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Abstract A new inverse method is developed to simultaneously estimate heterogeneous
hydraulic conductivities, source/sink rates, and unknown boundary conditions for steady-
state flow in an unconfined aquifer. Unlike objective function-based techniques, the new
method does not optimize any data-model misfits. Instead, its formulation is developed by
honoring physical flow principles as well as observation data at sampled locations. Under the
Dupuit–Forchheimer assumption of negligible vertical flow, accuracy and stability of the new
method are demonstrated using synthetic heterogeneous aquifer problems with increasingly
complex flow: (1) aquifer domains without source/sink effects; (2) aquifer domains with a
point sink (a pumping well operating under a constant discharge rate); (3) aquifer domains
with constant or spatially variable recharge; (4) aquifer domains with constant or spatially
variable recharge undergoing single-well pumping. For all problems, inversion yields stable
solutions under increasing head measurement errors (up to ±10 % of the total head variation
in a problem), although accuracy of the estimated parameters degrades with the increasing
errors. The inverse method is successfully tested on problems with high hydraulic conductiv-
ity contrasts—up to 10,000 times between the maximum and minimum values. In inverting
several heterogeneous problems, if the aquifer is assumed homogeneous with a constant
recharge rate, physically meaningful parameter estimates (i.e., equivalent conductivities and
mean recharge rates) can be determined. Alternatively, if the inverse parameterization con-
tains spurious parameters, inversion can identify such parameters, while the simultaneous
estimation of non-spurious parameters is not affected. The method obviates the well-known
issues associated with model “structure errors”, when inverse parameterization either sim-
plifies or complexifies the true parameter field.
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1 Introduction

Unconfined aquifers, or water table aquifers, underlie most areas of the earth and are important
freshwater resources. Water table variation of unconfined aquifers is subject to direct infil-
tration of rainfall recharge, or losses due to evapotranspiration, while pumping (and less fre-
quently, injection) modifies the water table locally near wells. In unconfined aquifers, ground-
water flow is not only influenced by the intrinsic hydraulic parameters of the aquifer, e.g.,
hydraulic conductivity (K ), transmissibility (T ), storage coefficients, but also the source/sink
effects as a result of recharge, evapotranspiration, and well operations. For scientific and man-
agement purposes, there exists a need to estimate not only the hydraulic parameters of an
unconfined aquifer, but also the parameters characterizing its source/sink strengths. For an
unconfined aquifer, this study focuses on the simultaneous estimation of hydraulic conduc-
tivities, recharge rates, and the unknown (steady-state) aquifer boundary conditions, based
on observation data such as hydraulic heads, groundwater fluxes, or pumping rates.

A variety of techniques exist for estimating conductivities and recharge rates for uncon-
fined aquifers. Traditional aquifer test methods develop analytical solutions or type curves
based on the assumption that aquifer conductivity is homogeneous (Dagan 1967; Neuman
1972), or aquifer exhibits simple layering (Hantush and Jacob 1955), although conductivity
estimated with such assumptions may exhibit “scale effect” due to aquifer heterogeneity
(Neuman 1994; Sanchez-Vila et al. 1996; Schulze-Makuch et al. 1999). Other techniques,
including slug tests, borehole flowmeters, and geophysical measurements, can estimate con-
ductivities of small aquifer volumes near wellbores (Cooper et al. 1967; Bouwer and Rice
1976; Dagan 1978; Zlotnik and Zurbuchen 2003; Darnet et al. 2003; Crisman et al. 2007).
Methods have also been developed that combine geostatistics with the inverse theory to
directly infer heterogeneous aquifer conductivity, while quantifying its estimation uncer-
tainty (Li et al. 2008; Liu et al. 2008; Cardiff et al. 2009). In many studies, source/sink
effects are either not accounted for, assumed known, or eliminated using specialized formu-
lations. As a result, conductivity estimation tends to be the focus of the investigations, while
recharge (or evapotranspiration) rate is rarely estimated. Moreover, many techniques exist for
estimating the recharge rate (N ) of an unconfined aquifer (Simmers 1998): some are based on
water or chemical mass balances (Dettinger 1989; Scalon et al. 2002; Healy and Cook 2002;
Tan et al. 2007; Lin et al. 2009), others infer recharge rates from physically-based, highly
detailed, vadose-zone or rainfall-runoff models (Pan et al. 1997; Russo et al. 2001; Jyrkama
et al. 2002), while still others use model calibration to infer the recharge rate(s) as one or more
unknown model parameters (Portniaguine and Solomon 1998; Moench et al. 2001; Hill and
Tiedeman 2007). With the exception of model calibration, with which aquifer conductivity
and recharge rate can be simultaneously estimated, many methods assume conductivity to
be known, homogeneous, or piecewise homogeneous.

