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Abstract

Department of Geology and Geophysics

Master of Sciences

by Dongdong Wang

The scope of this research is to investigate the applicability of a new physically based

inverse method [1]for aquifer flow inversion, to significantly improve the computation

efficiency of the stochastic inverse modeling, and to incorporate uncertainty measures

in the inversion outcomes. The problem considered is to invert two-dimensional steady-

state flow in a heterogeneous groundtruth model (500× 500 grid) with two hydrofacies.

From the true model, an increasing number of wells were sampled to obtain facies types,

hydraulic heads, and fluxes. Based on experimental indicator histograms and directional

variograms computed from the sampled facies, Sequential Indicator Simulation (SIS) was

employed to generate 100 hydrofacies realizations with a 100 × 100 geostatistical grid.

Each realization was conditioned to the facies measurements at the wells for which a

set of estimated hydrofacies hydraulic conductivities (Ks), flow fields, and boundary

conditions (BCs) were estimated using the physically based inverse method.

Because of the parameter quantification, a large number of inverse simulations are need-

ed for which computation efficiency is critical. However, because inverse problems can

be ill-posed given insufficient or inaccurate observation data, the inversion systems of

equations can exhibit high condition numbers. In such cases, inverse solution time

was greatly increased, for which robust, accurate, and efficient solution techniques (i.e.,

preconditioning and solvers) are needed. First, to improve the condition number of the

inversion coefficient matrix, coordinate transform, scaling, and Gaussian Noise Perturba-

tion (GNP) techniques were implemented, which results in a speedup of 200X by calling

the same serial iterative solver. Some model reduction studies were also conducted and

discussed. Then, to further improve the speed of the iterative solution therefore the

inverse problem can be scaled up to much larger grids, a highly scalable parallel solver

was developed and implemented. With the parallel solver, it took only 150s (CPU time)

to invert a 500× 500 problem with 100 processors. A parallel scaling study further re-

veals that ideal speedup was achieved in solving the inversion matrices Moreover, model

reduction is explored to understand the computation-resolution trade-off in inversion.

Here, resolution reduction and equation reduction were both explored. Using error-free
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observation data sampled from 12 wells (e.g., facies types, hydraulic heads, and fluxes)

of a groundtruth model, inversion was carried out with three grids with different hetero-

geneity resolutions, i.e., a geostatistical facies grid (100×100) generated with Sequential

Indicator Simulation (SIS), a Simulated Annealing (SA) grid (100×100) with smoothed

heterogeneity, and a coarsened gird (50 × 50) based on the SA grid. Using the serial

iterative solver, the average CPU time for solving these inverse problems was 550s (SIS),

450s (SA), and 330s (coarsened). Compared to the true values, the distributions of Ks

exhibit increasing biases: 2%(SIS), 1.6% (SA), 3.5% (Coarsened); the bias of recovered

BCs was 0.3% (SIS), 3% (SA), 6% (coarsened).

After computation improvement, uncertainty quantification becomes feasible. The accu-

racy of inversion is evaluated against: (a) heterogeneity representation and resolution of

the inverse problem, (b) observation data quality, and (b) data quantity. Three inverse

grids, an SIS grid, a Simulated Annealing (SA) grid with smoothed facies distribution,

and a Coarsening gird (50× 50), were first inverted using the same error-free data from

12 wells. Conductivities were estimated with a precision of ±0.15% (SIS), ±1.5% (SA),

±3% (coarsened) of their true values, respectively. Compared to the true values, the

distributions of Ks also exhibit increasing biases: 0.3% (SIS), 3% (SA), 6% (coarsened).

In terms of BC recovery, the uncertainty region was within ±3% (SIS), ±3.5% (SA),

and ±1.5% (coarsened) of the true BC, and the bias was 2% (SIS), 1.5% (SA), 3.5%

(coarsened). Next, inverse problems (with the SIS grid using the same 12 sampling

wells) were solved using observed hydraulic heads that were corrupted by increasingly

higher measurement errors (0, ±2%, ±5% of the total head variation of the true model).

The resultant uncertainty in K estimations was ±7.5% (0), ±9.5% (2%), and ±13%

(5%) of the true values, respectively, with increasing biases of 0.3% (0), 6% (2%), and

±29% (5%). The uncertainty of the estimated BCs was ±2.17% (0), ±2.18% (2%) and

±2.02% (5%) of the true BC. Finally, using both static and dynamic(error-free) data

sampled from a decreasing number of wells (12, 6, 3), SIS-based facies simulation was

carried out and inverted with decreasing data support. The computed Ks were spread

over an uncertainty region of ±7.5% (12 wells), ±11% (6 wells), ±19% (3 wells) of their

true values, while the accuracy of the recovered BC was within ±3% (12 wells), ±3.17%

(6 wells), and ±2.83% (3 wells) of the true BC. In all problems investigated, when the

measurement errors are small (> ±2%), both the estimated Ks and the recovered BC

are centered on the true solutions from the groundtruth model.

Also, some co-effect analyses were conducted to reveal the importance of each factor
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to different model evaluation criteria, such as model precision (MP) and model accu-

racy (MA). After some quantifications, it is obtained that data quantity always play a

prominent role in MP and MA. Data quality is critical to MA but has limited influence

on MP. The impact of heterogeneity resolution is always mild, which implies the possi-

bility of upscaling and computation-resolution trade-off. In addition, for BCs, different

sections exhibit distinctive model behaviors which were discussed also. In general, ex-

ploration regions always yield lower precision and poor accuracy, but good robustness

to the change of model conditions is also shown in these areas. Finally, decent stability

of the uncertainty of MA and MP makes it possible to predict model behavior using

observed model status information.
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Chapter 1

Introduction

Groundwater plays a prominent role in the water resource distribution on the Earth.

Groundwater is a critical water resource, providing 30% of the total freshwater on the

Earth. In comparison, surface water (all rivers, lakes, soil moisture, and wetlands com-

bined) provides 0.34% of all freshwater, while the remaining freshwater ( 70%) is mostly

locked up in ice and snow at the poles and is inaccessible for use. Apparently, the

aquifers beneath the ground provide the largest sources of drinking water worldwide,

and understanding the distribution and sustainable use of this resource are of high im-

portance.

Some technical challenges, however, make it infeasible to perceive groundwater distribu-

tion pattern physically. First, it is difficult to obtain groundwater data. Groundwater

resources are commonly located at least hundreds of feet beneath the land surface, and

it is indispensable to drill wells for data sampling which requires complex mechanical

techniques. Secondly, the risk of out-of-control water wells limits well drilling and data

sampling. Geological structure is usually fragile and cracks on some formations caused

by well drilling may lead to liquid flush out without control. One of notorious acci-

dent is Gulf of Mexico Oil Spill in 2010. Even if the water spill is not so terrible, the

resultant flood and groundwater contamination will be also severe. Therefore, demand-

ing structural geology analysis is obligatory to well drilling in spite of mature drilling

technology. Thirdly, extremely high expenditure for each well impedes the increase of

sampling wells. Not only does drilling well cost a fortune, but the expenditure of water

well maintenance will be exorbitant as well. Accordingly, economic obstacles limit the

number of monitoring water wells.

1
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Figure 1.1: Forward modeling procedures (above) versus inverse modeling procedures
(below). The bent arrows indicate the modeling procedures.

To address this issue, hydrogeologists borrowed the technical supports from computer

simulation and developed numerical modeling approaches replacing physical measure-

ment to detect groundwater. In terms of computer simulation, affordable expenses of

model development stand out first. Instead of million dollars drilling, computer mod-

eling saves much money as well as takes much less time to obtain accurate subsurface

water distribution patterns. In addition, researchers will take smaller risk if numeri-

cal modeling is employed to test an innovative idea. Hence, numerical modeling based

computer simulation is widely favored by groundwater researchers, and also increasingly

developed by hydrogeological modelers. According to the properties of proposed prob-

lems, principal modeling approaches consist of forward modeling and inverse modeling.

Forward modeling pertains to simulating outputs based on informed input condition-

s and model mechanism. Inverse modeling involves estimating model structures using

groups of input-output data pairs, and thus, it usually refers to parameterization. The

comparison between these two modeling techniques is illustrated by Figure 1.1.

Parameterization on an aquifer is always a critical and challenged topic for hydrogeolog-

ical modelers. In real problems, groundwater modeling usually suffers highly uncertain

understanding of model structures, and thus, hydrogeologists are obligated to confront

with parameterization difficulties when subsurface aquifers are studied. Meanwhile, ac-

curacy and precision of a parameterization model are considerably constrained by limited

access to subsurface, therefore significant uncertainty hinders our ability to use model-

s for water resource management. These facts drive groundwater modelers to explore



Chapter 1. Introduction 3

highly sophisticated inverse models with well-informed and low uncertainty.

Nowadays, more and more inverse techniques were investigated by hydrogeologists. Gen-

erally, these approaches can be categorized into indirect methods and direct meth-

ods. In respect of indirect inverse method, hydrogeologists have comprehensively in-

vestigated this area (see reviews by, e.g., [4][5][6][7][8][9]). According to different

proposed problems, a variety of approaches were put forward, such as imposing pa-

rameter bounds of parameter lumping [10], regularization [11][12][13][14], sample net-

work design[15][16][17][18], reducing model structure error[19], adopting a highly pa-

rameterized or geostatiscial formulation [20] [21][22][23], incorporating static geologic

data[24][25][26], and utilizing auxiliary data such as solute concentration[27][28][29][30],

geophysical measurements[31][32][33][34], and temperature[35][36][37]. Direct methods

are also explored to parameterize subsurface aquifer and becomes noticeable owing to

its mathematical straightforwardness and computational efficiency. Some related explo-

ration studies were accomplished to reveal different problems, such as high sensitivity to

data errors at streamlines[38][39][40], reducing uncertainty through imposing bounds on

data errors[41], higher accuracy with smaller dimension[42], the parameter and observed

data condition for accurate inverse modeling[43]. From the reviews, most research re-

ly on BC and objective function (OF), and both of them induce many problems with

significant uncertainties. Therefore, BC and OF are two bottlenecks for groundwater

modeling research.

Recently, a novel direct method, which is independent from BC and OF, was proposed

by Irsa and Zhang (2012). This approach is developed from a new theory technique,

referred to as stress trajectories element method, in geophysics modeling field. Its so-

lution uniqueness and decent stability to data errors [44][45][46] show its potentials

to be applied in groundwater modeling. Based on this theory and Darcy’s equation-

s, a physically based fundamental solution of inversion is proposed and validated by

both a two-dimensional and a three-dimensional inverse problems based on a hetero-

geneous aquifer with steady state flow[1]. Unlike conventional inverse approaches, this

new method directly incorporates corrupted observed data at measurement locations in

a single step rather than fits and optimizes an objective function using forward simula-

tion and iterative updates. Also, boundary values and hydraulic conductivities will be

assessed instead of being imposed. These breakthroughs definitely render this approach

a standout method. However, its limited investigation field constrains the applicability

of the method to practical problems. First, researched grid sizes are not comparable to

the high resolutions of real problems. The maximum size of tested problem is 32 × 32
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which is far from large enough. Secondly, the proposed fundamental solution relies on

the knowledge of the ratio between different hydraulic conductivities which is rarely

obtained in real world. Thirdly, computation performance is still not impressive even if

it is referred to be computationally efficient. Finally, uncertainty quantification study

has not been further explored, and thus, the users fails to have a clear picture for the

risks of this method.

This research aims to address these issues and investigate the applicability of the phys-

ically based method to large-scale problems. In terms of large aquifer modeling, limited

observed data source usually hinders the model development since data sampling re-

quires extremely expensive well drilling. Accordingly, synthetic modeling approaches

are widely favored by hydrogeology modelers to test some innovative ideas. Here, a

synthetic confined aquifer was developed for inverse research and forward modeling was

employed. Chapter 2 will describe the entire implementation procedures as well as

discuss and address modeling issues.

The stochastic inversion modeling will be mainly discussed in Chapter 3. This research

will modify the physically based fundamental solution [1] to develop a model indepen-

dent from the ratio between different hydraulic conductivities, and thus, each hydraulic

conductivity can be inverted independently and simultaneously. Data integration is

implemented to conduct a stochastic inversion. Geostatistical modeling was adopted to

integrate static hydrofacies observed data; dynamic hydraulic data were integrated using

the new physically based approach. A family of realizations were generated to examine

the model accuracy, precision, and uncertainty. Inverted Ks and BCs will be examined

to evaluate the quality of inverted results. Uncertainty quantification study in Chapter

6 will also rely on the similar analysis scheme.

The investigation study on a large aquifer also demands for decent computation per-

formance, and thus, solver improvement will be explored in Chapter 4. Since the com-

putation performance of a solver is highly dependent on a proposed problem, a study

on the properties of our proposed numerical model was conducted to seek the effective

schemes for solver improvement. Based on proposed linear problems, condition num-

bers (CNs) were examined to reveal some important properties of proposed problems,

such as condition, and thus, effective solutions were searched out. In addition to serial

solver research, parallel computing was explored to speed up the computation process.

For a parallel solver, not only do the features of a problem influence solving efficiency,

but parallelization strategies also determine the computation cost. Generally, partition
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method and communication study are two central topics for parallelization research. In

Chapter 4, both of them will be discussed to develop an highly efficient parallel solver.

With an efficient solver, uncertainty quantification was conducted to investigate the

role of different factor in inverse modeling in Chapter 5. Due to data assimilation,

our inverse model incorporates many data sources of which each has influence on model

quality. To improve the model quality, it is necessary to understand the relation between

different data source and modeling outcomes, and then, uncertainty quantification is

involved. Many researchers employed this approach to perceive the reliability of inverse

model, and also developed many effective methods such as Design of Experiment (DoE).

The primary idea is to examine the alterations of model outcomes after a variety of

perturbations on each factor or input source, and then, to reveal the link between the

model parameters and the model outputs. This investigation study mainly fathomed the

roles of three factors, including data quantity, data quality, and heterogeneity resolution,

in inverse model. The uncertainty analysis results helped provide advisable strategies

for data sampling, thus rendering inverse modeling more efficient, inexpensive, precise,

and accurate.



Chapter 2

Forward Modeling

This chapter discusses the approach to develop a synthetic aquifer using forward model-

ing method. Due to high expense of data sampling in real fields, many hydrogeological

modelers usually establish some synthetic models using forward modeling to obtain sam-

pled data and test new ideas. This research also employed this strategy and developed a

synthetic aquifer to sample observed hydraulic data. With respect to forward modeling,

Finite Different Method (FDM) was adopted to conduct simulation and related condi-

tions were specified based on the property of the studied synthetic aquifer. Mass balance

was also examined to validate the aquifer conditions. After the synthetic aquifer was

produced, 12 sampling wells as an example were drilled to obtain observed hydrofacies

categories, hydraulic heads and fluxes at each well location.

2.1 Finite Difference Method

Recently, increasingly many approaches are developed to establish a synthetic model,

such as Finite Difference Method (FDM), Finite Element Method (FEM), and Finite

Volume Method (FVM). Among these methods, FEM and FVM are commonly used

in three dimensional model research; in particular, FVM will be more effective when

the turbulence exists in an aquifer. Concerning our researched problem, i.e., a two

dimensional and steady state confined aquifer, FDM is chosen due its generally efficient

performance and satisfactory simulation outcomes on the similar problems.

FDM commonly yields a linear equation system when the physical condition of an aquifer

is steady-state. For steady-state problems, an equation system is derived from Laplace

6
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Equation (LE) illustrated by Equation 2.1. Since there is no sink or source within the

aquifer, the right hand side (RHS) of the equation system exhibits zeros all the time.

Based on this equation,a linear hydraulic head approximate function is developed using

adjacent four points (Equation 2.2). The estimated location and adjacent observed

locations are illustrated by Figure 2.1. A series of equations focusing on different cells

can be constructed using this fundamental solution, thus resulting in a linear equation

system which is capable of being resolved by appropriate solvers. From the description

of FDM, the computation cost is not demanding, and feasible mesh scheme renders

an equation system easily developed. Hence, FDM is a good choice for steady-state

problem.

∂

∂x
(Kx

∂h

∂x
) +

∂

∂z
(Kz

∂h

∂z
) = 0 (2.1)

hi,j =
1

4
[hi+1,j + hi−1,j + hi,j+1 + hi,j−1] (2.2)

2.2 Synthetic Aquifer Based on Laminar Flow

This research adopted FDM to develop a synthetic steady state confined aquifer as a da-

ta sampling field owing to high data sampling expense in real field. Conventional FDM

requires two input parameters, including hydrofacies patterns and boundary conditions,

and thus, setting these two parameters is a primary step for FDM-based modeling. First,

after several reviews, a published hydrofacies pattern [2] illustrated by Figure 2.2 is as-

signed to true hydrofacies K field since this pattern resembles some true aquifers and its

hydrofacies exhibit good heterogeneity with spatial correlation features, both of which

facilitate the exploration study for the applicability of our innovative method. According

to the hydrofacies pattern, the synthetic matrices were categorized into two hydrofacies:

coarse grained sand and fine grained sand in that a common confined aquifer consists

of these two materials. According to lithology knowledge [47], the hydraulic conduc-

tivities were set to K1 = 1 ft/yr (Silty Sand)and K2 = 10 ft/yr (Clean Sand). Next,

boundary conditions were specified by constant heads and no flow boundary according

to confined aquifer conditions. In real world, lateral flows are commonly exhibited with-

in aquifers, and thus, constant heads were assigned to the vertical boundary conditions

and horizontal boundaries were set to no flow.
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Figure 2.1: Primary algorithm description for FDM. The center cell is estimated
location and neighbor cells are used to assess the value at the center cell. All of the
values are hydraulic heads. Here, the square mesh is adopted and ∆x and ∆z are equal.

Since our research is focused on Darcy flow study, laminar conditions are required to

follow, which is reflected by Reynolds number (Equation 2.3). Based on the architecture

of the aquifer, the Reynold’s number was calculated to 4, which meets laminar condi-

tion. After the condition setting is complete, FDM is ready to simulate the hydraulic

conditions of this aquifer which includes hydraulic heads and fluxes.

Re =
vDH

ν
(2.3)

DH denotes the hydraulic diameter of the pipe. Here, according to the property of

porous media, i.e., sandstones, D50 is searched out and chosen as the DH value. v is the

mean velocity of a fluid. Considering the lateral flow pattern of the aquifer, horizontal

flux is dominant at velocity components and approximates the velocity as 3.60 × 10−4

ft/yr. ν represents the kinematic viscosity of a fluid. The researched fluid is viewed as

pure water, and then, the ν is 1.004× 10−6m2/s.
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Figure 2.2: The hydrofacies pattern [2] for synthetic aquifer. White hydrofacies is
Clean Sand and black region denotes Silty Sand. The four corners are indexed by the

letter of alphabet for BC research.

