulation
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