In natural systems, both aquifer conductivity and aquifer recharge rate are typically vari-
able in space. To simultaneously estimate these parameters, inverse techniques offer the most
flexibility. On the one hand, if large amounts of aquifer characterization data are collected,
these techniques can act as a data integration tool to help develop highly detailed flow models
(McKenna and Poeter 1995; Harvey and Gorelick 1995; Day-Lewis et al. 2006; Reynolds
and Marimuthu 2007; Fienen et al. 2009; Sakaki et al. 2009; Keating et al. 2010; Liu and
Kitanidis 2011). On the other hand, in data-poor environments, such techniques can help
develop insights into the types of observation data to collect that are important for estimating
different parameters (Carrera and Neuman 1986; Tiedeman et al. 2003; Saiers et al. 2004;
Hill and Tiedeman 2007). However, most of the existing inverse methods are developed by
minimizing an objective function, which is typically defined as a form of mismatch between
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measurement data and the corresponding model simulated values (Hill and Tiedeman 2007;
Oliver et al. 2008). During inversion, parameters are updated iteratively using a forward
model that provides the link between the parameters and the data. Because a forward model
is needed, boundary conditions (BC) of the model are either assumed known, or are calibrated
as part of the inversion process. However, objective function-based techniques may lead to
non-uniqueness in the estimated parameters and model BC, even for relatively simple prob-
lems. To address this issue, a new steady-state aquifer inverse theory was developed, adopting
a set of approximating functions of hydraulic head and groundwater fluxes as the fundamental
solutions of inversion (Irsa and Zhang 2012). By enforcing the continuity of these functions
at a set of collocation points on the interfaces of the inversion grid cells, physics of flow was
preserved locally within each cell and globally extending to the boundary. To incorporate
noisy observed data, the method penalized the mismatch between the measurements and the
values predicted by the fundamental solutions. After enforcing the continuity constraint and
the data fit requirement, inversion led to a system of linear equations that can be solved with
least-squares techniques. Parameters were estimated from the solution of these equations,
based on which heads and flow fields were reconstructed directly from the approximating
functions. Boundary conditions were then inferred from these fields.

The method described in Irsa and Zhang (2012), however, has limitations. First of all, the
governing flow equation must be linear for which the approximating functions can be obtained
via integration, which leads to a set of polynomial functions. This limits the applicability
of the method to confined aquifer problems without source/sink effects. Second, because
source/sink effects (e.g., pumping well) cannot be accommodated, groundwater flux or flow
rate measurements must be sampled from the subsurface. In theory, such measurements can
be obtained using borehole logging or baseflow separation techniques, but both the cost
and the level of measurement uncertainty are expected to be high. Third, for problems with
multiple hydrofacies, only a single hydrofacies conductivity can be estimated: conductivities
of the other hydrofacies are estimated using known ratios that are specified as a set of prior
information equations. For unconfined aquifers for which the flow equation is nonlinear
and source/sink effects are important, the method proposed by Irsa and Zhang (2012) is
not applicable. This study improves the previous work by developing a new unconfined
aquifer inverse method, where the aquifer is subject to areal recharge, well discharge, or
both. Multiple can be hydraulic conductivities (K s), recharge rates (Ns), as well as the
unknown model BC can be simultaneously estimated, i.e., known ratios between parameters
are no longer needed. The unconfined flow equation is linearized, allowing its solution by
analytical techniques. Specifically, depending on the type of aquifer forcing, the fundamental
solutions of inversion are obtained by superposing appropriate analytical flow solutions for
homogeneous sub-domains. Compared to those developed in Irsa and Zhang (2012), these
solutions are considered physically-based. Due to linearization and superposition, inversion
gives rise to a system of nonlinear equations, for which nonlinear equation solvers are used.