In FDM-based forward modeling, the selection of grids plays another prominent role in

the quality of simulated results. Since FDM is a discretized solution to a continuous

problem, the density of grid cells determines approximate errors, or called discretization

errors, which can usually be reduced by using grid refinement. In terms of this problem,

the grid cell density was set to 500×500 to ensure relatively low discretization errors.

From mass balance checking results (Figure 2.5), the layer-based mass balance is 10−7

which indicates the discretization error is reduced to the order of minus seven.

Within the synthetic aquifer, observed hydraulic data were sampled using different s-

trategies. Concerning common hydrofacies patterns in real world, sampling wells were

vertically drilled and horizontally distributed (an example based on illustrated by (Fig-

ure 2.3)). Hydrofacies categories, hydraulic heads and fluxes were all sampled at each

well location. Analogical to a real problem, hydrofacies category data are more than hy-

draulic head data which are denser than flux data resulting from increasingly demanding

technical requirement. The sampled data points are illustrated by (Figure 2.4). Using
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Figure 2.3: Synthetic aquifer based on later flow. The hydrofacies pattern, no-flow
boundaries, and constant hydraulic heads are specified. The simulation approach is

FDM implemented by MODFLOW2000.
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Figure 2.4: Sampled Hydraulic Heads and Fluxes. The parallel straight lines denote
the drilling wells and dots are sampling locations. Sampled heads are denser than

fluxes.
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Figure 2.5: Model mass balance test. The percent error indicates the model quality.
Here, the error is 10−7 which indicates the simulated outcomes are reliable. The entire

modeling is implemented via GroundwaterVista.

these observation data, different data processing techniques, called data integrations,

were conducted to help establish inverse models and parameterize the studied aquifer.

This information will be discussed in next chapter.



Chapter 3

Data Integration and Stochastic

Inversion

This research adopted data integration and stochastic simulation to address inverse

modeling issue. Due to the demand for sufficient observed data, hydrogeological modelers

explored many approaches to incorporate more existing data sources. Data integration,

as one of the effective methods, is increasingly used for hydrogeological modeling. From

the review of papers, this technique has been fully developed and employed to address

many inverse problems [48][49][50]. The technique generally incorporates hydrofacies

measurements and observed hydraulic data. This research employed this conventional

approach and viewed hydrofacies and hydraulic data as static data and dynamic data.

Then, stochastic inversion was conducted using static data integration and dynamic data

integration.

For stochastic inversion, stochastic simulation is employed in this research. This ap-

proach adopts Monte Carlo method to model parametric uncertainties. Owing to lack

of the knowledge of true hydrofacies patterns, to understand the uncertainty is taking on

an importance. Geostatistics, a branch developed from this field, utilizes spatial corre-

lation information to estimate spatial data distributions. Variogram-based Geostatistics

and Multiple Point Statistics dominant Geostatistics modeling sphere.

This chapter will combine these two tactics to resolve inverse problems. With respect

to data integration, Variogram-based Geostatistics (VG) is singled out as the approach

to incorporate static hydrofacies data while physically-based inverse method [1] is im-

plemented and developed to integrate dynamic hydraulic data.

12
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3.1 Data Integration

Data integration is increasingly widely in use to improve the quality of groundwater

modeling. In hydrogeological modeling, data deficiency always affects good model reli-

ability. Many methods are adopted to conquer this obstacle, such as data assimilation

[51]. This method effectively break through the bottleneck of limited data sources in

that the observed data from different fields, such as lithology and seismology, will be

integrated to calibrate a model. The quality of the model is undoubtedly much improved

while the expense of data sampling is dramatically cut down.

In this research, two data sources are integrated, including static data and dynamic

data. Given the study period, hydrofacies ought to be of no important change, thus

facies data are considered as static data; hydraulic heads and fluxes are categorized

to dynamic data since they should be changeable in spite of steady-state condition.

Corresponding integration strategies are employed to consolidate different data sources.

3.2 Static Data Integration

Static data integration will assimilate hydrofacies data. Usually, most of geophysical

sampling data will be taken as static data sources, and here, static data are referred to

hydrofacies data. In geological sense, the facies should be changeable due to sedimentary

process or metamorphism. In fact, these geological processes commonly involve million

year time scale; however, our research period is only focused on the hundred year scale.

Therefore, in our researched field, hydrofacies data are able to be taken as constants

which do not change with time, and will be integrated as static data sets.

Regarding avenues towards static data integration, hydraulic conductivities were em-

ployed to create a bridge between hydrofacies and quantitative modeling. Hydrofacies

data are commonly integrated using hydraulic conductivity or permeability. Concerning

our fundamental solution developed based on Darcy’s law, hydraulic conductivity based

integration is more direct and efficient. Different from some conventional methods, this

approach viewed hydraulic conductivities as unknowns and estimated these parame-

ters using an inverse model. Accordingly, all hydrofacies categories were identified by

indicators and Ks were fully coupled with hydraulic head functions.
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Based on the hydrofacies indicators, Variogram-based Geostatistics (VG) is adopted to

assess hydrofacies distribution patterns. There are many popular approaches in Geo-

statistical modeling, such as VG and Multiple Point Statistics (MPS)[52]. MPS usually

demands for sufficient data to conduct image training, however, our problem is focused

on limited sampled data, and accordingly, VG was adopted as a more effective approach

for precise estimation.

VG is variogram based approach and variogram model(VM) is premise. In terms of

VM, experimental variogram calculation is required and the method is illustrated by

Equation 3.1.

ˆγ(h) =
1

2N(h)

∑
(i,j)∈N(h)

(Zi − Zj)
2

(3.1)

After experimental variogram calculation, it is necessary to select a representative VM

function to fit the variogram scatter points. Primary VM functions include linear model

(Equation3.2), Gaussian model(Equation3.3), exponential model(Equation3.4), spheri-

cal model(Equation3.5), hole-effect model(Equation3.6), and so forth. Using these mod-

els, spatial correlation can be approximated everywhere within the studied aquifer and

numerical simulation at each location is feasible.

γ(h) = C0 +
h

A
(3.2)

γ(h) = C0 + C1[1− e(− h
A
)2 ] (3.3)

γ(h) = C0 + C1[1− e(− h
A
)] (3.4)

γ(h) =

{
C0 + C1[

3
2( h

A)− 1
2( h

A)3] if h < A

C0 + C1 if h ≥ A
(3.5)

γ(h) = C0 + C1[1− e(− h
a
)ċos(

h

b
)] (3.6)
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Figure 3.1: Variogram model based on 12 wells. The dot lines describe the experi-
mental variograms and the curves are generated from fitting models.

In VG simulation research, Sequential Gaussian Simulation (SGS) and Sequential In-

dicator Simulation(SIS) are widely in use since both of them are capable of helping

understand the reliability of each estimated result. Usually, SGS is adopted when ob-

served variables are continuous; SIS is employed to resolve discrete problems. In this

research, hydraulic conductivity categories instead of continuous values and indicator

based discrete measurements are exhibited, and thus, SIS is chosen to implement se-

quential simulation. With respect to SIS, several necessary parameters are required to

ensure the reliability of simulation results, including variogram models, indicator his-

tograms, and Kriging data amounts.

A case study is directed using the sampled hydrofacies category data from Chapter 2.

First, two hydrofacies were indexed by 1 and 0(white facies denoted by 1 and black

facies denoted by 0), and then, indicator based variogram modeling is conducted. An

exponential VM is selected to fit the experimental variograms along horizontal direction

and vertical direction (Figure 3.1). The VM is yielded illustrated by Equation3.7.

γ(h) =

{
0.035 + 0.24[1− e(− h

60
)] h ≤ 48 along horizonal direction

0.035 + 0.24[1− e
(− h

4
)
] h ≤ 50 along vertical direction

(3.7)

Next, SIS will be readily implemented using GSLIB [53] open source code. GSLIB is open

source code pool developed by Stanford and aims to support spatial modeling research.

From this pool, SIS simulation code is obtained; however, some input parameters are

still required for its implementation. Variogram model is the first and foremost one.

The second important parameter is an experimental indicator histogram. After related
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Figure 3.2: SIS realization based on 12 wells. Three of the 100 realizations are listed
here. Column-row based coordinates are adopted.
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calculation, the percentages are 0.504 and 0.496 for hydrofacies category 0 and category

1, respectively. Finally, the amount of Kriging data for each estimated point is also

needed. From simulation experiments, the number between 15 and 25 is commonly used

to simulate a 100× 100 problem, and then, 20 is selected here. Under these conditions,

SIS is conducted to simulate 100 realizations as a set of simulation outcomes. Selected

realizations are illustrated by Figure 3.2. From the texture of the images, some noisy

data are induced at the interface regions due to nugget effect.

3.3 Dynamic Data Integration

This section will discuss dynamic data integration. Concerned dynamic data source

includes observed hydraulic heads and fluxes. Although researched problem is a steady

state model, hydraulic conditions are usually transient and hydraulic heads and flux-

es are dynamically changed in real world. Accordingly, observed hydraulic heads and

fluxes, as dynamic data, are integrated using a fundamental solution. Generally, integra-

tion solution involves some objective functions from the reviews [54][55]. This research

adopted and modified a latest physically based method[1] to assess hydraulic param-

eters, such as K and hq. This method is independent from an OF and derived using

collocation method. Based on collocation equations and observed data equations, an

over-determined linear equation system is developed and solved, and then, hydraulic

head parameters and each K are obtained. In particular, some modification on the

fundamental solution renders this research solve each K simultaneously without the

knowledge of the ratio between them.

The fundamental solution of inversion is derived from steady-state groundwater flow

equations using collocation method. The equation describing 2D steady-state ground-

water flow without source/sink term is:

∇ · (q) = 0

q = −K(x, z)∇hq
(3.8)

where ∇ is gradient operator, h is hydraulic head, and q is Darcy’s flux. According to

the primary flow equation, a fundamental solution of inversion is developed based on a

quadratic function listed as below:
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h̃q(x, z) = a0 + a1x+ a2z + a3xz + a4(x
2 − z2)

q̃x(x, z) = −Kx(a1 + a3z + 2a4x)

q̃z(x, z) = −Kz(a1 + a3x− 2a4z)

(3.9)

h̃q denotes approximate hydraulic head based on flux q. q̃x indicates the flux along x axis

direction. q̃z is the flux along z axis direction. ai denotes hydraulic head parameters.

x and z represent coordinates based on Cartesian Coordinate System. K is a tensor

referring to hydraulic conductivity.

According to the quadratic function based fundamental solution, a linear equation sys-

tem was developed to estimate hydraulic head parameters and hydraulic conductivities.

The primary idea is to construct continuity equations and observed data equations. The

continuity equations are constructed in following way:

δ(pj − ε)(K1h̃
Cm
q (xj , zj)−K1h̃

Cn
q (xj , zj)) = 0

δ(pj − ε)(K2h̃
Cm
q (xj , zj)−K2h̃

Cn
q (xj , zj)) = 0

δ(pj − ε)(q̃Cm
n (xj , zj)− q̃Cn

n (xj , zj)) = 0

δ(pj − ε)(q̃Cm
t (xj , zj)− q̃Cn

t (xj , zj)) = 0 (when KCm = KCn)

(3.10)

δ(pj − ε) is the Dirac delta weighting function. In spatial science, it is related to the

sensitivity of the location. Since this work is still on-going, this value will be set based

on equations[1]. Ki denotes the hydraulic conductivity of the ith hydrofacies. q̃Ci
n is the

normal flux at Ci cell and q̃Ci
t is the tangential flux at Ci cell.

The observed data equations are established using the following method:

δ(pj − ε)(Kih̃
Cm
q (xj , zj)−Kih̃

Cm
obs (xj , zj)) = 0

δ(pj − ε)(q̃Cm
n (xj , zj)− q̃Cm

n(obs)(xj , zj)) = 0

δ(pj − ε)(q̃Cm
t (xj , zj)− q̃Cm

t(obs)(xj , zj)) = 0

(3.11)

δ(pj − ε) is the Dirac delta weighting function. In spatial science, it is related to the

sensitivity of the location. Since this work is still on-going, this value will be set based

on equations[1]. Cm denotes the cell where observed data are located. Ki denotes the

hydraulic conductivity of the hydrofacies within Cm cell. q̃Cm
n is the normal flux at Cm
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cell and q̃Cm
t is the tangential flux at Cm cell. q̃Cm

n(obs) is the observed normal flux at Cm

cell and q̃Cm

t(obs) is the observed tangential flux at Cm cell.

An over-determined linear equation system is developed base on the fundamental so-

lution. Generally, OF based inverse method constrains the solution to satisfy some

optimistic conditions, and then, the local optimized solution will be found. Our method

also optimized the solutions; however, there is no OF in the inverse model since ob-

served data equations established in the inverse equation system can constrain a series

of continuity equations and calibrate inverse solutions. Therefore, this direct method

is capable of inverting parameters more efficiently based on the simultaneous equations

which can be written as:

A · x ≈ b (3.12)

Here, approximated equal sign was adopted instead of absolute equal sign since an over-

determined equation system usually yields a series of approximated solutions rather than

a unique solution. According to the approximation property, some numerical techniques

were adopted to improve computation performance, and then, uncertainty quantification

becomes readily conducted. The related topics will be discussed in the Chapter 4.

Stochastic inversion is readily obtained after two data integrations. The primary scheme

is to solve each established equation system using each geostatistics realization (SIS re-

alization), which involves 100 equation systems will be solved, and then, the accessed

results will be collected, organized, and interpreted. Since equation systems are devel-

oped from continuity equations and data equations, their solutions will be determined

by SIS realizations and data sources. SIS realizations refer to heterogeneity resolutions

and data source exhibits data quality and data quantity, so the model outcomes depend

on data quantity, data quality, and heterogeneity resolution. In respect of these factors,

uncertainty analysis was conducted and the work will be discussed by Chapter 6. Here,

these three factors are set to 12 wells, no error and 100×100 geostatistics grid (relatively

high resoltuion). The correspondent estimated results are presented, including inverted

Ks (Figure 3.3)and estimated hydraulic head BCs (Figure 3.4). The reasons why these

two results are examined include that K is model calibration criterion which reflects the

quality of inverse model, and that the flow pattern within an aquifer is determined and

can be evaluated by inverted BC results.
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Figure 3.3: Estimated Ks using physically based inverse model. The histograms
describe inverted results which are centering at the true values.

From the inverted results, Ks are centered at true values. The center of the inverted

K1 distribution lies at 1 ft/yr and the histogram of inverted K2s is centered at 10

ft/yr. Specifically, more than 80 percent of estimated K1s spread over the uncertainty

region of ±5% of the true value; more than 90 percent of estimated K2s spread over the

uncertainty region of ±2.5% of the true value. Both of them manifest that the accuracy

of inverse model is decent and the precision is high. In particular, assessed K2s exhibit

higher precision which indicates high stability to the perturbation of geostatistics grids;

compared to K2, K1 is more sensitive to the change of heterogeneity resolution resulting

from stochastic simulation which implies that the K1 is more effective to evaluate and

calibrate the inverse model.

With respect to BCs, inverted conditions are distributed around the true conditions and

lie within the uncertainty region of ±3% total head variation (THV). The recovered BCs
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Figure 3.4: Assessed BCs using physically based inverse model. The letter of alphabet
denotes the boundary corners of studied domain. Estimated BCs are located at the

center of a group of resultant BC lines.

are also basically against the true condition. Especially, the Section a-b yields a larger

region of uncertainty. This outcome is given rise to by extrapolation which usually

exhibits larger uncertainty than interpolation. Also, compared to resultant Ks, BCs

exhibit stronger stability to hydrofacies pattern variations and better assessed results.

From the analysis above, both of the resultant distributions are centered at true values

with decent uncertainty region. These facts validate the success of the physically based

stochastic inversion, including correctly estimating the Ks and the BCs even if some

uncertainty exists in the modeling which will be discussed by Chapter 6.



Chapter 4

Computation Optimization

Computation performance bottlenecks the development of hydrogeological modeling re-

search. A practical problem usually require high resolution representation which de-

mands for expensive time cost, so the efficiency of a model is closely linked to its appli-

cability to real problems. Unfortunately, the decent outcomes of hydrological models are

usually overshadowed by the deficiency of computation performance. To break through

this bottleneck, this research explored some computation strategies to speed up the

solver using numerical techniques and parallel computing. First, iterative solver stood

out after the comparison study between direct solvers and iterative solvers. Next, itera-

tive solver based serial solver improvement was conducted. CN issue was discussed and

some schemes were employed to limit this number, thus accelerating the convergence of

the solver and improving its stability to data error. With respect to parallel solver, scal-

ability study was conducted and some partition strategies were explored to implement

and develop a highly scalable parallel solver. After the parallelization, the computation

time was reduced by order of magnitude.

4.1 Iterative Solver and Direct Solver

Our inverse problem is an over-determinant linear equation system. Generally, two

categories of solvers are in use to solve the problem of this kind, including direct solvers

and iterative solvers. For a direct solver, inverse operations are conducted directly using

the decomposition of a coefficient matrix. Common methods include LU decomposition,

Gaussian Elimination (GE), Cholesky Method, QR Factoring Method, and so forth.

Iterative solvers start with an initial guess solution and improve the solution each time to

22
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Table 4.1: Comparison between iterative solver and direct solver. The time cost
denotes the computation CPU time and the solutions are model outcomes of which the

true value is 1. The problem size is denoted by the grid size.

Iterative Solver (LSQR) Direct Solver (GE)

Problem Size solution time cost(s) solution time cost(s)

8× 8 0.99991 0.54 0.99991 1.14

16× 16 0.99983 4.68 0.99988 135.4

32× 32 0.99431 40.31 0.99988 30936

find out the correct answer. The solvers widely used include Jacobi Method, Relaxation

Method, Gauss-Seidel Method, SOR Method, and so forth. Generally, direct solvers

yield more precise results but consuming computation cost; iterative solvers save much

more time but sensitive to the condition of a coefficient matrix which determines the

quality of solutions and computation time of a linear equation system. This research

also conducted a comparison to reveal the difference between these two solvers in time

cost (Table 4.1).

This research adopted an iterative solver to solve our linear equation system. The

proposed inverse model exhibits a sparse coefficient matrix and its precision requirement

is not demanding due to uncertainty involved in stochastic process, and thus, iterative

solvers should be a good option to solve our problems. Meanwhile, iterative solvers are

readily parallelized using some strategies, which indicates their potentials for further

speed-up. Based on the structure of the developed coefficient matrix, Least Square QR-

Factoring (LSQR) iterative solver was selected to solve our inverse equation system due

to its high efficiency to sparse matrix problems and a decent stability to ill-conditioned

problems. Furthermore, a parallelization on LSQR has been successfully developed by

Huang et al.(2012)and implemented on some specific sparse matrix problems [56]. It

implies the possibility of the parallelization on the serial solver developed from our

inverse equation system. However, decent computation performance of serial iterative

solvers is a corner stone for a highly efficient parallel solver, and thus, some serial solver

optimizations are required to be explored first.