To condition the inverse method, observation data include hydraulic heads and a minimum
of one measurement related to its gradient, e.g., Darcy flux or flow rate. Flux or flow rate
data are needed because unconfined aquifer parameter estimation suffers a well-known issue
of parameter identifiability. For example, if a homogeneous unconfined aquifer is receiving
uniform recharge, the flow equation is: ∇2h2 = −2N/K , where ∇2 is the Laplace opera-
tor. Clearly, as long as the ratio of recharge versus conductivity remains the same, infinite
combinations of these two parameters can yield identical hydraulic head distribution in the
aquifer. Fitting or inverting only the hydraulic head data, therefore, cannot lead to unique
and simultaneous estimation of both parameters. Measurements related to the hydraulic head
gradient must be provided, and this limitation cannot be overcome with any inverse methods.
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However, in view of the difficulty in subsurface sampling, for aquifers with nonuniform dis-
tributions of K and N , we investigate problems whereby a single pumping rate, in addition
to head measurements, is provided to inversion. Because well rates can be easily measured
at the surface, data requirement for this problem is not much greater than that needed for
interpreting pumping tests. Clearly, the method would be less useful if individual hydrofacies
heterogeneity required a separate well rate (i.e., head gradient) measurement.

Moreover, with traditional inversion techniques, if small-scale parameter heterogeneities
are ignored during inversion, model “structure errors” can arise that conuld lead to biased
parameter estimates (Cooley and Christensen 2005; Gaganis and Smith 2008; Doherty and
Welter 2010). In this work, the jointly estimated K s and Ns will be tested for biases. For
example, at sites where detailed measurements are not available, the inverse method should
provide physically meaningful bulk parameter estimates that represent the effect of underlying
parameter variations on flow. On the other hand, due to incomplete understanding of the flow
process, spurious parameters can be introduced into inversion. Several problems are tested
by developing inverse parameterizations that (1) do not explicitly account for small-scale
heterogeneities (“simplifying” model structure error), and (2) contain spurious parameters
(“complexifying” model structure error). For (1), the inverse solution is considered unbiased
if an equivalent conductivity and average recharge rate can be simultaneously estimated along
with the unknown model BC. For (2), an unbiased solution is defined as one where the inverse
solution reveals the existence of spurious parameters, while the simultaneous estimation of
non-spurious parameters is not affected.

To test the accuracy of the new method, a suite of one-dimensional (1D) inversions is
conducted for synthetic heterogeneous aquifers with increasingly complex flow: (1) aquifer
domains without source/sink effects; (2) aquifer domains with a point sink (a pumping well
operating under a constant discharge rate); (3) aquifer domains with constant or spatially
variable recharge rates; (4) aquifer domains with constant or spatially variable recharge rates
undergoing single-well pumping. All test problems employ a hydrofacies parameterization in
the distributions of conductivity and recharge rate, data requirement is thus low, e.g., up to 20
observed hydraulic heads and a few flux or flow rate measurements are used to condition the
inversion. For problems (2) and (4), only a single pumping rate (in addition to hydraulic heads)
are provided. For select problems, stability of inversion is investigated by adding increasingly
larger measurement noise to the observed heads. The inverse solution is considered stable
if small measurement errors do not lead to large estimation errors. In the remainder of this
article, the inverse theory is introduced first, followed by results testing the above set of
problems, whereby the inverse solution is compared to the “true” solution of a forward
model. Issues related to stability, accuracy, and structure errors are addressed. Limitations
and future research are indicated, before results are summarized in the Conclusion section.

2 Theory

2.1 The Forward Problem

Under the Dupuit–Forchheimer assumption of negligible vertical flow, steady-state ground-
water flow equation in an unconfined aquifer with a horizontal base is:

∂

∂x

(
K h

∂h

∂x

)
+ ∂

∂y

(
K h

∂h

∂y

)
+ N (x, y) = Qwδ (x − x0) in Ω (1)
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where Ω is the solution domain, x = (x; y) is horizontal coordinate, h is hydraulic head (the
horizontal aquifer base is set as head datum), K is depth-averaged, locally isotropic hydraulic
conductivity, N (x, y) is areal source/sink (only recharge is evaluated in this work), Qw is
pumping rate at x0, and δ represents a Dirac delta function. Equation (1) is nonlinear, but
will be linearized in developing the inverse solution.

Given a set of boundary conditions, hydraulic conductivities, and recharge rates, Eq. (1) can
be solved with a forward model, which is used in this work to provide a set of observation data
for the inverse analysis. In solving the forward model, besides no-flow boundaries, Dirichlet
boundary condition is assigned:

h = g(x, y) on Γ (2)

where Γ is the Dirichlet-type model boundary and g(x, y) describes a set of specified heads
on Γ .