4.2 Serial Solver Optimization

The condition of a problem plays a prominent role in serial solver optimizations, especial-

ly for a linear iterative solver such as LSQR. If a problem is a well-conditioned problem,

a solver will reach convergence fast and yield a unique correct solution regardless of
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Table 4.2: CNs of a problem set. Problem size refers to inverted grid size and het-
erogeneity pattern is constructed by two lateral hydrofacies layers.

Problem Size 2×2 4×4 8×8 16×16

CN 1.27× 1017 3.28× 1016 2.05× 1016 1.06× 1016

corrupted data input; a ill-conditioned problem will result in the slow convergence or

even convergence failure of an iterative solver as well as adversely affect the stability of a

solver to data errors. As discussed above, evaluating the condition of a problem is critical

to a solver speed-up and it is necessary to understand how to define ”well-conditioned”

or ”ill-conditioned” problem . To address these issues, two numerical analysis concepts

were explored including condition number (CN) and instability.

4.2.1 Condition Number and Instability

CN is a criterion to evaluate the condition of a linear equation system. If a coefficient

matrix exhibits a low CN, the problem should be well-conditioned, or called well-posed,

which implies the weak instability to data perturbation. If a coefficient matrix exhibits

a high CN, the problem should be ill-conditioned, or called ill-posed, which indicates the

strong instability to data perturbation. After the study on our research problem, the

CNs of a problem set were listed by Table 4.2. According to tabulated results and CN

knowledge, it is readily obtained that our problem is severely ill-posed and some schemes

to improve its condition are indispensable. To improve the condition of a problem, it

is primary to understand the causes of ill-posedness, including inherent instability and

induced instability in general [57].

4.2.2 Inherent Instability

Inherent instability refers to the formulation of a problem. Inherent instability features

stem from the proposed method of a problem. A problem is usually proposed by a

researcher under some designed structures, such as coordinate systems, equation devel-

opments, and fundamental solution. How to design these structures, i.e., the formation

of a problem, determines the behavior of proposed problems. Hence, the reformulation

of a problem can reduce inherent instability. There are some schemes to change the for-

mulation method for a problem, such as coordinate transform and scaling. Coordinate

transform usually modifies some entries of a coefficient matrix and this operation directs

the alteration of its norm number, thus changing the condition number. Scaling also
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Table 4.3: Stretching Experiment (4× 4 Problem). Here, sx denotes stretching units
along x axis and sy denotes stretching units along y axis.

HH
HHHHsx

sy
1/100 20/100 40/100 60/100 80/100 100/100

1/100 3.42× 1016 2.84× 1017 1.42× 1017 1.23× 1018 2.49× 1017 3.29× 1017

20/100 7.66× 1016 1.93× 1018 1.99× 1018 1.35× 1018 5.06× 1018 4.08× 1018

40/100 1.42× 1018 1.35× 1018 4.33× 1018 8.85× 1018 7.88× 1018 1.39× 1019

60/100 2.47× 1017 1.90× 1018 5.05× 1018 6.40× 1018 9.99× 1018 1.07× 1019

80/100 3.57× 1017 6.12× 1018 8.13× 1018 1.08× 1019 2.09× 1019 3.13× 1019

100/100 4.73× 1017 3.51× 1018 1.00× 1019 7.89× 1020 1.35× 1019 1.47× 1019

induces some adjustments on a coefficient matrix using equivalent equation transform,

and then, the coefficient matrix is perturbed resulting in the change of the condition

number. The descriptions above imply that coordinate transform and scaling are both

focused on some CN adjustment using some modification on coefficient matrix, and this

adjustment could be improving or worsening the condition depending on modification

strategy. Therefore, based on the two reformulation approaches, numerical experiments

were conducted to explore some optimized schemes and weaken inherent instability of

the proposed problem.

4.2.2.1 Coordinate Transform

After several numerical experiments, a linear coordinate transform was proposed to

relieve the ill-posedness. From the examination on the proposed coefficient matrix, a

closely Vandermonde Matrix structure was detected when the grid domain was set from

(0, 0) to (100, 100) based on Cartesian coordinate system. Therefore, an experiment

was conducted to explore how stretching influences the CN. Take 4× 4 for example and

the experiment results are listed by the Table 4.4. The tabulated results reveal that

the CN reaches a minimum when the stretching ratios along x axis and y axis are both

1/100.

In addition to coordinate stretching, coordinate moving is another important approach

for linear coordinate transform. Here, another numerical experiment based on 4 × 4

problem was conducted to examine the relation between condition number and moving

units. The results are listed by the Table 4.3. The tabulated results show that the CN

reaches the minimum when the origin point of (0, 0) moves to the origin point of (0, 1).
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Table 4.4: Moving experiment (4 × 4 problem). Here, mx is the moving units along
x axis and my is the moving units along y axis.

HH
HHHHmx

my
0 +1 +2 +3 +4 +5

0 3.42× 1016 1.84× 1016 5.03× 1016 8.80× 1016 5.07× 1016 5.54× 1016

+1 3.28× 1016 3.44× 1016 3.65× 1016 2.60× 1017 6.27× 1016 6.26× 1016

+2 2.41× 1016 6.02× 1016 4.73× 1016 7.83× 1016 7.44× 1019 2.00× 1018

+3 2.86× 1016 1.26× 1017 1.50× 1017 1.11× 1017 1.30× 1017 7.61× 1016

+4 7.94× 1016 8.16× 1016 6.89× 1017 1.15× 1017 1.51× 1017 3.85× 1017

+5 4.46× 1016 3.80× 1017 6.67× 1017 7.92× 1016 1.62× 1017 1.53× 1017

Table 4.5: Equation scaling experiment (4 × 4 problem). Here, scaling ratio reflects
the scaling operation on the coefficients of K related unknowns.

Scaling Ratio 1/100 1/200 1/300 1/400 1/500

CN 1.84× 1017 1.84× 1016 2.09× 1016 2.04× 1016 2.92× 1016

4.2.2.2 Scaling

Scaling is another useful scheme to reduce inherent instability. The primary idea is to

adjust the coefficients of several unknowns using vector unitization. From this descrip-

tion, scaling is able to be taken as a special preconditioning approach which will be

discussed by the following section. For our researched problem, scaling is conducted

only on the last two column vectors since they refer to observed data equations and the

scaling strategy can be simplified. In addition to unitization, several other scaling ratios

were tried to modify the coefficient matrix and the results are listed by Table 4.5. From

the results, the ratio of 1/200 is an optimum option since the CN reaches minimum.

Some of researchers maintain that model reduction is also an approach to reduce inherent

instability. This research views it as a method based on the change of a problem, and

thus, it will be discussed in a separated section.

4.2.3 Induced Instability

Induced instability originates from the incorrect selection of a solving strategy. Here,

numerical methods will be adopted to modify the solution to an equation system while

the formulation of a problem is preserved. Common schemes refer to some operations

on coefficient matrices, such as precoditioning. For example, A ·x = b exhibits the high

condition number of A and the ill-posedness of this problem. If the solution is modified,

such as xi + h instead of xi, then A will be modified to a new matrix A′ of which
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condition number is updated. Based on this strategy, some new coefficient matrices will

yield much lower CN, thus instability will be much weaken.

4.2.3.1 Preconditioning and Gaussian Noise Perturbation

Preconditioning is a significant approach to address condition number issues. The pri-

mary idea of preconditioning is to multiply a precondition matrix at the both sides of an

equation system, thus modifying the coefficient matrix and limiting its condition num-

ber. Among many preconditioning techniques, perturbation is one of the most effective

and inexpensive method, such as Gaussian Noise Perturbation (GNP). This approach is

to add a group of random noises to the non-zero entries of the coefficient matrix on which

the perturbation will effectively limit the CN increase. Since this operation undoubtedly

induces solution errors, the range of noise is usually very narrow, such as [−10−5, +10−5]

(Equation 4.1), but the CN will be dramatically reduced while the outcome accuracy is

preserved.

(A + n) · x ≈ b (n ∼ N(0, 10−10)) (4.1)

For Equation 4.1, n denotes the matrix perturbation noise which follows a normal dis-

tribution N centered at 0. The standard deviation of N is 10−10 and the expectation is

0.

This research adopted GNP to precondition the developed coefficient matrix and limit

the CN. GNP is widely in use to address singular problems, such as signal processing

and economic matrix. As a matter fact, there are some similar useful perturbation

techniques to improve the condition, such as Tikhonov Perturbation (TP) method (E-

quation 4.2). Among these approaches, GNP stands out as an inexpensive and effective

approach in that white noises are relatively easily generated as well as the perturbation

will not severely deteriorate the outcomes. Here, a numerical experiment based on the

comparison of TP and GNP was developed to prove this statement (Table 4.6).

(A + λI) · x ≈ b (λ is a sufficiently small number.) (4.2)

For Equation 4.2, λ denotes the perturbation constant and I is the unit vector. Ac-

cording to the equation description, the TP perturbs the diagonal entries of a coefficient

matrix.
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Table 4.6: Perturbation technique comparison. λ and n denote the perturbation
magnitude. The problem size is denoted by a grid size. True K1 and K2 are 1 and 10

respectively. Iteration is the number of the iterations a solver convergence costs.

TP: λ = 10−6

Problem Inverted K1 Inverted K2 Iteration CN

2× 2 0.99953 9.9659 327 1.315× 108

4× 4 0.99844 9.7858 12562 7.181× 107

8× 8 0.99319 9.0846 317950 6.0652× 107

GNP: n = 10−5

Problem Inverted K1 Inverted K2 Iteration CN

2× 2 1.00056 10.0081 328 1.829× 105

4× 4 0.99945 9.9731 2481 6.235× 104

8× 8 0.99804 9.9481 9173 2.823× 104

4.2.4 Model Reduction

Model reduction is an approach to improve the condition of a problem using some

modification on a proposed problem. Since numerical estimation always results in some

approximation errors due to truncation or rounding process, to reduce model precision

could be a potential approach to trade tiny approximation error for much improvement

on the condition of a problem. Meanwhile, tiny approximation error could be reduced

by other induced methods, such as grid refinement on mesh-based problems. Therefore,

model reduction is widely in use when a proposed problem is large, especially a fine-grid

problem. Our problem is 100 × 100 grid based problem, so model reduction can be

adopted to further improve the condition of the problem.

4.2.4.1 Equation Reduction

Our reduction scheme is to modify fundamental solution of the inversion. After the

examination on the developed coefficient matrix and several numerical experiments, it

was detected that the item of a4(x
2−z2) adversely affect the CN and it is also reducible

when the grid is sufficiently refined. Hence, the modified solution after reduction is:

h̃q(x, z) = a0 + a1x+ a2z + a3xz

q̃x(x, z) = −Kx(a1 + a3z)

q̃z(x, z) = −Kz(a1 + a3x)

(4.3)
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Table 4.7: Equation reduction timing experiment (hours). The fundamental solution
is simplified and Laplace equation is still followed.

4× 4 16× 16 64× 64 256× 256

Original Equation 6.943× 10−6 2.883× 10−3 2.529× 100 1.387× 102

Reduced Equation 2.222× 10−6 4.094× 10−4 6.042× 10−2 2.596× 100

Based on this approximation function, the CN is further reduced and timing experiment

results are listed by Table 4.7. The lower precision is traded for CN reduction; however,

this trade-off strategy is profitable. From the numerical experiment, the CN is limited

by 5 orders of magnitude while the precision is reduced by 2 digits. This superiority

will be more noticeable when the problem size increases since the grid refinement will

improve the precision, thus reducing the result deterioration by model reduction. From

Table 4.7, the time cost is reduced by 2 orders which implies the solving large problem

is feasible. Accordingly, model reduction is a good approach to improve the condition

of a high-resolution problem.

4.2.4.2 Resolution Reduction

Resolution also plays a prominent role in computation performance. High resolution

must result in high computation cost while calculation results yield high precision and

decent accuracy. However, in a practical problem, the precision and accuracy require-

ments are not demanding since some other factors, such as measurement errors and

equipment bias, have contaminated model outcomes. Accordingly, hydrological mod-

elers explored some methods, such as upscaling, to take advantage of uncertainty to

trade resolution reduction for high computation efficiency. This research also explored

a computation-resolution trade-off strategy. Based on simulated annealing (SA) strat-

egy, heterogeneity resolution is smoothed; coarsening operation renders the resolution

further smoothed. The comparison between different resolution grids is illustrated by

Figure 4.1. The average computation time is 550s, 450s, and 330s for SIS grid, SA grid,

and Coarsening grid. More details on the model uncertainty study will be discussed in

Chapter 5.

4.2.5 Improved Results

After these numerical and modification approaches, the condition of the propsed problem

was much improved and thus, the performance of LSQR serial solver became decent.
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Figure 4.1: Resolution reduction experiments. Here are three experiments using
different grid resolution including SIS grid, SA grid, and Coarsening grid. The grid size

is 100×100 all the time.
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Figure 4.2: Serial solver improvement results. Time cost denotes the CPU solving
time and problem size represents the grid size. Modified matrix results in computation

improvement with order of magnitude.

From the experiment results by Figure 4.2, a 200×200 problem saves approximately 200

times of time after the series of operations. For a stochastic inversion based on 100×100

grid, a family of problems (100 realizations) can be solved in approximately 14 hours

instead of 1400 hours.

4.3 Parallel Computing

With increasingly high resolution of aquifer representation, conventional serial solvers

are not able to satisfy the demand for computation performance, and parallel solvers

are widely in use to model large-scale aquifers, especially for inverse problems. The

primary idea for a parallel solver is to partition a large problem into several smaller sub-

problems which will be launched at different processors, and then, these problems will

be simultaneously solved by different processors. This approach is capable of improving

computation efficiency and decent results reply on partition schemes.

Partition strategy research plays a prominent role in parallel solver development. A

number of algorithm explorers devote much time to studying different problems and

investigating partition tactics to refine the performance of a parallel solver. Why does
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partition process govern parallel computing research? The first key answer is related to

the communication between different processors. After partitioning, a whole problem

is separated into several pieces yielding meaningless solutions, and thus, it is necessary

to assemble these fragmental answers into a meaningful solution. This assembly proce-

dure is conducted by communication between different processors, and its time cost is

determined by information transmission which relies on information amounts. A poor

partition strategy will load much unnecessary information on transmission process, thus

adversely affecting computation performance.

The second important factor is loading balance on all processors. Since the assembly

procedure ought to be complete after all processors finish their own tasks, some pro-

cessors must wait for others on pending status although they have accomplished their

duties. This waiting time definitely extended the processing, and thus, some optimiza-

tion on task allocation, i.e., loading balance should be conducted to speed up a parallel

solver. The task allocation tactics also depend on partition schemes.

Hence, disparate partition strategies will lead to different parallel solver performance

which necessitates a clever partition scheme. Here, three kinds of partition strategies

were explored to optimize the computation performance, thus leading to three parallel

solvers, including Partially Parallel LSQR (PP-LSQR), Fully Parallel LSQR (FP-LSQR),

and Scalable Parallel LSQR (SP-LSQR).

4.3.1 Partial Parallel LSQR (PP-LSQR) Solver

PP-LSQR is implemented based on a partial partition strategy. This partial partition is

a basic method to parallelize any solver and generally introduced in computation method

courses. Many sophisticated partition algorithms are developed from this primary idea

although it is elementary. Its main scheme is to partition the coefficient matrix and the

right-hand-side(RHS) vector in an equation system based on rows using linear algebra

knowledge. This process is briefly described by the Figure 4.3. From this illustration,

the entire equation system is divided into several smaller independent problems which

could be simultaneously solved by different processors.

However, there are several issues behind this picture. First, the unknown vector x

will prolong the processing time. Due to the failure to partition this vector, it will be

processed repeatedly by different processors. This fact implies the task loading is in-

creased, thus costing longer processing time. Secondly, communication time is able to
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Figure 4.3: PP-LSQR Partition Scheme. A denotes co-efficient matrix, b is right-
hand-side vector, and x is unknown vector. All of them are partition based on rows

using linear algebra knowledge.

overshadow the advantage of parallelization. Iterative solvers require the update on the

coefficient matrix and the RHS vector consecutively, and thus, the assembly has to be

directed at each iteration and communication efficiency plays a prominent role in solver

performance. According to the row-based partition scheme, when a problem is separated

into more pieces or a problem size is increased, the overlap between different partitioned

blocks will be exponentially longer, which indicates the information transmission takes

much more time. Hence, the partition strategy results in poor communication perfor-

mance.

According to the analysis above, PP-LSQR is able to improve computation efficiency

when the size of a problem is small and the number of used processors is limited. In terms

of a large real problem, problem size will hinder the attempt to improve computation

time, and the demand for large amounts of processors will cause even higher time cost.

4.3.2 Fully Parallel LSQR (FP-LSQR) Solver

FP-LSQR solver is developed to address the issues caused by PP-LSQR. This full par-

allelization scheme breaks through the task loading issue and relieves communication

block problems. The primary idea is to partition the coefficient matrix by columns in-

stead of rows, and then, the unknown vector x is successfully partitioned using linear
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Figure 4.4: Fully Parallel LSQR Partition Scheme. A denotes coefficient matrix, b
is right-hand-side vector, and x is unknown vector. All of them are partition based
on columns using linear algebra knowledge. Here, b is partitioned to a sum of single

vectors.

algebra knowledge. This strategy is illustrated by Figure 4.4. Furthermore, loading

balance scheme is employed to improve computation performance. Using column based

data storage, retrieving entry by columns will be feasible, and then, the total number

of the non-zero entries can be obtained. According to the usage of processors, it is pos-

sible to balance the task loading on each processor if some efficient retrieval algorithm

is designed. As a matter of fact, this bottleneck has been broken through, and based

on the developed algorithm [58], the loading on each processor is optimized and closely

balanced.

FP-LSQR seems to improve the performance successfully; however, the timing plots

shown by Figure 4.5 revealed some computation issues. After limited computation im-

provement, the time cost of FP-LSQR exhibits increase trend which implies the parallel

computing fails to speed up the solver. The reason for the computation performance

is the dominant communication time between processors restricts the computation im-

provement. For parallel computing, communication is indispensable since the pieces

of meaningless results calculated by each processor must be united to update residual
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Figure 4.5: Fully parallel LSQR timing plots. Time denotes computation CPU time
and number of processors is how many processors are used to compute the partitioned

problems.

vectors and search final solutions until the convergence is reached. This communication

relies on the overlap information between smaller partitioned blocks and its time cost

will be longer if the overlap information increases. For FP-LSQR, the overlap infor-

mation will exponentially grow with the increase of problem size and processors due to

its column-based partition strategy. Hence, FP-LSQR will fail to save time cost after

communication starts to be dominant. Meanwhile, the column-based partition scheme

will induce many zeros during vector calculation and communication and hinder the

computation speed-up since our problem exhibits extremely sparse matrix. More details

were discussed in the related published work [58]. Due to this issue, a scalable study

was conducted to break through this bottle neck.

4.3.3 Scalable Parallel LSQR (SP-LSQR) Solver

Scalable Parallel LSQR solver is developed by dividing a coefficient matrix to a kernel

sub-matrix and a damping sub-matrix. Scalable solver yields high scalability which im-

plies decent independency from problem sizes and the number of processors. A good

parallel solver usually counts on high scalability, and thus, a number of computer scien-

tists devote much time to exploring scalability study. This SP-LSQR is also developed

from the scalability study outcomes [3]. Its scheme tries to divide a coefficient matrix

into a dense sub-matrix, i.e., a kernel matrix, and a sparse sub-matrix, i.e., a damping
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Figure 4.6: SP-LSQR partition strategy [3]. A denotes coefficient matrix, b is right-
hand-side vector, and x represents unknown vector. In the matrix A, block based region

is called damping matrix and column based region is called kernel matrix.

matrix, and employs the distinct features of the damping matrix to partition it based on

blocks while the column-based strategy is still adopted on the kernel matrix. The par-

tition process is illustrated by Figure 4.6. This scheme successfully reduced the overlap

information on the sparse matrix, decreased total communication time, thus improving

solver performance. More details can be searched in the related published paper [3].

It is necessary to point out that larger portion of sparse matrix in a coefficient matrix

gives rise to better performance on solver improvement since the optimization is focused

on damping matrix. Also, narrower width of the diagonal band yields smaller overlap

between blocks and less communication cost.

To take full advantage of SP-LSQR, the structure of the proposed coefficient matrix was

further examined. After several permutations, the coefficient matrix can be equivalent to

the format listed by Figure 4.7. This structure exhibits a closely diagonal sparse matrix

constructed by continuity equations, and a random entry based sparse matrix developed

by observed data equations. Although there are both extremely sparse, according to

their distinct features, the diagonal sub-matrix is viewed as a damping matrix, and the

random entry based matrix is taken as a kernel matrix owing to its lack of noticeable
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structure. Moreover, the damping matrix has narrow bandwidth which effectively limit-

ed the overlaps between blocks. The bandwidth will be increasingly relatively narrower

with the increase of problem size, and thus, scaling performance will be better exhibited

by high resolution problems. After this structure study, the developed scalable solver

can effectively and efficiently resolve large problems.

The computation performance of SP-LSQR on our problem is listed by Figure 4.8.

Unlike FP-LSQR, SP-LSQR yields the experimental timing plots much closer to the ideal

situation which reveals the high stability performance of this solver on our problem. Now,

a 500×500 problem was solved by only 150s CPU time. For a stochastic inversion based

on 100×100 grid, a family of problems (100 realizations) can be solved in approximately

less than 1 hours instead of 14 hours when the number of processors is 100.

SP-LSQR makes uncertainty analysis feasible. In general, uncertainty analysis requires

a number of experiments to construct data analysis and hundreds of inverse problems

have to be solved. Undoubtedly, decent computation efficiency is a prerequisite for un-

certainty analysis study. For large problems, high resolution renders this condition more

inevitable. Now, the serial solver improvement and SP-LSQR break through this bot-

tleneck, therefore, uncertainty analysis becomes readily conducted and will be discussed

by Chapter 5.
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Figure 4.7: Spy matrix based on 32×32 problem. The diagonal lines and sparse dots
describe the non-zero entries in the coefficient matrix. Other empty space represents

zero entry region.
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Figure 4.8: SP-LSQR time scaling. Time denotes computation cost based on CPU
time. Number of processors shows how many processors are used to compute partitioned
problems. The time plots of SP-LSQR are close to the ideal time scaling which indicates

high scalability of the solver.
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Uncertainty Analysis

Uncertainty is inevitable to hydrogeological modeling and it arises from simulation un-

certainty, data measurement, and representation strategy. A quality inverse model is

obligated to limit uncertainty and ensure its robustness to data errors, so uncertainty

quantification plays a prominent role in the examination on the quality of a model. This

research conducted uncertainty analysis to understand the impacts of different factors

on the quality of the inverse model. The tested factors include data quantity, data

quality, and heterogeneity resolution. In addition, the co-effect from these factors is dis-

cussed, which helps understand their roles in inverse modeling better. Here, boundary

conditions (BCs) and hydraulic conductivities (Ks) were chosen to assess model quality.

Also, model precision and model accuracy were selected as the criteria to evaluate the

outcome based on model perturbation.

5.1 Model Accuracy (MA) and Model Precision (MP)

Model calibration always requires proper criteria to rate model quality and hydrogeo-

logical modeling is not an exception. To examine a groundwater model, four criteria are

commonly in use for model evaluation, including accuracy, precision, uncertainty and

reliability[10]. Their definitions are listed below.

Model Accuracy (MA): the quality of being away from the correct value; higher accuracy

exhibits the expectation of model outcomes closer to the true value.

Model Precision (MP): the quality of being concentrating on the correct value; higher

precision yields a shorter uncertainty region.

40
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Model Uncertainty (MU): the state of being uncertain which is reflected by uncertainty

region.

Model Reliability (MR): the state of being reliable which is determined by precision and

accuracy; higher reliability implies higher precision and higher accuracy.

Since model accuracy and model precision determine model uncertainty and model reli-

ability, our uncertainty study is focused on model accuracy and model precision instead

of four criteria to examine model quality. In terms of examination criteria, BC and K

were selected to evaluate model quality in that BC determines the flow pattern which

concerns hydrologists, and K is a model calibration criterion which affects modeling

results.

5.2 Uncertainty Analysis on Single Factor

This section aims to conduct uncertainty analysis and examine the roles of different fac-

tors in inverse modeling from quantitative perspective. Generally speaking, uncertainty

analysis examines the outcomes generated by perturbed inputs. Owing to the pertur-

bation on inputs, the model outputs will behave differently and reveal the importance

of each factor for an inverse model. This research investigated the impact of data quan-

tity, data quality, heterogeneity resolution on the accuracy and precision of the inverse

model, and thus, different perturbation strategies were laid out to design three parallel

experiments.

5.2.1 Effects of Data Quantity

In real world, sampled data are always far from sufficient to hydrogeological modeling.

Groundwater inverse modeling demands for a number of observed data to calibrate a

model, which is hardly reachable since drilling wells is extremely expensive and da-

ta sampling requires much labor. Lack of observed data necessitates the uncertainty

analysis on data quantity.

5.2.1.1 Experimental Conditions

A parallel experiment was established to examine the role of data quantity played in

inverse modeling. Under the condition of same resolution hydrofacies K field and error-

free observed data, three different drilling strategies, including 12 wells , 6 wells, and
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Figure 5.1: Data sampling strategies based on 12 wells, 6 wells, and 3 wells. The
parallel straight lines denote the drilling wells and dots are sampling locations. Sampled

heads are denser than fluxes.
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Figure 5.2: Variogram model based on 12 wells, 6 wells, and 3 wells. Scatter plots are
experimental variogram values and the fitting curve is generated from fitting exponential

varigram models.

3 wells (Figure 5.11), were conducted to sample observed data. According to different

sampling fields, three observed data sets were constructed and undoubtedly, the total

number of each category of data decreases with sampling well reduction when sampling

density is same at each well. As regards hydraulic heads and fluxes, both of their data

sets were shrunk as well as correspondent observed data equations were reduce, thus

model calibration quality would be affected and model outcomes would be affected.

Accordingly, a parallel experiment was established to direct the uncertainty analysis on

data quantity via physically based stochastic inversions.
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Figure 5.3: SIS realizations based on 12 wells, 6 wells, and 3 wells. One of each 100
realization based family is listed here. Column-row based coordinates are adopted.
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Figure 5.4: Ks uncertainty analysis based on data quantity. The arrows point to the
true values. The realizations denote the frequency within different value range.

5.2.1.2 K, MA and MP

According to different wells, inverted Ks are obtained and visualized by Figure 5.4.

When the number of sampling wells is 12, the center line of the inverted K1 distribution

is located at 1.025 and its uncertainty range is ±0.08; when the number of sampling

wells is 6, the center line is moved to 1.15 and the uncertainty range becomes ±0.13;

when the number of sampling wells is 3, the inverted K1 distribution is centered at 1.2

with the uncertainty range of ±0.2.

For inverted K2s, when the number of sampling wells is 12, the center line is located

at 10.1 and its uncertainty range is ±0.8; when the number of sampling wells is 6, the

center line is moved to 10.4 and the uncertainty range becomes ±0.75; when the number



Chapter 5. Uncertainty Analysis 46

of sampling wells is 3, the resultant distribution is centered at 10.7 with the uncertainty

range of ±0.6.

For K1, within the ±3% uncertainty region, more than 50% inverted results are dis-

tributed when 12 wells are sampled; approximately 45% results are distributed when

the inversion is conducted using 6 sampling wells; less than 30% results are distributed

when the well number is reduced to 3. For K2, within the ±3% uncertainty region, more

than 80% inverted results are distributed when 12 wells are sampled; approximately 70%

results are distributed when the inversion is completed using 6 wells; more than 70%

results are distributed when the well number is reduced to 3.

Generally, inverted Ks are sensitive to data quantity; in particular, K1 is more sensitive

than K2 to data quantity. With respect to MP, basically, the uncertainty region of

each inverted K becomes wider with the decrease of drilling wells, which indicates MP

becomes lower when data quantity decreases. Taking K1 for example, its uncertainty

range becomes twice when drilling wells are reduced by half. Concerning MA, the center

lines of the inverted Ks are both oscillated around the true values when the quantity

of drilling wells changes. The result implies the decrease of data quantity does not

necessarily result in poorer K accuracy and it is possible to obtain decent inverted Ks

using fewer data.

5.2.1.3 BC, MA, and MP

Inverted BCs based on different sampling wells are listed by Figure 5.5. Since the studied

aquifer domain has been indexed, to well organize the discussion on model outcomes,

the assessed boundary are decomposed into four sections (a − b, b − c, c − d, d − a)

which are respectively described as follows:

a− b: For MP, the uncertainty ranges are basically kept to 20 feet and little influenced

by the change of data quantity. In respect of MA, for 12 wells, 6 wells, and 3 wells, the

center line of inverted BCs crosses the region between 290 feet and 300 feet, between

290 feet and 295 feet, and between 290 feet and 291 feet, respectively.

b − c: Regarding MP, the uncertainty region is shorter than 10 feet and its width

increases, i.e., 3 feet, 6 feet, and 12 feet, with the decrease of sampling wells. In terms

of MA, all resultant distributions are basically centered against the true BCs.

c− d: MP exhibits that the maximum of the width of the uncertainty region increases,

i.e., 5 feet, 10 feet, and 20 feet, when the sampling wells decrease. For MA, the inverted
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Figure 5.5: BCs uncertainty analysis based on data quantity. Here are three ex-
periments based on different numbers of sampling wells. At each sampling well, the
sampling density is same. The letters of alphabet denote the boundary locations. Hy-
draulic heads are recovered conditions and boundary cell number is the index of each

boundary cell.
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BCs are basically centered at 202 feet, 210 feet, and 220 feet for 12 wells, 6 wells, and

3 wells, which implies that the resultant BCs are increasingly biased towards the true

conditions when drilling wells decrease.

d− a: Regarding MP, the uncertainty region increases, i.e., 1.5 feet, 3 feet, and 6 feet,

with the decrease of drilling wells. For MA, the center lines are all basically against the

true conditions.

Generally, inverted BCs are sensitive to data quantity. When sampled wells are decreased

by half, the uncertainty region will been basically twice widen. With respect to MP, the

uncertainty region becomes wider with the decrease of sampling wells, which indicates

MP becomes lower when data quantity decreases. As regards MA, the center line is

increasingly away from the true BCs when data quantity is reduced, which indicates the

decrease of data quantity will worsen MA. In particular, the section c−d is most sensitive

to data quantity; the section a− b exhibits largest uncertainty regions constantly; both

b−c and d−a show the increase of uncertainty region when data sets are shrunk despite

the center lines against the true BCs.

5.2.1.4 Discussion on Data Quantity Strategy

In terms of data quantity, we were informed of some knowledge and sampling strategies

by the inverted results above, especially inverted K1s. For MP, the experiment using 6

wells exhibits half lower precision than 12 wells; 3 wells shows 1.5 times lower precision

than 6 wells. Also, 6 wells are capable of generating decent model outcomes with good

precision and acceptable accuracy with relatively fewer observed data.

5.2.2 Effects of Data Quality

Another parallel experiment was directed to investigate the impact of data errors on the

inverse model. In real world, measurement errors are inevitable due to unpredictable

physical conditions and limited equipment precision. Hence, it is vital to understand

the relation between data errors and inverse model outcomes. If a model outcome is

relatively instable when a certain data error is involved, this model is usually reckoned

among weak applicability to practical problems. Therefore, in general, hydrogeology

modelers expect proposed models can be robust to data errors, thus ensuring its ability

to solve real problems. To achieve the similar goal, this research also conducted the
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experiment based on data corruption and understand the robustness of our proposed

inverse model to measurement errors.

5.2.2.1 Experimental Conditions

The parallel experiment was designed based on observed hydraulic heads corrupted by

white noise. White noise based data corruption is widely in use to detect the model

robustness to data error [49]. The primary idea of the approach is to generate a group

of noise following a normal distribution centered at 0. The uncertainty region of the

distribution is determined by the magnitude of the noise. From statistical knowledge,

this uncertainty range refers to the standard deviation (SD) of the noise in terms of a

normal distribution. Hence, modelers commonly set different SDs instead of uncertainty

ranges to describe noise magnitudes. Here, observed hydraulic heads were corrupted

by the white noise with increasing standard deviation (SD), i.e., error-free, ±1%, ±2%,

±5%, and ±10%. All of these corruptions are derived from total head variation (THV).

Using different observed data sets, four sets of physically based stochastic inversions

were directed and inverted results were discussed.

5.2.2.2 K, Model Precision, and Model Accuracy

According to different SDs of the white noise based on THV, inverted Ks are listed by

Figure 5.6. For inverted K1, when the observed heads are corrupted by the noise with

±1% magnitude, the center line of the resultant distribution is located at 0.97 and its

uncertainty range is ±0.085% of the true value; when the data are corrupted by the

noise with ±2% magnitude, the inverted K1 distribution is centered at 0.93 within the

uncertainty region of ±0.095% of the true value; when the observed heads are corrupted

by the noise with ±5% magnitude, the center of the resultant distribution is moved to

0.71 and the uncertainty range is slightly increased to ±0.13% of the true value; when the

observed heads are further corrupted by the noise with ±10% magnitude, the inverted

results are centered at 0.24 and distributed within the uncertainty region of ±0.195% of

the true value.

Concerning inverted K2, when the observed heads were corrupted by the noise with

±1% magnitude, the inverted results are centered at 9.87 and the uncertainty range is

±0.29% of the true value; when the data corruption magnitude is increased to ±2%, the

center line of the inverted K2 distribution is located at 9.71 and its uncertainty range
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Figure 5.6: Ks uncertainty analysis based on data quality.The arrows point to the
true values. The realizations denote the frequency within different value range.

is slightly increased to ±0.305%; when the corruption magnitude is increased to ±5%,

the center of the resultant distribution is moved to 8.97 and the uncertainty range is

slightly widen to ±0.445%; when the observed data are further corrupted by the noise

with ±10% magnitude, the inverted results are centered at 7.26 and distributed with

the uncertainty region of ±0.49% of the true value.

According to the inverted Ks above, for K1, within the uncertainty region of ±3% of

the true value, more than 70% inverted results are distributed when sampled data are

corrupted by the errors based on ±1% of THV; approximately 70% results lie when the

data errors are increased to ±2% of THV; approximately 60% results are spread when

data errors are increased to ±5% of THV; less than 60% results are distributed when

data corruption magnitude is increased to ±10% of THV.
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For K2, within the uncertainty region of ±3% of the true value, more than 70% inverted

results are distributed when sampled hydraulic heads are corrupted by the errors based

on ±1% of THV; approximately 60% results lie when the data errors are increased to

±2% of THV; less than 60% results are spread when data errors are further increased

to ±5% of THV; less than 60% results are distributed when data corruption magnitude

is increased to ±10% of THV.

In general, inverted Ks are sensitive to data errors; in particular, K1 is more sensitive

than K2 to data quality. With respect to MP, the uncertainty region becomes wider with

the SD increase of data errors, which indicates MP becomes lower when data quality

is worse. Specifically, when the corruption magnitude is more than ±5% of THV, the

deterioration of MP is more rapid. As regards MA, the center line is increasingly away

from the true value when the data error SD becomes larger, which implies that the

deterioration of data quality causes poorer K accuracy. Since the deterioration trend is

stable, it is possible to predict MA status from observed model behaviors.

5.2.2.3 BC, MA and MP

The inverted BCs from the data with different corruption magnitudes are listed by

Figure 5.7. The related discussion is still organized based on sections as follows:

a− b: For MP, the maximum of the uncertainty range is basically kept to 20 feet when

the corruption magnitude is within ±5% of THV. When the corruption magnitude is

increased to ±10% of THV, the uncertainty range is dramatically increased to 35 feet.

In terms of MA, the center line of inverted BCs lies within the region between 290 feet

and 300 feet when the corruption magnitude is not more than ±5% of THV; the center

line is closer to 300 feet when the data corruption magnitude is increased to ±10% of

THV.

b−c: With respect to MP, it exhibits the similar features to the section a−b. The width

of the uncertainty region is relatively steady and kept to 20 feet when data corruption

magnitude is smaller than ±5% of THV. When the magnitude is increased to ±10% of

THV, the width of the uncertainty region is widen to 36 feet. Concerning MA, b−c shows

a more decent model behavior than the section a − b. The inverted BCs are basically

against the true conditions and the bias is not more than 2.5 feet. Meanwhile, it is

necessary to point out that the inverted BC center line yields increasing underestimation

on the true conditions even if the magnitude of the change is not large.
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Figure 5.7: BCs uncertainty analysis based on data quality. The letters of alphabet
denote the boundary locations. Hydraulic heads are recovered conditions and boundary

cell number is the index of each boundary cell.

c− d: For MP, with the increase of data corruption, the maximum of the width of the

uncertainty region increases, i.e., 10 feet for ±1%, 12 feet for ±2%, 16 feet for ±5%,

and 25 feet for ±10%. MA exhibits higher stability and the bias less than 1 foot, which

implies the good robustness to data errors.

d − a: In respect of MP, the highest stability is reflect by the narrowest uncertainty

region and the mildest change in its width. The width of the uncertainty region is less

than 10 feet and its change is kept to less than 2 feet when the corruption magnitude

is less than ±5% of THV. For MA, the underestimation is better exhibited while the

maximum of the center line bias is kept to less than 0.5 foot for the corruption less than

±5% of THV, which also reveals the good robustness to data errors.

According to the inverted BC results, the section a− b is most sensitive to the change
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of data quality. The section b − c yields the similar uncertainty region increase to the

section a− b with increased data errors; however, its MA behavior is much better than

the section a−b. The section c−d has a best MA behavior reflected by the minimum of

the bias and the mildest change. The section d−a shows best MP performance because

of the narrowest uncertainty region.