2.2 The Inverse Problem

In formulating the inverse solution, two sets of constraint equations are enforced, following
Irsa and Zhang (2012): (1) global continuity of hydraulic head and Darcy flux throughout Ω;
(2) local conditioning of head, flux, and/or flow rate by measurements. With these constraints,
the inverse system of equations becomes well-posed when sufficient measurement data are
provided, leading to fast and stable solution (detail is provided later). The constraint equations
imposing the head and flux continuities are written as:∫

δ(pl − ε)Rh(ζi )dζi = 0
∫

δ(pl − ε)Rq(ζi )dζi = 0 (3)

i = 1, . . . , m;
l = 1, . . . , n

where Rh(ζi ) and Rq(ζi ) are a set of residual equations of the hydraulic head and Darcy
flux, respectively, written at the i th cell interface (ζi ) of the inverse grid (a grid used for
solving the inverse problem), m is the total number of interfaces, pl is a collocation point on
the interface, n is the number of collocation points per interface (n = 1 for 1D inversion).
limε→0 δ(pl − ε) = 1, δ(pl − ε) is a Dirac delta weighting function. The continuity con-
straints are, therefore, enforced at the collocation points on the interfaces. In Irsa and Zhang
(2012), δ(pl − ε) less than 1.0 was used, as this tended to stabilize or accelerate the linear
equation solver. In this work, δ(pl − ε) is not found to play a role in the speed of the con-
vergence of the nonlinear solvers. It is assigned a value of 1.0 and the continuity constraint
is strongly enforced.

Both residual equations can be expanded as:

Rh(ζi ) = h̃ j (ζi ) − h̃k(ζi )

Rq(ζi ) = q̃ j (ζi ) − q̃k(ζi )
(4)

where h̃ and q̃ are the proposed fundamental solutions of inversion; j and k denote grid
cells adjacent to each interface. In Irsa and Zhang (2012), flow in a confined aquifer without
source/sink was described by the Laplace equation. h̃ was, therefore, proposed as the real
part of any complex holomorphic function. Because no source/sink existed, flow field was
uniform for which a mathematical solution of the Laplace equation was a polynomial function.
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A quadratic function was adopted in Irsa and Zhang (2012) to approximate the head, which
allowed its 1st order differentiation to obtain linear flux functions (alternatively, higher order
polynomials can be adopted, which can ensure continuity of the flux derivatives. Accordingly,
Eq. (4) needs to be expanded to include additional continuities). For unconfined aquifers,
to address the nonlinearity of the flow equation, a new set of fundamental solutions will be
developed (see Sect. 2.3).

The constraint equations imposing penalties on data misfits can be written as:

δ(pt − ε)
(̃
h(pt ) − ho

) = 0
δ(pt − ε) (q̃(pt ) − qo) = 0
δ(pt − ε)

(
Q̃(pt ) − Qo

) = 0
t = 1, . . . , T

(5)

where pt is a measurement location at which ho, qo, or Qo are sampled, T is the total number
of measurements. In the last equation of Eq. (5), pt is any contour or surface along which Q̃
can be integrated from the flux approximating functions. δ(pt − ε) is a weighting function
assigned to each equation to reflect the magnitude of the measurement errors. If error-free
measurements are used, δ(pt −ε) = 1.0. Moreover, as will be demonstrated later, as few as a
single well rate, in addition to hydraulic heads, suffices to provide the necessary measurement
for the inversion to succeed. Therefore, not all equations of Eq. (5) are needed for inversion:
either flux or flow rate measurements are needed, but not both.

2.3 Fundamental Solutions

Prior to inversion, approximating functions of hydraulic head, Darcy flux, and flow rate are
obtained from solving the flow equation within individual hydrofacies in which the hydraulic
conductivity and the recharge rate are homogeneous. For each hydrofacies, Eq. (1) is rewritten
as:

∂2(h2)

∂x2 + ∂2(h2)

∂y2 + 2N

K
= 2Qw

K
δ(x − x0) in Ωi (6)

where Ωi represents a hydrofacies (i = 1, . . . , L), Ω = Ω1
⋃

Ω2
⋃ · · · ΩL , L is the

number of hydrofacies. Equation (6) is linear with respect to h2(x, y). Unlike Irsa and Zhang
(2012), where the proposed hydraulic head was a second order polynomial to describe a
uniform flow field, unconfined flow dynamics with source/sink effects entail a different set
of approximating functions. These functions are developed by writing analytical solutions of
Eq. (6) under different flow stimulus, as explained in Sect. 2.4 for each test problem.

The overall steps for solving the inverse problem are illustrated in Fig. 1. For a given
problem, the flow equation for a homogeneous sub-domain is first simplified from Eq. (6),
which yields a set of hydraulic head and Darcy flux solutions. Inversion then proceeds by
writing Eq. (3) at all inverse grid cell interfaces and Eq. (5) (or a subset of it) at the locations
where measurements are taken. Hydrofacies zonation pattern is assumed known, therefore,
in creating the inverse grid, cell interfaces fall at the zone interfaces. A system of nonlin-
ear equations is assembled and solved with nonlinear optimization (see Sect. 2.5). Once a
solution is found, i.e., the estimated parameters and a set of head and flux approximating
functions, boundary heads can be determined by sampling the appropriate functions at the
model boundaries. Similarly, flux (or flow rate) boundary conditions can be recovered by
sampling (or integrating) the appropriate flux functions. In this work, the recovered BC are
presented as hydraulic heads at the boundaries.

123



Nonlinear Inversion of an Unconfined Aquifer

Fig. 1 Schematic diagram of the inverse method of this study

Δ

Δ

Fig. 2 Schematic diagram of steady-state flow in an unconfined aquifer between two reservoirs (modified
after Bear 1972). Aquifer ranges from x = 0 to x = L . Arrows indicate the Darcy flux distribution under
the Dupuit–Forchheimer assumption (black), or under the real condition (gray). A non-flat aquifer bottom is
indicated by the dashed line, with a maximum height of H at x = L/2

2.4 Test Problems

The development of the fundamental solutions of inversion is illustrated with a set of test
problems with increasingly complex flow. For each problem, a forward (true) model is first
created to generate a set of observation data under a set of (true) model BC. Inverse analysis is
then carried out according to the steps of Fig. 1. Inversion accuracy is evaluated by comparing
the estimated parameters and the recovered BC against those of the forward model. For all test
problems, aquifers overlie an impervious base, which is set as the head datum. The inverse
solution is developed in one dimension that is aligned with the flow direction.

In test problem 1, the forward model describes flow between two constant head reser-
voirs where aquifer does not receive any recharge (Fig. 2). Under the Dupuit–Forchheimer
assumption, vertical flow is ignored. The flow equation and the approximating functions for
inversion are listed in Table 1. Clearly, h̃ is the classic uniform flow solution with which q̃ is
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Table 1 Flow equations and the corresponding approximating functions for the test problems

Flow equation h̃ q̃ Notes

Test problem 1: unconfined flow without source/sink

∂2(h2)

∂x2 + ∂2(h2)

∂y2 = 0 h̃2(x) = a0 + a1x1 q̃(x) = − K a1
2
√

a0+a1x
Forward model is 2D for which a 1D analytical solu-
tion along the x axis can be found, i.e., flow along
both y and z axes is ignored

Test problem 2: unconfined flow with a pumping well (no areal recharge)

1
r

∂
∂r

(
r ∂h2

∂r

)
+ 1

r2
∂2h2

∂θ2

= 2Qw
K δ(x − x0)

h̃2(r) = a0 + a1r + Qw
Kπ

ln r q̃(r) = − K a1+Qw/π/r
2
√

a0+a1r+(Qw/K/π) ln r
Forward model is 3D and is radially symmetric
around the pumping well, where the origin of r is

Test problem 3: unconfined flow with areal recharge (no pumping)

∂2h
∂x2 + ∂2h

∂y2 + N (x,y)
T = 0 h̃(x) = − N

2T x2 + a0x + a1 q̃(x) = N x−T a0
− N

2T x2+a0x+a1
Forward model is 2D for which a 1D analytical solu-
tion along the x axis can be found, i.e., flow along
both y and z axes is ignored

Test problem 4: unconfined flow with areal recharge and a pumping well

∂2(h2)

∂x2 + ∂2(h2)

∂y2 + 2N (x,y)
K

= 2Qw
K δ(x − x0)

h̃2(r) = − N
2K r2 + Qw

Kπ
ln r + a0 q̃(r) = Nr− Qw

πr

2
√

− N
2K r2+ Qw

Kπ
ln r+a0

Forward model is 3D and is radially symmetric
around the pumping well, where the origin of r is

1 a0 and a1 are the unknown coefficients defined for each inverse grid cell. The flow equations are simplified from Eq. (6)
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Fig. 3 Schematic diagram of an unconfined aquifer above an impermeable base. A single pumping well
operates in the center of the aquifer which is surrounded by a constant head of 20 ft. The inverse domain is
shown as a bold line in the right-hand-side figure, which presents a planeview of the aquifer with a zoned
distribution of K s and Ns. L is the length of the inversion grid. L = 900 ft

obtained through Darcy’s Law. For the given head datum, the flow rate approximating func-

tion is: ˜Q(x) = ˜qx (x)˜h(x). Solution of the inverse problem is: xT = [al
0, al

1, K1, . . . , KL ],
where T denotes transpose, l = 1, . . . , G, G is the number of grid cells.