Generally, inverted BCs are not sensitive to data quality of observed hydraulic heads.

With respect to MP, the uncertainty region becomes a little wider and MP becomes lower

when data quality is mildly deteriorated, such as less than ±5% of THV. As regards

MA, the inverted BCs are increasingly biased generally as well as exhibits aggravated

underestimation; the deterioration is mild, though. In sum, the model is robust to data

errors and the increase of data errors will only mildly worsen MP and MA in terms of

recovered BCs.

5.2.2.4 Discussion on Data Quality Strategy

Considering the analysis above, some sampling strategies on data quality are revealed

to help conduct inverse modeling more efficiently. When 12 wells are sampled and

heterogeneity resolution is a SIS based grid, MP based on ±5% corruption magnitude is

as less than twice low as ±1% corruption magnitude; the precision from ±10% corruption

magnitude is as more than twice low as ±5% corruption magnitude. Hence, ±5% should

be largest magnitude for data corruption if it is hoped that the impact of data corruption

is controlled to closely linear influence.

5.2.3 Effects of Heterogeneity Resolution

This section will explore the role of heterogeneity resolution (HR) in inverse model

with another a parallel experiment. Hydrogeological model commonly yields high HR,

thus resulting in high time cost. However, such high resolution is not indispensable to

understand the general features of an aquifer sometimes. Accordingly, some compromise

strategies between HR and computation efficiency are explored to trade lower resolution

for faster computation. Thus, HR is also an important factor worth examining by

uncertainty analysis.
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Figure 5.8: Realizations based on SIS grid, SA grid, and Coarsening grid. One of each
100 realization based family is listed here. Column-row based coordinates are adopted.
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5.2.3.1 Experimental Conditions

A parallel experiment was also constructed based on three different resolution grids

to investigate how HR influences the inverse model. Usually, model outcomes by SIS

exhibit high resolution and undoubtedly precise heterogeneity patterns while some noise

generated in stochastic process will render modeling involve a great deal of computation

time. The time consuming performance limits the grid refinement on large problems. To

address this issue, some Geostatistics modelers implemented and developed Simulated

Annealing (SA) algorithm to remedy these SIS realizations and generated noises will

be cleaned. However, the SA operation will somewhat modify the shape of simulated

hydrofacies and induce some bias depending on annealing schemes. Sometimes, to trade

for much higher computation efficiency, coarsening strategy is employed to approximate

the SIS grid, which refers to upscaling research topic. Undoubtedly, more bias will be

induced by the similar approach even if coarsening scheme is clever. To understand how

much bias is induced by each modification on grid, this research designed three different

sets of grids, including SIS grids, SA grids and Coarsening grids, as hydrofacies K fields.

All of the grids were inverted based on 100 × 100 grid and only heterogeneity details

are different: SIS grid exhibits most details, SA grid is smoother, and Coarsening grid

possesses lowest details on interfaces. Regarding dynamic data, hydraulic heads and

fluxes were still sampled from the original synthetic aquifer, and thus, all data sets were

same for different grids. Using the same hydraulic head and flux data sets, three sets of

physically based stochastic inversions based on different resolution grids were directed

and inverted results were discussed.

5.2.3.2 K, MA, and MP

According to different resolutions, inverted Ks are listed by Figure 5.9. When an SIS

grid is selected as inverse resolution, the center line of the inverted K1s is located at

1.00 and its uncertainty range is ±0.075; when the resolution is reduced to SA grid, the

center line is slightly moved to 1.03 and the uncertainty range is widen to ±0.12; when

lowest resolution, i.e., coarsening grid, is chosen, the inverted K1s are centered at 0.94

and distributed within the uncertainty region of ±0.15.

With respect to K2, when the SIS grid is selected as inverse resolution, the center line

of the inverted K2s is located at 9.97 and its uncertainty range is ±0.23; when the

resolution is reduced to SA grid, the center line is moved to 9.8 and the uncertainty
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Figure 5.9: Ks uncertainty analysis based on heterogeneity resolution.The arrows
point to the true values. The realizations denote the frequency within different value

range.

range is increased to ±0.33; when lowest resolution, i.e., coarsening grid, is chosen, the

inverted K2s are centered at 9.5 and distributed within the uncertainty region of ±0.42.

In general, inverted Ks are insensitive to resolution change from the results of this

experiment while K1 is relatively more sensitive than K2 to grid resolution. Concerning

MP, the uncertainty region becomes wider with lower grid resolution, which indicates

MP becomes lower with smoother grids. Compared to MP, MA exhibits more noticeable

change when resolution information is reduced. With less resolution information, the

center of the resultant distribution is increasingly deviated from the true value. All of

the facts imply that grid smoothing causes poorer K accuracy but model deterioration

is not severe.
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5.2.3.3 BC, MA, and MP

According to different grid resolutions, inverted BCs are listed by Figure 5.10. Similar

to pervious two experiments, the discussion on BCs is organized based on sections as

follows:

a− b: For MP, the maximum of the uncertainty range changes with different grids are

chosen, i.e., 18.0 feet for SIS grids, 19.2 feet for SA grids, and 9.7 feet for Coarsening

grids. Coarsening operation exhibits noticeable improvement on MP. In terms of MA,

the bias of the center line from the true conditions is 6.5 feet, 4.9 feet, and 10.2 feet for

SIS grids, SA grids, and Coarsening grids, respectively. From the Figure 5.10, he region

where is closer to point a exhibits more noticeable deviation from the true conditions.

b − c: For MP, the widths of the uncertainty regions show 18.2 feet for SIS grids, 19.5

feet for SA grids, and 9.5 feet for Coarsening grids, which are similar to the results from

the section a−b. However, in respect of MA, the center line of the resultant distribution

exhibits much less bias, i.e., 2.3 feet for SIS grids, 0.2 foot for SA grids, and 0.88 foot

for Coarsening grids. The results imply that MA is robust to the change of HR on the

section b− c.

c− d: With respect to MP, the width of the uncertainty region is 8.9 feet, 9.2 feet, and

5.7 feet for SIS grids, SA grids, and Coarsening grids, respectively. The resultant data

indicate higher precision and better MP behavior. In addition, the MP alteration due

to grid resolution change becomes milder on this section. For MA, relatively lower bias

of the center line is shown, i.e., 0.7 foot for SIS grids, 0.3 foot for SA grids, and -1.2

foot for Coarsening grids. Here, good robustness to HR change is exhibited although

aggravated underestimation is shown.

d − a: For MP, the inverted BCs are distributed within the region with the width of

7.8 feet for SIS grids, 8.7 feet for SA grids, and 6.7 feet for Coarsening grids. Decent

robustness to HR change is exhibited although Coarsening operation still improves MP

slightly. In terms of MA, the center line is increasingly deviated from the true conditions

and the biases are 0.1 foot for SIS grids, -0.5 foot for SA grids, and -1.9 feet for Coarsening

grids. MA also behaves robustly even if the region closer to a shows relatively larger

bias.

According to the description on the inverted BC results, the region close to a is most

sensitive to the change of grid resolution; the region close to b also exhibits somewhat

result improvement in uncertainty region with lower resolution; for other sections, the
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Figure 5.10: BCs uncertainty analysis based on heterogeneity resolution. Here are
three experiments using different grid resolution including SIS grid, SA grid, and Coars-
ening grid. The grid size is 100×100 all the time. The letters of alphabet denote the
boundary locations. Hydraulic heads are recovered conditions and boundary cell num-

ber is the index of each boundary cell.
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center line and uncertainty region show little difference when grid resolution is changed.

Specifically, the sections of c − d and d − a have robust MP and MA behavior to HR

change.

Generally, inverted BCs are not sensitive to grid resolution of hydrofacies K fields. With

respect to MP, the uncertainty region is always narrowest when Coarsening grids are

inverted, which indicates MP can be improved by grid resolution reduction. As regards

MA, the center line of inverted BCs is increasingly away from the true conditions when

chosen grids possess lower resolution and the distance changes relatively much. It implies

that lower grid resolution can worsen the accuracy of recovered BCs while the precision

is improved, so resolution reduction has less influence on model reliability owing to

accuracy-precision balance.

5.2.3.4 Discussion on Heterogeneity Resolution Strategy

We are informed of some grid representation strategies by the inverted results, especially

inverted K1 and inverted BCs along the region close to a. Lower resolution can improve

the model precision while MA is affected by the bias carried with gird smoothing. How-

ever, the impact of the bias on inverse model is mild and acceptable under sufficient

data support. Meanwhile, smoothed grids can perform high computation speed and

render stochastic inversion more efficient. Therefore, model reliability is basically pre-

served when grid resolution is lower and upscaling is advisable to improve computation

performance.

5.3 Co-effect of Different Factors

This section will try to briefly discuss co-effect of different factors, including data quan-

tity, data quality, and heterogeneity resolution, on modeling outcomes and provide some

primary results from the correspondent two-dimensional uncertainty experiments. In

last section, uncertainty analysis results reveal the role of each factor in the inverse

modeling. As a matter of fact, they are not independent and have co-effects on the

inverse results. Any perturbation on two factors will yield different model outcomes

revealing the different priority of each factor on inverse model. To understand the com-

bined effect of multiple factors, design of experiment (DoE) is a common approach and

widely in use to evaluate correlation between different factors and their impact levels

on the model. For DoE, the number of factors is usually high and then, a complex
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response surface (RS) will be generated using interpolation on experiment results. Here,

our research is focused on only three factors, so a complex DoE will not be conducted

and RS will not be described by interpolation. We just developed three two-dimensional

experiments to detect the primary relation between different factors. Accordingly, an-

other three groups of experiments are developed to investigate the significance rank of

different factor via co-effect analysis results.

5.3.1 Data Quantity and Heterogeneity Resolution

5.3.1.1 Experiment Conditions

The first parallel experiment for co-effect research is to examine the co-effect of data

quantity and heterogeneity resolution on the inverted Ks and BCs. The basic conditions

of this experiment include decreased sampling wells, i.e., 12 wells, 6 wells, and 3 wells,

and increasing lower resolution, i.e., SIS grid, SA grid, and Coarsening grid. For each

well sampling strategy, three different heterogeneity resolutions are employed to conduct

three sets of stochastic inversions. When well sampling strategy is set, the dynamic data

are determined and not changed with heterogeneity resolution. All of these studies are

directed on the premise of error-free observed data. Under these conditions, several

experiments are conducted and experimental results are discussed as followed.

5.3.1.2 K, MA, MP

Each K exhibits different inverted distribution patterns under different experiment con-

ditions. The inverted distributions are listed by Figure 5.12 and Figure 5.13. From these

resultant data, some primary features of inverse model are detected based on inverted

Ks.

First of all, the two-dimensional experimental design obtained some similar outcomes to

each single factor experiment. For each data sampling strategy, lower resolution leads to

lower accuracy and lower precision generally. Basically, fewer wells cause lower accuracy

and lower precision under same resolution. Meanwhile, K1 and K2 yield similar changes

in distribution patterns when different factors are perturbed. Still, K2 exhibits milder

change than K1 when the conditions are perturbed. Therefore, the uncertainty research

on Ks will adopt the inverted K1 to explore the co-effect. The specific characteristics

for each distribution patterns are quantified and tabulated by Table 5.1 and Table 5.2.
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Figure 5.11: SIS, SA, Coarsening realizations based on 12 wells, 6 wells, and 3 wells.
Each realization is one of 100 realizations based family. Column-row based coordinates

are adopted.

Table 5.1: MA analysis from inverted K1 based on two-dimensional experiment. Here,
the two dimensions are data quantity (columns) and heterogeneity resolution (rows).
HR denotes heterogeneity resolution and DQn denotes data quantity. Listed inverted

Ks are the center values of resulting distributions.

PPPPPPPPPHR
DQn

12 wells 6 wells 3 wells

SIS 1 1.15 1.18

SA 1.03 1.27 0.94

Coarsening 0.94 0.97 1.34
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Figure 5.12: K1 uncertainty analysis based on data quantity and heterogeneity res-
olution. The arrows point to the true values. The realizations denote the frequency

within different value range.
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Figure 5.13: K2 uncertainty analysis based on data quantity and heterogeneity res-
olution. The arrows point to the true values. The realizations denote the frequency

within different value range.
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Table 5.2: MP analysis from inverted K1 based on two-dimensional experiment. Here,
the two dimensions are data quantity (columns) and heterogeneity resolution (rows).
HR denotes heterogeneity resolution and DQn denotes data quantity. Listed inverted

Ks are the maximum deviations of resulting distributions.

PPPPPPPPPHR
DQn

12 wells 6 wells 3 wells

SIS 0.15 0.28 0.41

SA 0.23 0.35 0.84

Coarsening 0.30 0.32 0.83

Table 5.3: MA analysis from inverted K2 based on two-dimensional experiment. Here,
the two dimensions are data quantity (columns) and heterogeneity resolution (rows).
HR denotes heterogeneity resolution and DQn denotes data quantity. Listed inverted

Ks are the center values of resulting distributions.

PPPPPPPPPHR
DQn

12 wells 6 wells 3 wells

SIS 9.97 10.42 10.83

SA 9.98 10.69 10.42

Coarsening 9.61 9.94 12.16

Table 5.4: MP analysis from inverted K2 based on two-dimensional experiment. Here,
the two dimensions are data quantity (columns) and heterogeneity resolution (rows).
HR denotes heterogeneity resolution and DQn denotes data quantity. Listed inverted

Ks are the maximum deviations of resulting distributions.

PPPPPPPPPHR
DQn

12 wells 6 wells 3 wells

SIS 0.46 0.75 0.69

SA 0.66 1.09 1.38

Coarsening 0.83 0.69 2.3

In particular, some important co-effect features are revealed by this experiment. For MA,

the center line exhibits bigger oscillation around the true value when either sampling

wells are reduced or resolution is lower. The oscillation magnitude of MA for inverted

K1 is 0.09, 0.30, 0.40 ,and for inverted K2, is 0.37, 0.75, 1.74, for 12 wells, 6 wells, and

3 wells, respectively. In terms of heterogeneity resolution, MA uncertainty yields 0.18,

0.33, 0.40 for K1, and 0.86, 0.71, 2.55 for K2, for SIS grids, SA grids, and Coarsening

grids, respectively. It indicates that the decrease of data quantity can exaggerate the

deterioration caused by heterogeneity resolution. Also, the change of heterogeneity

resolution results in some mild change (K1) or even fluctuation of MA uncertainty (K2),

so on the MA stability, data quantity has stronger impact than heterogeneity resolution.

Secondly, for precision, data quantity leads to different change trends between different
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resolution grid. MP analysis shows that the difference in MP uncertainty range is 0.26,

0.61, and 0.53 for K1 and 0.23, 0.72, 1.61 for K2 by rows, and 0.15, 0.07, 0.43 for K1

and 0.37, 0.40, 1.61 for K2 by columns. Here, mild change or fluctuation in uncertainty

is shown by the data based on columns. It implies that heterogeneity resolution is more

influential to the MP uncertainty than data quantity. In addition, 3 wells always result

in model deterioration leap, so observed data have to be fed on more than 3 wells for

decent MP stability.

In terms of different sampling wells, with decrease of drilling wells, the difference in

precision is increasingly smaller. Take inverted K1s for example. The difference in

uncertainty range is 0.15, 0.07, and 0.43 for 12 wells, 6 wells, 3 wells, respectively. The

facts reveal that fewer sampled data will definitely aggravate the bias between original

SIS grids and other grids, but between modified grids, the variation caused by further

modification will be increasingly smaller if data quantity decreases.

Finally, for inverted Ks, different parameters are reckoned among the priority in different

model criteria. With respect to MA, the largest variation of center lines is 0.09, 0.3,

and 0.4 for 12 wells, 6 wells, and 3 wells; the same quantity is 0.18, 0.24, 0.4 for SIS

grids, SA grids, and Coarsening grids. With respect to MA, the maximum variation of

different uncertainty region lengths is 0.15, 0.07, 0.42 for 12 wells, 6 wells, and 3 wells;

the same quantity is 0.26, 0.59, and 0.53 for SIS grids, SA grids, and Coarsening grids.

From these quantifications, data quantity will influence MA more than heterogeneity

resolution; MP is more affected by heterogeneity resolution than data quantity.

5.3.1.3 BC, MA, and MP

To understand the information from inverted BCs better, the discussion is still organized

by four sections, including a− b, b− c, c− d, and d− a.

a− b: The MA and MP analysis results reveal some distinct features of inverse model.

Generally, with the decrease of data quantity and heterogeneity resolution, MA and MP

will be both worsen. MA analysis results show 6.51, 10.59, 40.90 along the diagonal of

the Table 5.5; MP analysis results show 18.02, 24.56, 37.80 along the diagonal of the

Table 5.6. The model precision relies on the impact of data quantity; the model accuracy

will be more influenced by upscaling strategy.

Meanwhile, MA and MP uncertainties depend on heterogeneity resolution. MA analysis

results show the uncertainty of 4.43, 8.34, 30.83 by rows; MA analysis results show the
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Figure 5.14: BCs uncertainty analysis based on 12 wells and different heterogeneity
resolution. The letters of alphabet denote the boundary locations. Hydraulic heads are

recovered conditions and boundary cell number is the index of each boundary cell.



Chapter 5. Uncertainty Analysis 68

0 50 100 150 200 250 300 350 400

200

250

300

H
yd

ra
ul

ic
 H

ea
ds

Boundary Cell Number

Observed heads vs. Recovered heads (Error−free 6Wells SIS)

 

 

recovered BC
true BC

a b a

c d

0 50 100 150 200 250 300 350 400

200

250

300

H
yd

ra
ul

ic
 H

ea
ds

Boundary Cell Number

Observed heads vs. Recovered heads (Error−free 6Wells SA)

 

 

recovered BC
true BC

a b a

c d

0 50 100 150 200 250 300 350 400

200

250

300

H
yd

ra
ul

ic
 H

ea
ds

Boundary Cell Number

Observed heads vs. Recovered heads (Error−free 6Wells Coarsening)

 

 

recovered BC
true BC

a b a

c d

Figure 5.15: BCs uncertainty analysis based on 6 wells and different heterogeneity
resolution. The letters of alphabet denote the boundary locations. Hydraulic heads are

recovered conditions and boundary cell number is the index of each boundary cell.
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Figure 5.16: BCs uncertainty analysis based on 3 wells and different heterogeneity
resolution. The letters of alphabet denote the boundary locations. Hydraulic heads are

recovered conditions and boundary cell number is the index of each boundary cell.
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Table 5.5: MA analysis from inverted BCs based on two-dimensional experiment.
Here, the two dimensions are data quantity (columns) and heterogeneity resolution
(rows). Tabulated inverted results are the deviations of resulting distributions from the

true conditions at different sections of the entire boundary.

section ab

12 wells 6 wells 3 wells

SIS 6.51 10.35 10.94

SA 4.88 10.59 13.22

Coarsening 10.17 10.07 40.90

section bc

12 wells 6 wells 3 wells

SIS 2.31 3.49 9.23

SA 0.21 4.10 10.85

Coarsening 0.88 1.33 39.62

section cd

12 wells 6 wells 3 wells

SIS 0.67 1.13 1.71

SA 0.33 0.63 3.39

Coarsening -1.20 -1.19 19.35

section da

12 wells 6 wells 3 wells

SIS 0.11 -1.84 -1.81

SA -0.45 -0.02 -2.86

Coarsening -1.93 -4.05 -9.67

uncertainty of 5.29, 0.52, 29.96 by columns. The results imply that lower heterogeneity

resolution will exaggerate the variation of MA which states that the robustness of the

model is weaken; fewer data do not cause poorer MA all the time unless data quantity

is far from sufficient. MP analysis results show the uncertainty of 1.15, 5.37, 28.09 by

rows; MP analysis results show the uncertainty of 9.48, 14.77, 20.26 by columns. The

results imply that lower heterogeneity resolution can result in the larger variation of MP

which states that the robustness of the model is weaken; fewer data will also cause lower

MP but its influence is a little weaker than the impact of heterogeneity resolution.

Furthermore, the results provide some information on data sampling strategy. When

the table is further examined, it is obtained that 3 wells always cause severely bad model

outcomes regardless of MA or MP. This deterioration indicates that 3 sampling wells

fail to supply sufficient input data for a good model result, which determines poorer

model performance. When the results from 3 wells are taken out, it is detected that

Coarsening grid improves the uncertainty of MA and MP, which implies that upscaling
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Table 5.6: MP analysis from inverted BCs based on two-dimensional experiment.
Here, the two dimensions denote data quantity (columns) and heterogeneity resolution
(rows). Tabulated inverted results are the maximum fluctuation range of resulting

distributions at different sections of the entire boundary.

section ab

12 wells 6 wells 3 wells

SIS 18.02 19.09 17.54

SA 19.19 24.56 21.61

Coarsening 9.71 9.79 37.80

section bc

12 wells 6 wells 3 wells

SIS 18.21 19.06 17.59

SA 19.48 20.26 25.44

Coarsening 9.50 9.10 39.87

section cd

12 wells 6 wells 3 wells

SIS 8.91 10.10 10.43

SA 9.16 11.94 22.17

Coarsening 5.67 5.58 37.98

section da

12 wells 6 wells 3 wells

SIS 7.72 7.94 17.96

SA 8.74 20.94 31.77

Coarsening 6.69 21.72 38.31

can improve the robustness of MR. In particular, Coarsening grid yields the model with

much higher precision, and thus, the improvement on MP can be offered by upscaling.

b− c: Within this inverted section, MA and MP provide some different features. Gen-

erally, with the decrease of data quantity and heterogeneity resolution, MA and MP are

both worsen. MA analysis results show 2.31, 4.10, 39.62 along the diagonal of the Ta-

ble 5.5; MP analysis results show 18.21, 20.26, 39.87 along the diagonal of the Table 5.6.

Both exhibit a non-linear trend of result deterioration which implies that upscaling and

shrunk data pool can result in worse inverted results on this region. Especially, excessive

upscaling or over shrunk data sets can faster the deterioration speed.

Meanwhile, MA and MP uncertainties depend on the heterogeneity resolution. MA

analysis results show the uncertainty of 6.92, 10.64, 38.74 by rows; MA analysis results

show the uncertainty of 2.1, 2.77, 30.39 by columns. The results imply that lower

heterogeneity resolution or fewer data will exaggerate the variation of MA, which states

that the robustness of the model is weaken. MP analysis results show the uncertainty
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of 1.47, 5.96, 30.77 by rows; MP analysis results show the uncertainty of 9.98, 11.16,

22.28 by columns. The results imply that lower heterogeneity resolution can result in

the larger variation of MP, which states that the robustness of the model is weaken;

fewer data will also cause lower MP but the non-linear feature is not as discernable as

the trend of heterogeneity resolution.

Furthermore, some factors will play a more important role in modeling this section,

especially data quantity. If the Table 5.5 and Table 5.6 are further examined, it can

be obtained that 3 wells adversely affect MA and MP, and especially, MA exhibits

some dramatic feature when sampling wells are reduced from 6 wells to 3 wells. This

deterioration indicates that the data from 3 wells cannot satisfy the need of model,

especially MA, from which worse model performance occurs.

Similar to the section a − b, Coarsening grid improves the uncertainty of MA and MP

if the results of 3 wells are removed, which implies that upscaling can improve the

robustness of MR. In particular, Coarsening grid yields the model with much higher

precision, and thus, the improvement on MP can be offered by upscaling.

c − d: Within this inverted section, MA and MP provide some similar features to the

results from the section b − c. Generally, with decrease of data quantity and hetero-

geneity resolution, MA and MP are both worsen. MA analysis results show 0.67, 0.63,

19.35 along the diagonal of the Table 5.5table; MP analysis results show 8.91, 11.94,

37.98 along the diagonal of the Table 5.6. Both exhibit non-linear trends of result de-

terioration which implies that excessive upscaling or over shrunk data sets can faster

the deterioration speed. For MA, within a certain range, simultaneous reduction on

resolution and data can provide stable model outcomes.

Meanwhile, MA uncertainty and MP uncertainty both depend on heterogeneity resolu-

tion. MA analysis results show the uncertainty of 1.04, 3.06, 20.55 by rows; MA analysis

results show the uncertainty of 1.87, 2.32, 17.64 by columns. The results imply that low-

er heterogeneity resolution or fewer data can worsen the variation of MA, which states

that the robustness of the model is weaken. Within some region, this impact is relatively

slighter. Also, from both of these trends, these two factors have closely equal impact on

the uncertainty of MA. MP analysis results show the uncertainty of 1.52, 13.01, 32.40 by

rows; MP analysis results show the uncertainty of 3.49, 6.36, 27.55 by columns. These

facts reveal larger variation than the results from MA analysis. Lower heterogeneity
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resolution can result in the larger variation of MP, which states that the model robust-

ness is weaken; fewer data can also cause lower MP, and here, the non-linear feature is

stronger than the trend exhibited by heterogeneity resolution.

Furthermore, data sufficiency issue is also noticeable in this section. If Table 5.5 and

Table 5.6 are further examined, it will be obtained that 3 wells adversely affect MA and

MP, and especially, the uncertainty of MP shows a leap between 6 wells and 3 wells.

This deterioration indicates that the data demand for decent model precision is much

larger than the data feed from 3 sampling wells, which gives rise to the worse model

outcomes. Similar to the section b−c, Coarsening grid improves the uncertainty of MA

and MP if the results of 3 wells are removed, which implies that upscaling can improve

the robustness of MR. In particular, Coarsening grid yields the model with much higher

precision, and thus, the improvement on the model precision can be offered by upscaling.

d−a: Within this inverted section, MA and MP provide similar general characteristics

although there are some slightly different features to the results from other sections.

With decrease of data quantity and heterogeneity resolution, MA and MP are both

worsen. MA analysis results show 0.11, -0.02, -9.67 along the diagonal of the Table 5.5;

MP analysis results show 7.72, 20.94, 38.31 along the diagonal of the Table 5.6. Both

exhibit non-linear trends of result deterioration which implies that excessive upscaling or

over shrunk data sets can faster the deterioration speed. For MA, within a certain range,

simultaneous reduction on resolution and data can provide stable model outcomes.

Meanwhile, MA uncertainty and MP uncertainty both depend on the heterogeneity

resolution. MA analysis results show the uncertainty of 1.95, 2.84, 7.74 by rows; MA

analysis results show the uncertainty of 2.04, 4.03, 7.86 by columns. The results imply

that lower heterogeneity resolution or fewer data can worsen the variation of model

accuracy, which states that the robustness of the model is weaken. This section shows

much slighter variation results than other sections, which indicates data quantity and

heterogeneity resolution have less impact on this section. Also, from both of these trends,

these two factors have closely equal impact on the uncertainty of MA. MP analysis

results show the uncertainty of 10.24, 23.03, 31.62 by rows; MP analysis results show

the uncertainty of 2.05, 13.78, 20.35 by columns. These facts reveal larger variation than

the results from MA analysis. The decrease of data quantity can result in the larger

variation of model precision, which states that the robustness of the model is weaken;

fewer data will also cause lower MP, and here, the linear feature is stronger than the

trend of heterogeneity resolution.
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Data sufficiency issue becomes more noticeable in this section. If Table 5.5 and Table 5.6

are further examined, it can be obtained that the adverse effect on the MA and MP starts

at 6 wells, and especially, the uncertainty of MP shows a leap between 12 wells and 6

wells. This deterioration indicates that decent modeling on this section requires more

data than the sampled data from 6 wells. Slightly different from other sections, the

precision improvement from Coarsening grid is overshadowed by the deficiency of data

quantity in this section. Even if the improvement is still exhibited by 12 wells, the

improvement is very limited. This fact indicates that sufficient data quantity plays a

prominent role in precision improvement.

5.3.1.4 Discussion on Data Quantity and Heterogeneity Resolution

From the uncertainty analysis above, data quantity and heterogeneity resolution take

different roles in inverse model. Generally, fewer data will exaggerate the deterioration

of MA and MP caused by heterogeneity resolution decrease; data quantity has a larger

influence on MU than heterogeneity resolution. In particular, when drilling wells ared

decreased to 3 wells, the difference in inverted results based on different heterogeneities

becomes dramatically larger, which indicates MRs of different resolutions have to been

ensured by sufficient observed data.

For inverted BCs, each section exhibits differen features. The section a − b has strong

stability to the change of data quantity or heterogeneity resolution. The section b − c

and the section c − d have some similar MU behavior. However, the section c − d

is more robust to condition change, and thus, the section b − c is more influenced by

data quantity and heterogeneity resolution. Moreover, the section d− a is most robust

to any change from data quantity and heterogeneity resolution when data quantity is

sufficient. According to the resultant data, the number of sampled wells have to be

more than 6 to ensure the data feeding for the section d − a. Generally speaking,

extrapolation regions exhibit weak instability to the change of data quantity; with the

decrease of heterogeneity resolution, MP is improved while MA becomes poorer. More

than 3 sampled wells are capable of supporting sufficient data input for all sections but

the section d − a. Also, the uncertainty of MA and MP makes it possible to predict

model behavior based on current model status.
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Table 5.7: MA analysis from inverted K1 based on two-dimensional experiment. The
two dimensions are data quantity (rows) and data quality(columns). The value in
each cell denotes the center line of different resultant distributions generated under the

correspondent condition.

PPPPPPPPPDQn
DQl

0 ±1% ±2% ±5% ±10%

12 wells 1 0.97 0.93 0.71 0.24

6 wells 1.15 1.13 1.04 0.58 -0.02

3 wells 1.18 1.17 1.12 0.58 -0.56

5.3.2 Data Quantity and Data Quality

5.3.2.1 Experimental Conditions

The second experiment is to examine the co-effect of data quantity and data quality

on the inverted Ks and BCs. The condition of this experiment is set as decreased

drilling wells, i.e., 12 wells, 6 wells, and 3 wells, and the increasing data errors, i.e.,

±1%, ±2%, ±5%, and ±10%, base on the THV. Here, the heterogeneity resolution is

set to SIS grid. Due to the decrease of sampling wells, observed K sets are shrunk

and SIS simulation results exhibit increasingly lower accuracy. Observed data errors are

still added to hydraulic head data, and corruption levels refer to the SD of the data

based on the THV. Under these conditions, several experiments are conducted and the

experiment provides the different results of Ks and BCs as illustrated by Figure 5.17,

Figure 5.18, Figure 5.19, Figure 5.20, Figure 5.21, Figure 5.22, and Figure 5.23.

5.3.2.2 K, MA, and MP

For inverted Ks, the general features reflected by relevant single factor analysis are also

preserved in the co-effect uncertainty analysis. For each drilling well strategy, fewer

data are lead to lower accuracy and lower precision generally. Basically, data errors

corrupt model quality under the condition of same data quantity. Moreover, K1 and

K2 yield similar distribution pattern changes when different factors are perturbed. Still,

K2 exhibits milder change than K1 when the conditions are perturbed. Therefore, the

uncertainty research on Ks adopts the inverted K1s to explore the co-effect. The spe-

cific characteristics for each distribution patterns are tabulated by Table 5.7, Table 5.8,

Table 5.9, and Table 5.10.
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Figure 5.17: K1 uncertainty analysis based on data quantity and data quality. The
arrows point to the true values. The realizations denote the frequency within different

value range which reflects uncertainty regions.
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Figure 5.18: K2 uncertainty analysis based on data quantity and data quality.The
arrows point to the true values. The realizations denote the frequency within different

value range which reflects uncertainty regions.
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Table 5.8: MP analysis from inverted K1 based on two-dimensional experiment. The
two dimensions are data quantity (rows) and data quality(columns). The value in
each cell denotes the length of the resultant uncertainty region generated under the

correspondent condition.

PPPPPPPPPDQn
DQl

0 ±1% ±2% ±5% ±10%

12 wells 0.15 0.17 0.19 0.26 0.29

6 wells 0.22 0.23 0.25 0.33 0.54

3 wells 0.37 0.46 0.55 0.98 1.26

Table 5.9: MA analysis from inverted K2 based on two-dimensional experiment. The
two dimensions are data quantity (rows) and data quality(columns). The value in
each cell denotes the center line of different resultant distributions generated under the

correspondent condition.

PPPPPPPPPDQn
DQl

0 ±1% ±2% ±5% ±10%

12 wells 9.97 9.87 9.71 8.97 7.26

6 wells 10.42 10.36 10.16 8.79 6.00

3 wells 10.83 10.84 10.71 9.53 6.63

Table 5.10: MP analysis from inverted K2 based on two-dimensional experiment.
The two dimensions are data quantity (rows) and data quality(columns). The value
in each cell denotes the length of the resultant uncertainty region generated under the

correspondent condition.

PPPPPPPPPDQn
DQl

0 ±1% ±2% ±5% ±10%

12 wells 0.46 0.58 0.61 0.89 0.98

6 wells 0.75 0.78 0.73 1.34 1.76

3 wells 0.69 0.74 0.88 1.42 1.64

MA results show 1, 1.13, 1.12; 0.97, 1.04, 0.58; 0.93, 0.58, -0.56 for K1 along the diagonal

of the Table 5.7 and 9.97, 10.36, 10.71; 9.87, 10.16, 9.53; 9.71, 8.79, 6.63 for K2 along

the diagonal of the Table 5.9. In general, MA is deteriorated by worse data conditions

regardless of underestimation or overestimation. K1 exhibits faster deterioration speed,

especially when the data errors are larger than ±5% of THV. MP results show 0.15, 0.23,

0.55; 0.17, 0.25, 0.98; 0.19, 0.33, 1.26 for K1 along the diagonal of the Table 5.8 and 0.46,

0.78, 0.88; 0.58, 0.73, 1.42; 0.61, 1.34, 1.64 for K2 along the diagonal of the Table 5.10.

Both of the inverted K exhibit increasingly lower precision when either data condition

is worse. Also, K1 shows weak robustness to data condition change. Especially, the

precision change trends have leaps when 6 wells are reduced to 3 wells, which implies

that 3 wells presumably fail to satisfy the basic data demand of inverse model.
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MA analysis results show the uncertainty of 0.76, 1.17, 1.64 for K1 and 2.71, 4.42,

4.21 for K2 by rows; MA analysis results show the uncertainty of 0.18, 0.20, 0.19, 0.23,

0.80 for K1 and 0.86, 0.97, 1, 0.74, 1.26 for K2 by columns. The MA uncertainty is

deteriorated when data quantity is reduced. Data errors, compared to data quantity,

exhibits much weaker impact on the model outcome in terms of accuracy uncertainty.

This feature is better shown when data error is less than ±5% of THV. Therefore, MA

is robust to data corruption when the error is not extremely high.

MP analysis results show the uncertainty of 0.14, 0.32, 0.89 for K1 and 0.52, 1.03,

0.95 for K2 by rows; MP analysis results show the uncertainty of 0.22, 0.39, 0.36, 0.72,

0.97 for K1 and 0.29, 0.20, 0.27, 0.53, 0.78 for K2 by columns. The MP uncertainty

basically becomes wider when data conditions are worse. Similar to accuracy uncertainty,

precision uncertainty is more sensitive to data quantity change; however, data error has

more influence on precision uncertainty than accuracy uncertainty.

From the analysis above, some primary conditions for good inverse model outcomes are

revealed. First, sufficient data are primary for quality inverted Ks. Taking inverted K1

for example, Table 5.7 and Table 5.8 show the larger model disturbance by the decrease

of sampling wells. Next, data error can affect the stability of MP uncertainty while

MA uncertainty is stable if the data error is not extremely high. The stability of MA

uncertainty implies the possibility of model behavior prediction.

5.3.2.3 BC, MA, and MP

Here, the analysis on recovered BCs is still organized by four sections including a − b,

b− c, c− d, and d− a.

a − b: The MA and MP analysis results reveal some distinct features different from

DQn-HR analysis. Generally, with deteriorated conditions, MA exhibits fluctuation and

MP shows increasing lower trend. MA analysis results show 6.51, 8.37, 12.17; 6.56, 6.12,

12.12; 6.55, -2.12, 7.15 along the diagonals of the Table 5.11. From these facts, when the

data error magnitude is within ±2%, the model deterioration is shown; when the data

error is more than ±2% of THV, the fluctuation is obtained and the MA deterioration is

uncertain. MP analysis results show 18.02, 18.84, 17.52; 18.81, 21.52, 23.06; 19.58, 29.31,

43.18 along the diagonal of the Table 5.12. Compared to MA, the MP deterioration is

relatively clearer, especially when the result based on both ±2% error and 3 wells is taken

out. The precision is increasingly lower when data quality is worse or data quantity is

fewer.
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Figure 5.19: BCs uncertainty analysis based on different wells and error-free data.
The letters of alphabet denote the boundary locations. Hydraulic heads are recovered

conditions and boundary cell number is the index of each boundary cell.
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Figure 5.20: BCs uncertainty analysis based on different wells and observed hydraulic
head with error±1% of THV. The letters of alphabet denote the boundary locations.
Hydraulic heads are recovered conditions and boundary cell number is the index of each

boundary cell.
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Figure 5.21: BCs uncertainty analysis based on different wells and observed hydraulic
head with error±2% of THV. The letters of alphabet denote the boundary locations.
Hydraulic heads are recovered conditions and boundary cell number is the index of each

boundary cell.
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Figure 5.22: BCs uncertainty analysis based on different wells and observed hydraulic
head with error±5% of THV. The letters of alphabet denote the boundary locations.
Hydraulic heads are recovered conditions and boundary cell number is the index of each

boundary cell.



Chapter 5. Uncertainty Analysis 84

0 50 100 150 200 250 300 350 400

200

250

300

H
yd

ra
ul

ic
 H

ea
ds

Boundary Cell Number

Observed heads vs. Recovered heads (Error±10% 12Wells SIS)

 

 

recovered BC
true BC

a b a

c d

0 50 100 150 200 250 300 350 400

200

250

300

H
yd

ra
ul

ic
 H

ea
ds

Boundary Cell Number

Observed heads vs. Recovered heads (Error±10% 6Wells SIS)

 

 

recovered BC
true BC

c d

ba
a

0 50 100 150 200 250 300 350 400

200

250

300

H
yd

ra
ul

ic
 H

ea
ds

Boundary Cell Number

Observed heads vs. Recovered heads (Error±10% 3Wells SIS)

 

 

recovered BC
true BC

a b a

c d

Figure 5.23: BCs uncertainty analysis based on different wells and observed hydraulic
head with error±10% of THV. The letters of alphabet denote the boundary locations.
Hydraulic heads are recovered conditions and boundary cell number is the index of each

boundary cell.
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Table 5.11: MA analysis from inverted BCs based on two-dimensional experiment.
Here, the two dimensions are data quality (columns) and data quantity (rows). Tabulat-
ed inverted results are the deviations of resulting distributions from the true conditions

at different sections of the entire boundary.

section ab

0 ±1% ±2% ±5% ±10%

12 wells 6.51 6.56 6.55 6.06 3.82

6 wells 10.35 8.37 6.12 -2.12 -20.37

3 wells 10.94 11.68 12.17 12.12 7.15

section bc

0 ±1% ±2% ±5% ±10%

12 wells 2.31 1.98 1.65 0.65 -1.03

6 wells 3.49 2.00 0.50 -4.05 -11.85

3 wells 9.23 9.57 9.89 10.68 11.50

section cd

0 ±1% ±2% ±5% ±10%

12 wells 0.67 0.52 0.39 0.11 0.04

6 wells 1.13 0.24 -0.57 -2.54 -4.60

3 wells 1.71 1.70 1.85 3.27 8.59

section da

0 ±1% ±2% ±5% ±10%

12 wells 0.11 -0.02 -0.15 -0.52 -1.13

6 wells -1.84 -1.98 -2.11 -2.44 -2.96

3 wells -1.81 -1.00 -0.01 4.00 13.79

MA analysis results show the uncertainty of 2.69, 30.72, 3.79 by rows; MA analysis

results show the uncertainty of 4.43, 5.12, 6.05, 14.24, 27.52 by columns. The results

based on rows reveal some fluctuation features, and a clearer increasing deviation results

from column based uncertainty analysis. The results imply that lower data quantity has

a chance to provide stable MA; data errors can worsen the MA uncertainty. There-

fore, data quality will influence the stability of MA while data quantity is not directly

correlated to MA uncertainty.

MP analysis results show the uncertainty of 17.48, 35.47, 26.01 by rows; MP analysis

results show the uncertainty of 1.55, 1.67, 4, 6.64, 18.81 by columns. The resultant data

shows some fluctuation on rows and increasing wider trend on columns. The results

also imply that data quantity is not directly correlated to MP uncertainty although

fewer data take more risk for poorer MP. From the columns, data quality influences MP

even if the effect is relatively weaker. These results also reveal that within ±2% data

corruption, the model exhibits a good robustness to data errors.
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Table 5.12: MP analysis from inverted BCs based on two-dimensional experiment.
Here, the two dimensions denote data quality (columns) and data quantity (rows).
Tabulated inverted results are the maximum fluctuation range of resulting distributions

at different sections of the entire boundary.

section ab

0 ±1% ±2% ±5% ±10%

12 wells 18.02 18.81 19.58 22.67 35.50

6 wells 19.09 18.84 21.52 29.31 54.31

3 wells 17.54 17.17 17.52 23.06 43.18

section bc

0 ±1% ±2% ±5% ±10%

12 wells 18.21 19.01 19.80 22.95 36.27

6 wells 19.06 18.91 21.64 34.70 66.89

3 wells 17.59 17.16 16.75 16.66 27.82

section cd

0 ±1% ±2% ±5% ±10%

12 wells 8.91 10.40 11.90 16.51 24.89

6 wells 10.10 11.53 16.15 31.07 60.93

3 wells 10.43 10.40 10.92 13.63 22.72

section da

0 ±1% ±2% ±5% ±10%

12 wells 7.72 7.33 7.21 9.73 16.48

6 wells 7.94 8.34 8.68 9.48 15.88

3 wells 17.96 16.42 15.89 17.97 28.63

Furthermore, the results provide some information on data quantity and data errors.

First, good sampling strategy can support inverse model using limited data. Compared

to 6 wells, the row for 3 wells exhibits milder fluctuation of the accuracy value, which

implies that a sampling method plays an important role in inverse modeling. For MA,

when the data error magnitude is increased to ±10%, the 3 well drilling strategy can

offer more decent results; for MP, the results from 3 wells always are better than the

model outcome by 6 wells. Both of these facts imply that the decrease of data quantity

can strengthen the robustness of the model to data errors.

b − c: Some distinct features are revealed by MA and MP analysis results. Generally,

with deteriorated conditions, MA exhibits fluctuation and MP shows increasing lower

trend. MA analysis results show 2.31, 2.00, 9.89; 1.98, 0.50, 10.68; 1.65, -4.05, 11.50

along the diagonals of the Table 5.11. From these facts, when the data quantity is less

than 3 wells and data error is within ±5% of THV, the model exhibits little deterioration

when conditions are worse, which indicates the model is robust to the condition change

within this region. If data sets are reduced to 3 wells, MA is worse when the perturbation
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on model is larger. When data error is increased to ±10% of THV, the fluctuation is

exhibited by resultant data. MP analysis results show 18.21, 18.91, 16.75; 19.01, 18.91,

17.16; 19.80, 34.70, 27.82 along the diagonal of the Table 5.12. Here, the deterioration is

not noticeable until the data error is sufficiently large, such as more than ±5% of THV.

The 3-well based sampling strategy may provide a little better MP.

MA analysis results show the uncertainty of 3.34, 15.34, 2.27 by rows; MA analysis

results show the uncertainty 6.92, 7.59, 9.39, 14.73, 23.35 by columns. The results based

on rows reveal some fluctuation features, and a clearer increasing deviation results from

column based uncertainty analysis. The results imply that lower data quantity will have

a chance to provide stable model accuracy; the data error will worsen the model accuracy

uncertainty. Therefore, data quality will influence the stability of model accuracy while

data quantity is not directly correlated to model accuracy uncertainty.

MP analysis results show the uncertainty of 18.06, 47.98, 11.16 by rows; MP analysis

results show the uncertainty of 1.47, 1.85, 4.89, 18.04, 39.07 by columns. The resultant

data show relatively strong fluctuation on rows and increasing wider trend on columns.

Here, the results indicate the uncertain effect of data quantity on inverting this section,

which implies that it is possible to obtain decent inversion outcomes with fewer data.

Also, MP is influenced by the data quality; larger data error can increase the width of

uncertainty region, and especially, this effect is stronger when the corruption magnitude

is larger than ±1%. Compared to the section a− b, the robustness of the inverse model

is weaker on this section.

Furthermore, the results provide some extra information on data quantity and data

errors. When the number of sampling wells is reduced to 3, the accuracy exhibit good

robustness to the data corruption while the precision is not high, which is similar to the

conclusion from the section a − b. For the precision, the robustness is more noticeable

due to very narrow uncertainty region, especially when the worst result from ±10% error

is removed. Both of these facts imply that the decrease of data quantity can strengthen

the robustness of the model to data errors.

c−d: This section also has some distinctive features from MA and MP analysis results.

Generally, with deteriorated conditions, MA shows fluctuation and MP exhibits increas-

ing lower trend. MA analysis results show 0.67, 0.24, 1.85; 0.52, -0.57, 3.27; 0.39, -2.54,

8.59 along the diagonals of the Table 5.11. From the resultant data, MA exhibits larger

oscillation which is better reflected by alternative signs. Accordingly, in general, worse

conditions, such as fewer data and larger data error, can deteriorate MA but the trend is
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fluctuated. Meanwhile, when the data error is less than ±5% of THV, the uncertainty of

MA is very low, and the model is little disturbed by the condition perturbation, regard-

less of data quantity or data error. Hence, it is obtained that when the error magnitude

is less than ±5%, the model behavior is robust to condition change. MP analysis results

show 8.91, 11.53, 10.92; 10.40, 16.15, 13.63; 11.90, 31.07, 22.72 along the diagonal of the

Table 5.12. The model precision here shows larger fluctuation than on the section a− b

or b − c. Deterioration still exists although it is a little concealed by some fluctuation

trend. In addition, this fluctuation exhibits similar features to other model behaviors

reflecting the information on sampled wells, and thus, the MP of inverting this section

is possibly related to data quantity, especially data sampling strategy.

MA analysis results show the uncertainty of 0.63, 5.73, 6.88 by rows; MA analysis results

show the uncertainty 1.04, 1.46, 2.42, 5.81, 13.19 by columns. Both of them show

the clean increase of uncertainty which indicates the uncertainty of MA in this section

behaves relatively stably. In addition, when the number of sampling wells is reduced

to 6, the uncertainty region exhibits an increase leap, which implies that the data from

more 6 wells can provide relatively robust MA behavior. Similarly, a robust behavior is

performed when the data error magnitude is less than ±5%. MP analysis results show

the uncertainty of 15.98, 50.83, 12.32 by rows; MP analysis results show the uncertainty

of 1.52, 1.13, 5.23, 17.44, 38.21 by columns. The resultant data show relatively strong

fluctuation on rows and increasing wider trend on columns. Here, the results manifest

the uncertain effect of data quantity on inverting this section, which indicates that it is

possible to obtain decent inversion outcomes with fewer data. Also, MP is influenced

by the data quality; larger data error will increase the width of uncertainty region, and

especially, this effect is stronger when the corruption magnitude is larger than ±1%.

Compared to the section a − b, the robustness of the inverse model is weaker on this

section.

Furthermore, the results provide some extra information on data quantity and data

errors. When the number of sampled wells is reduced to 3, the accuracy exhibit good

robustness to the data corruption while the precision is not high, which is similar to the

conclusion from the section a − b. For the precision, the robustness is more noticeable

due to very narrow uncertainty region, especially when the worst result from ±10% error

is removed. Both of these facts imply that the decrease of data quantity can strengthen

the robustness of the model to data errors.

d − a: The MA and MP analysis results show some distinct features. Generally, with

deteriorated conditions, MA exhibits fluctuation and MP shows increasing lower trend.
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MA analysis results show 0.11, -1.98, -0.01; -0.02, -2.11, 4; -0.15, -2.44, 13.79 along the

diagonals of the Table 5.11. Here, the fluctuation is exhibited by alternative signs, and

the general trend implies that worse condition can generate larger deviation from the true

BCs. Meanwhile, when head data are corrupted by the error with less ±5% magnitude,

MA shows a relatively good robustness to condition deterioration. MP analysis results

show 7.72, 8.34, 15.89; 7.33, 8.68, 17.97; 7.21, 9.48, 28.63 along the diagonal of the

Table 5.12. A relatively clear deterioration trend is obtained from the resultant MPs.

While the condition is progressively worse, the uncertainty region of MP becomes wider.

In particular, when the sampling wells are reduced to 3 wells, the region always shows

a longer width.

MA analysis results show the uncertainty of 1.24, 1.12, 15.6 by rows; MA analysis results

show the uncertainty 1.95, 1.96, 2.1, 6.44, 16.75 by columns. In general, data quantity

has little influence on the accuracy uncertainty for this section unless the sampling wells

are too limited, such as 3 wells. Data quality plays a relatively dominant role in MA

fluctuation while the oscillation is mild when the data error is less than ±2% of THV.

MP analysis results show the uncertainty of 9.27, 7.94, 12.74 by rows; MP analysis results

show the uncertainty of 10.24, 9.09, 8.68, 8.49, 12.75 by columns. The MP behavior on

this section is slightly different from MA. The deterioration trend is weaken, especially

for the increase of data errors, while the fluctuation is weaker which indicates a better

robustness. Both of them demonstrate that the inverse model on this section is robust to

the data quality perturbation or data quantity change. Also, when data error magnitude

is extremely large, such as ±10%, or data quantity is too low, such as 3 wells, the MP

behavior can be adversely affected.

From the resultant Table 5.11 and Table 5.12, some distinct information is also obtained.

First, the data quantity need is not demanding for this section. Unlike the section of

a − b or b − c, the data quantity is a little influential to MA on this section. For MP,

sufficient data, such as more than 3 wells, and the data with relatively less error, such

as less than ±10% of THV, can support relatively decent inverted outcomes and stable

inversion results.

5.3.2.4 Discussion on Data Quantity and Data Quality

Each factor has a stronger impact on different model state variable. Data quality deter-

mined the MA behavior and the uncertainty is little influenced by data quantity. This
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outcome renders the prediction on model performance more feasible. In particular, with-

in the region of some data error, the MA behavior will be stable; a leap deterioration

takes place when data error exceed this region. Data quantity plays a prominent role

in MP uncertainty during this experiment. Specifically, MP uncertainty is influenced

by data quality when the error is too large. The analysis above reveals that data error

should be control to a certain region to ensure the stable model performance.

Like the previous section, different characteristics of each BC section are also revealed

by this co-effect experiment. The section a − b is still robust to data error and data

quantity from relative speed of model deterioration. Data corruption causes the largest

fluctuation in this section also. The section b− c and the section c−d behave similarly

in MP uncertainty. However, the section b− c possesses larger uncertainty in MA than

the section c−d. The section d−a has a similar MA uncertainty behavior to the section

cd. Compared to the section d−a, MP is more stable for the section c−d. With respect

to accurate inverted results, the section c − d and the section d − a are insensitive to

data corruption if the data error is not outrageous. The section d − a has most stable

behavior in MP uncertainty in terms of data quantity. Generally, extrapolation regions

will yield the larger MA uncertainty region and mild MP fluctuation. Also, reducing

data quantity can generate the increasingly biased recovered results and uncertainty

region can be wider for each piece of the boundary line. Data errors can mildly affect

MA, except when the error magnitude is increased to ±10%, while MP is little influenced

by this factor. Finally, the data quality and data quantity could be balanced. Proper

data errors can improve the results from lower data quantity.

5.3.3 Data Quality and Resolution

5.3.3.1 Experimental Conditions

The third experiment is to examine the co-effect of data quantity and data quality on the

inverted Ks and BCs. The condition of this experiment is set as decreased heterogeneity

resolution, i.e., SIS grids, SA grids, and Coarsening grids, and the increasing data error,

i.e., ±1%, ±2%, ±5%, and ±10%, based on THV. The different grids are generated

by the same data sets and SIS simulation results are modified by SA and Coarsening.

Here, 12 sampling wells are chosen to generate observed data. The data errors, of which

the magnitude is based on THV, are added to observed hydraulic heads. Under these

conditions, several experiments are conducted and experimental results are illustrated
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by Figure 5.24, Figure 5.25, Figure 5.26, Figure 5.27, Figure 5.28, Figure 5.29, and

Figure 5.30.

5.3.3.2 K, MA, and MP
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Figure 5.24: K1 uncertainty analysis based on data quality and heterogeneity resolu-
tion. The arrows point to the true values. The realizations denote the frequency within

different value range which reflects uncertainty regions.
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Table 5.13: MA analysis from inverted K1 based on two-dimensional experiment. The
two dimensions are heterogeneity resolution (rows) and data quality(columns). The
value in each cell denotes the center line of different resultant distributions generated

under the correspondent condition.

PPPPPPPPPHR
DQl

0 ±1% ±2% ±5% ±10%

SIS 1 0.97 0.93 0.71 0.24

SA 1.03 1.00 0.96 0.74 0.27

Coarsening 0.92 0.91 0.86 0.67 0.26

Table 5.14: MP analysis from inverted K1 based on two-dimensional experiment.
The two dimensions are data quantity (rows) and data quality(columns). The value
in each cell denotes the length of the resultant uncertainty region generated under the

correspondent condition.

PPPPPPPPPHR
DQl

0 ±1% ±2% ±5% ±10%

SIS 0.15 0.17 0.19 0.26 0.29

SA 0.24 0.24 0.24 0.26 0.31

Coarsening 0.24 0.27 0.26 0.26 0.17

Table 5.15: MA analysis from inverted K2 based on two-dimensional experiment. The
two dimensions are heterogeneity resolution (rows) and data quality(columns). The
value in each cell denotes the center line of different resultant distributions generated

under the correspondent condition.

PPPPPPPPPHR
DQl

0 ±1% ±2% ±5% ±10%

SIS 9.97 9.87 9.71 8.97 7.26

SA 9.98 9.87 9.71 8.92 7.18

Coarsening 9.61 9.51 9.35 8.59 6.93

MA results show 1, 1, 0.86; 0.97, 0.96, 0.67; 0.93, 0.74, 0.26 for K1 along the diagonal

of the Table 5.13 and 9.97, 9.87, 9.35; 9.87, 9.71, 8.59; 9.71, 8.92, 6.93 for K2 along

the diagonal of the Table 5.15. The resultant data show some mild deterioration trend

which is more related to heterogeneity resolution. In general, MA exhibits good stability

unless the data error is too large.

MP results show 0.15, 0.24, 0.26; 0.17, 0.24, 0.26; 0.19, 0.26, 0.17 for K1 along the

diagonal of the Table 5.14 and 0.46, 0.65, 0.81; 0.58, 0.89, 0.65; 0.61, 0.95, 0.81 for K2

along the diagonal of the Table 5.16. MP exhibits some fluctuation while the general

trend shows worse data conditions resulting in slightly lower precision. However, the

precision is relatively stable under different conditions and the inverse model possesses

decent precision all the time.
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Figure 5.25: K2 uncertainty analysis based on data quality and heterogeneity resolu-
tion. The arrows point to the true values. The realizations denote the frequency within

different value range which reflects uncertainty regions.
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Table 5.16: MP analysis from inverted K2 based on two-dimensional experiment.
The two dimensions are data quantity (rows) and data quality(columns). The value
in each cell denotes the length of the resultant uncertainty region generated under the

correspondent condition.

PPPPPPPPPHR
DQl

0 ±1% ±2% ±5% ±10%

SIS 0.46 0.58 0.61 0.89 0.98

SA 0.66 0.65 0.89 0.95 0.99

Coarsening 0.73 0.81 0.81 0.65 0.81

MA analysis results show the uncertainty of 0.76, 0.76, 0.66 for K1 and 2.71, 2.80, 2.68

for K2 by rows; MA analysis results show the uncertainty of 0.11, 0.09, 0.1, 0.07, 0.03

for K1 and 0.37, 0.36, 0.36, 0.38, 0.33 for K2 by columns. Data error and heterogeneity

resolution both have little impact on the accuracy uncertainty. From the uncertainty

region length, heterogeneity resolution presumably influences the model more than data

quality, and inverse model shows accuracy uncertainty robustness to data errors.

MP analysis results show the uncertainty of 0.14, 0.07, 0.1 for K1 and 0.52, 0.34, 0.08

for K2 by rows; MP analysis results show the uncertainty of 0.09, 0.1, 0.07, 0, 0.16 for

K1 and 0.27, 0.23, 0.28, 0.30, 0.18 for K2 by columns. Similar to the findings from MA

uncertainty, the analysis results reveal that data error and heterogeneity resolution have

limited influence on MP uncertainty behavior. Here, these two factors show some equal

impact on the model.

From the analysis above, the relation between data quality and heterogeneity resolution

is better understood. First, data quality determines MA. When the data error increases,

the MA deterioration is more severe. Within a certain error range, such as less than ±2%

of THV, relatively good MA can be preserved. Next, heterogeneity resolution influences

MP. Generally speaking, lower resolution can generate poorer precision. Meanwhile,

these two factors can be used to balance model deterioration by each of them. Limited

data errors can recover the loss from resolution reduction and lower resolution helps

model to be robust to data errors. Last but not least, MA and MP uncertainties both

exhibit good stability when data are corrupted and resolution is smoothen, which indi-

cates that it is possible to predict the model behavior using the knowledge of current

status and change trend.
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Figure 5.26: BCs uncertainty analysis based on different resolutions and error-free
data. The letters of alphabet denote the boundary locations. Hydraulic heads are

recovered conditions and boundary cell number is the index of each boundary cell.
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Figure 5.27: BCs uncertainty analysis based on different resolutions and data with
the ±1% error of THV. The letters of alphabet denote the boundary locations. Hy-
draulic heads are recovered conditions and boundary cell number is the index of each

boundary cell.
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Figure 5.28: BCs uncertainty analysis based on different resolutions and data with
the ±2% error of THV. The letters of alphabet denote the boundary locations. Hy-
draulic heads are recovered conditions and boundary cell number is the index of each

boundary cell.
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Figure 5.29: BCs uncertainty analysis based on different resolutions and data with
the ±5% error of THV. The letters of alphabet denote the boundary locations. Hy-
draulic heads are recovered conditions and boundary cell number is the index of each

boundary cell.
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Figure 5.30: BCs uncertainty analysis based on different resolutions and data with
the ±10% error of THV. The letters of alphabet denote the boundary locations. Hy-
draulic heads are recovered conditions and boundary cell number is the index of each

boundary cell.
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Table 5.17: MA analysis from inverted BCs based on two-dimensional experimen-
t. Here, the two dimensions are data quality (columns) and heterogeneity resolution
(rows). Tabulated inverted results are the deviations of resulting distributions from the

true conditions at different sections of the entire boundary.

section ab

0 ±1% ±2% ±5% ±10%

SIS 6.51 6.56 6.55 6.06 3.82

SA 4.88 4.55 4.14 2.41 -2.11

Coarsening 10.17 9.70 9.11 6.60 -0.03

section bc

0 ±1% ±2% ±5% ±10%

SIS 2.31 1.98 1.65 0.65 -1.03

SA 0.21 -0.54 -1.29 -3.60 -7.57

Coarsening 0.88 -0.02 -0.94 -3.81 -8.92

section cd

0 ±1% ±2% ±5% ±10%

SIS 0.67 0.52 0.39 0.11 0.04

SA 0.33 0.15 -0.01 -0.38 -0.60

Coarsening -1.20 -1.57 -1.92 -2.84 -3.94

section da

0 ±1% ±2% ±5% ±10%

SIS 0.11 -0.02 -0.15 -0.52 -1.13

SA -0.45 -0.60 -0.75 -1.17 -1.80

Coarsening -1.93 -1.61 -1.27 -0.25 1.53

5.3.3.3 BC, MA, and MP

The BC analysis structure, based on four sections including a − b, b − c, c − d, and

d− a, is also followed here.

a − b: The MA and MP analysis results reveal some distinct features. Generally, with

deteriorated conditions, MA exhibits fluctuation and MP shows increasing lower trend.

MA analysis results show 6.51, 4.55, 9.11; 6.56, 4.14, 6.60; 6.55, 2.41, -0.03 along the

diagonals of the Table 5.17. In general, the accuracy indicates model behaviors are

more robust here since the fluctuation is relatively mild. Also, these data reveal that

model deterioration is more uncertain, and it is possible that data with large error, such

as ±10% of THV, and relatively low resolution, such as Coarsening grids, can provide

decent MA, such as the deviation of -0.03. MP analysis results show 18.02, 20.15,

9.51; 18.81, 21.10, 13.23; 19.58, 24.22, 22.86 along the diagonal of the Table 5.18. MP

exhibits model improvement by Coarsening grids on data corruption. The compensation
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Table 5.18: MP analysis from inverted BCs based on two-dimensional experiment.
MP analysis from inverted BCs based on two-dimensional experiment. Here, the two
dimensions denote data quality (columns) and heterogeneity resoluiton (rows). Listed

inverted Ks are the maximum fluctuation range of resulting distributions.

section ab

0 ±1% ±2% ±5% ±10%

SIS 18.02 18.81 19.58 22.67 35.50

SA 19.19 20.15 21.10 24.22 30.37

Coarsening 9.71 9.50 9.51 13.23 22.86

section bc

0 ±1% ±2% ±5% ±10%

SIS 18.21 19.01 19.80 22.95 36.27

SA 19.48 20.49 21.48 24.35 30.38

Coarsening 9.50 9.33 9.31 12.94 21.69

section cd

0 ±1% ±2% ±5% ±10%

SIS 8.91 10.40 11.90 16.51 24.89

SA 9.16 9.62 10.07 11.35 13.24

Coarsening 5.67 5.67 5.93 9.43 14.88

section da

0 ±1% ±2% ±5% ±10%

SIS 7.72 7.33 7.21 9.73 16.48

SA 8.74 8.74 8.71 9.29 15.86

Coarsening 6.69 6.68 6.67 7.48 9.85

relation between heterogeneity and data quality is more discernable here although SA

grids induce limited bias compared to the results from SIS grids.

MA analysis results show the uncertainty of 2.74, 6.99, 10.20 by rows; MA analysis results

show the uncertainty of 5.29, 5.15, 4.97, 4.19, 5.93 by columns. From the uncertainty

data, the MA stability is progressively worse with the lower heterogeneity resolution.

Concerning data quality, MA shows strong robustness of uncertainty to data errors in

that the length of uncertainty region is basically similar.

MP analysis results show the uncertainty of 17.48, 10.46, 13.15 by rows; MP analysis

results show the uncertainty of 9.48, 10.65, 11.59, 10.99, 12.64 by columns. The resultant

data shows relatively mild fluctuation by rows and columns. The results imply that the

change of heterogeneity resolution has little impact on MP stability. In particular,

the resultant precision uncertainty remains a very stable width, which indicates that

MP deterioration by aggravated data corruption is able to be cured by heterogeneity

resolution modification.
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Furthermore, some other valuable model behaviors on data quality and heterogene-

ity resolution are provided. First, grid modification yields some mildly instable model

outcomes. Since our medication methods exhibits some randomness and limited con-

ditioning scheme, upscaling may cause occasional change in model behavior. This fact

manifests that upscaling strategy is crucial for inverse modeling and a smart upscaling

scheme can preserve good stability of model outcomes, even improve the model robust-

ness. Next, the possibility of compensation between data quality and heterogeneity

resolution reveals that they presumably have equal impact on model behavior. This

revelation implies that there is a possibility to heal data corruption using upscaling

strategy, which involves error correctness modeling.

b − c: Concerning the primary model behavior, the section b − c is similar to the

section a − b in MP, and a little different from the section a − b in MA. MA analysis

results show 2.31, -0.54, -0.94; 1.98, -1.29, -3.81; 1.65, -3.60, -8.92 along the diagonals

of the Table 5.17. In general, the MA behavior is fluctuated when parameters are both

worsen. When the data errors are extremely large, model deterioration will appear and

be severe. MP analysis results show 18.21, 20.49, 9.31; 19.01, 21.48, 12.94; 19.80, 24.35,

21.69 along the diagonal of the Table 5.18. Compared to MA, the MP fluctuation is

more discernable when both conditions are increasingly worse. Especially, Coarsening

grid offers significant MP improvement which is similar to the case for the section a−b.

MA analysis results show the uncertainty of 3.34, 7.78, 9.80 by rows; MA analysis results

show the uncertainty of 2.1, 2.52, 2.94, 4.46, 7.89 by columns. MA uncertainty region

is increasingly wider when data errors increase or resolution is lower. In particular, the

MA uncertainty reveals good model robustness when the data error magnitude is less

than ±2%. Also, there is no big difference between SIS grids and Coarsening grids in

accuracy uncertainty. MP analysis results show the uncertainty of 18.06, 10.90, 12.19

by rows; MP analysis results show the uncertainty of 9.98, 11.16, 12.17, 11.41, 14.58 by

columns. The fluctuation behavior is preserved for both of the uncertainty experiments.

Compared to data error, heterogeneity resolution exhibits relatively stronger fluctuation

on precision uncertainty. From this fact, it is implied that heterogeneity resolution may

have stronger impact on MP stability than data quality.

From the analysis above, some useful model strategies are informed. Upscaling is a

good technique to heal the data corruption while a grid modification requires a clever

scheme. This model alleviation performs well when data errors are not high, such as

more than ±5% of THV. Data errors also have a potential to balance the loss of MA
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from resolution reduction. Both of these factors may have equal impact on model and

possibly compensate for the error by each other.

c−d: MA analysis results show 0.67, 0.15, -1.92; 0.52, -0.01, -2.84; 0.39, -0.38, -3.94 along

the diagonals of the Table 5.17. The model accuracy shows a very decent robustness

to the condition perturbation. Although some fluctuation and slight deterioration still

exist, the resultant MAs are basically steady and close to the true conditions. MP

analysis results show 8.91, 9.62, 5.93; 10.40, 10.07, 9.43; 11.90, 11.35, 14.88 along the

diagonal of the Table 5.18. The change of MP is relatively mild also, especially if the

two extreme results, i.e., 5.93 and 14.88, are removed.

MA analysis results show the uncertainty of 0.71, 0.93, 2.74 by rows; MA analysis results

show the uncertainty of 1.87, 2.09, 2.31, 2.95, 3.98 by columns. The MA uncertainty

analysis also proves the robustness of the inverse model on this section. If the results

from some worst cases, such as Coarsening grids and±10% data errors, are taken out, the

fluctuation magnitude of the rest data is less than 0.5% of THV. MP analysis results show

the uncertainty of 15.98, 4.08, 9.21 by rows; MP analysis results show the uncertainty

of 3.49, 4.73, 5.97, 7.08, 11.65 by columns. The MP uncertainty becomes mildly larger

when data error increases. Grid modification has uncertain impact on the precision

uncertainty in this section.

The analyses above show some distinct features of inverse model on the section c−d. The

model behaves robustly, regardless of under data corruption or heterogeneity resolution

upscaling. Especially, proper upscaling plus relatively lower data errors can result in

decent model performance. Hence, the inverse model provides the outcomes with higher

confidence on this section.

d − a: MA analysis results show 0.11, -0.60, -1.27; -0.02, -0.75, -0.25; -0.15, -1.17, 1.53

along the diagonals of the Table 5.17. MA becomes much more stable. Even when

the perturbation is very large, such as Coarsening grid and ±10% error, the model still

performs very well on accuracy. MP analysis results show 7.72, 8.74, 6.67; 7.33, 8.71,

7.48; 7.21, 9.29, 9.85 along the diagonal of the Table 5.18. Although the results from

precision is not as impressive as from MA, the data still exhibits little fluctuation and

relatively high precision. Based on the resultant data, the mild oscillation shows some

closer correlation with heterogeneity resolution.

MA analysis results show the uncertainty of 1.24, 2.25, 3.46 by rows; MA analysis

results show the uncertainty of 2.04, 1.59, 1.12, 0.92, 3.33 by columns. In general, the

MA uncertainty exhibits stable results and validates the model robustness. From specific
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perspective, the MA uncertainty reveals some correlation trend more with heterogeneity

resolution than data quality, expect when the data error is extremely high, such as larger

than ±10% of THV.

MP analysis results show the uncertainty of 9.78, 7.12, 3.18 by rows; MP analysis results

show the uncertainty of 2.05, 2.06, 2.04, 2.25, 6.63 by columns. The data errors have

much weaker impact on the MP uncertainty, especially when the some extreme case,

such as ±10% error, is removed. The uncertainty exhibits the width less than 0.2% of

THV when data error is not more than ±5%. In addition, the precision uncertainty is

improved when the grid heterogeneity resolution is lower. This fact also implies that

grid heterogeneity has relatively strong impact on the inverse model in terms of the

section d− a.

The robustness revealed by the analysis above informs us some useful sampling strategy

for this region. Data error corruption has very limited impact on model quality, so the

sampling strategy along this region is not demanding. Also, heterogeneity resolution has

potentials to heal the data corruption even if some clever upscaling scheme is required.

The results above also demonstrate that proposed inverse model is most effective to

similar regions to the section d−a due to its robustness to data error and heterogeneity

resolution.

5.3.3.4 Discussion on Data Quality and Heterogeneity Resolution

Some distinct relation between data quality and heterogeneity resolution are detected.

From inverted Ks, heterogeneity resolution has less influence on model deterioration by

data quality than data quantity. Therefore, the dominant role of data quality in MA is

more discernable. However, the model deterioration resulting from data corruption is

relieved by heterogeneity smoothing. MP also exhibits relatively stable status. These

facts manifest that model status prediction is much easier when the input parameters

are data quality and heterogeneity resolution.

Different features are also exhibited by each section of BC in this experiment. The section

a−b is more robust to data error than to heterogeneity resolution. The MP uncertainty

also reveals this characteristic. The section a− b and the section b− c behave similarly

in MP uncertainty. For MA, the section b− c, the section c− d, and the section d− a

show similar trends in uncertainty results. Concerning relative sensitivity, the section

b − c is highest to condition changes, the section d − a is lower, and the section c − d
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is lowest. Unlike the section a − b, these three sections indicate that data quality and

heterogeneity resolution have equal impact on the BC inversion accuracy. Regarding

MP, the section d − a exhibits more stable and higher precision, which implies the

precision on this section is robust to data error or heterogeneity upscaling. Generally,

extrapolation areas show stable precision and robustness to data errors. Heterogeneity

resolution usually has limited influence on each section except extrapolation regions.

Data quality still determines model accuracy and relative smaller data errors do not

cause severe model deterioration. Larger data corruption can lead to unstable model

behavior which is reflected by leap change in related uncertainty. Therefore, data errors

should be still limited to ensure model quality.



Chapter 6

Conclusions

This research reveals the model quality under different conditions using uncertainty anal-

ysis. To reach this goal, model reliability to the real problem has been tested and compu-

tation performance is much improved. For model reliability testing, forward modeling is

conducted to build a synthetic confined aquifer with specific boundary conditions. With-

in the synthetic aquifer, well drilling is conducted to sample observed hydraulic heads,

fluxes and hydraulic conductivities. Based on different data sets, dynamic data integra-

tion and static data integration are both adopted to assimilate these data. Static data

integration employed Sequential Indicator Simulation (Variogram-based Geostatistics)

to assess the hydraulic conductivity distribution patterns and dynamic data integration

is conducted using the physically-based inverse method proposed by Irsa and Zhang

(2012). The inverted results are evaluated by examining the inverted Ks and recov-

ered BCs. From the inverted result distribution, inverted Ks are centered at the true

value with decent uncertainty region; recovered BCs are spread over the true condition

and uncertainty region is narrow. Both of these facts indicate the physically based in-

verse model is reliable to practical problems. The success of the data integration breaks

through the limitation from data quantity and renders it possible to solve large scale

aquifer inversion using the inverse approach.

Computation performance is also much improved from respects of serial solver and par-

allel computing. The proposed method yields a linear equation system solved by LSQR

solver and exhibiting severe ill-condition which slows down the convergence of this iter-

ative solver. Therefore, CN is mainly discussed to explore the condition improvement

schemes. The related research is categorized into induced problem improvement and

inherent problem improvement. In terms of induced problem, coordinate transform and

107
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equation scaling are adopted to ameliorate ill-condition; concerning inherent problem,

Gaussian Noise Perturbation is employed to reduce the condition number of large coef-

ficient matrix, thus improving the condition. After these techniques, the computation

time is reduced by order of magnitude and a 200× 200 problem can be correctly solved

in 1 hour. These serial solver improvements have made it possible to conduct large

scale stochastic inversion efficiently in PC. Also, some precision and accuracy reduction

should be noticed by users.

Next, parallel solver is developed to further improve this performance. A scalability

study is conducted to explore a scalable solver which is independent from the number of

processors and problem sizes. To take full advantage of this solver, the coefficient matrix

produced by proposed method is reorganized to a diagonal sparse matrix and random

entry based matrix using permutation. After this operation, this scalable solver is sped

up due to diagonal features in the matrix. Using 100 processors, a 500×500 problem can

be solved in 2 minutes based on CPU time. This parallel study helps the inverse model

to behave more efficiently and the users who possess parallel computers can apply this

model to more complex and larger problems.

After the testing and improvements, uncertainty analysis becomes feasible. This research

conducted the uncertainty analysis to examine three factors, including data quantity,

data quality, and heterogeneity resolution. Different factors play different roles in inverse

model quality. From the corresponding results, data quantity plays more important role

in model precision; data quality determines the model accuracy; heterogeneity resolution

has least influence on model reliability. Considering co-effect analysis results, hetero-

geneity resolution is overshadowed by data quality and data quantity; the roles of data

quality and data quantity are enhanced when both of them are tested simultaneously.

Hence, it is concluded that higher model precision requires more observed data, better

model accuracy demands lower data errors, and heterogeneity resolution could be traded

for better computation performance. According to different the requirements, different

model strategies needs to be conducted when this physically-based inverse method.

Future work can be extended to many sources based on the current analysis results.

First, sensitivity analysis a crucial topic to explore. Data quantity analysis result re-

veals the relatively high instability to model input, and as a matter of fact, this model

behavior results from spatial information input amount. With the drastic decrease of

data quantity, total information will be reduced undoubtedly; however, the mild decrease

does not determine poor inversion outcome because spatial location possesses differen-

t amounts of information. Sensitivity analysis is capable of revealing this knowledge
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and thus, the sampling strategy will be optimized using data sampling at the location

with higher spatial information. The common sensitivity analysis methods include local

methods and global methods, such as One-at-a-time (OAT) Method and Sobol Method.

Next, more factors can be examined using DoE approach. Here, only three factors are

tested by two dimensional DoE, however, the influential factors are much more than

three and high dimensional DoE is required for a decent uncertainty analysis on a real

large problem. In addition, fractured aquifers should be tested for this inversion method.

In a real world, geological formations usually possess some fractures which changes the

regular permeability distribution pattern. This structural alteration brings more chal-

lenges for flow pattern assessment, and thus, accurate parameter estimation on fractured

aquifers becomes increasingly important topic. Finally, three dimensional stochastic in-

version and transient flow can be further researched. After these further explorations,

the new physically based inversion method will be sound and in use to solve more real

problems.
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