In test problem 2, a single well pumps water at a constant rate in an aquifer surrounded
by constant head boundaries (Fig. 3). The aquifer does not receive recharge. Given the finite
problem size, the constant head boundaries impact flow by supplying water to the well.
Thus, h̃ is created by superposing the single-well solution for an infinite aquifer (no bound-
ary effects) with the solution of test problem 1, which describes uniform flow between two
constant head reservoirs. This superposition is possible because the flow equation is linear
with respect to h2. Again, vertical flow is ignored and inversion is along a radial axis from
the well to the boundary. Solution of the inverse problem is: xT = [al

0, al
1, K1, . . . , KL ]. In

this problem, the pumping rate (Qw), considered an observation rather than an unknown,
is incorporated into the approximating functions (Table 1). Subsurface Darcy fluxes are
not sampled, nor is the hydraulic head at the pumping well. In natural aquifers, head mea-
surements at wells can be subject to wellbore effects (e.g., skin losses, wellbore storage,
vertical flows between screened intervals, etc.), which can impart significant measurement
errors.

In test problem 3, the forward model is similar to that of test problem 1 (Fig. 2), except that
aquifer is receiving recharge at the water table (Table 1). For this problem, Eq. (6) is rewritten
to be transmissibility based, and the flow equation becomes linear with respect to hydraulic
head. By inverting for T , we aim to understand if the reduced nonlinearity in the flow equation
will lead to a different inversion performance, i.e., stability, speed of solver convergence, and

accuracy. The flow rate approximating function is again: ˜Q(x) = ˜qx (x)˜h(x). The inverse
solution is: xT = [al

0, al
1, T1, . . . , TL , N1, . . . , NL ]. Hydraulic conductivity of a hydrofacies

is estimated from the transmissibilities: K = T/h
o
, where h

o
is an average of the observed

heads from the hydrofacies.
In test problem 4, a single well pumps water at a constant rate similar to that of test

problem 2 (Fig. 3), except aquifer is receiving recharge. Again, the well rate is considered
an observation and subsurface fluxes are not sampled. The head at the pumping well is not
sampled either. The inverse solution is: xT = [al

0, K1, . . . , KL , N1, . . . , NL ].
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For all the test problems, though in theory K and N can be discretized at every grid cell,
without a large number of measurements, this will result in an underdetermined inversion
system of equations. Although nonlinear solvers for underdetermined problems do exist,
and similar to many classic inverse methods, one or more regularization constraints can be
imposed on the parameters (thus increasing the number of equations), such solutions are not
explored here. Instead, all the test problems adopt a deterministic zoned parameterization
for both the conductivity and the recharge rate. In addition, the decision to carry out 1D
inversion is not a limitation of the inverse method, as analytical solutions exist for 2D and
3D flows for which new problems have been successfully inverted. By presenting a set of 1D
analyses, issues of data worth, parameter identifiability, and inversion stability can be clearly
illustrated. As long as the Dupuit–Forchheimer assumption (and in the pumping cases, radial
symmetry) is satisfied, the 1D analysis reveals how seemingly complex problems can be
inverted easily in 1D with small grids.

2.5 Inverse Solution Techniques

Following the steps of Fig. 1, inversion leads to a system of nonlinear equations, fi (x),
i = 1, . . . , M (M is the number of equations), which can be underdetermined, exact, or
overdetermined. For a given problem, the unknowns are the coefficients of the fundamental
solutions (Table 1), along with the conductivities and the recharge rates. The system of equa-
tions can be minimized using two gradient-based local optimization techniques: Levenberg–
Marquardt and Trust-Region-Reflective. Both techniques have been implemented by two
nonlinear solvers on Matlab’s Optimization Toolbox—fsolve and lsqnonlin (The Mathworks
2012). For example, lsqnonlin solves a (constrained) nonlinear least-squares problem of the
form:

min
x

‖ f (x) ‖2
2 = min

x

(
f1(x)2 + f2(x)2 + · · · + fM (x)2) (7)

where x is the solution vector.
With lsqnonlin, the equation system can be exact or overdetermined. Constraints can

also be placed on x , e.g., enforcing positive conductivities or recharge rates. fsolve solves a
similar minimization problem, although no constraints can be placed on the solution. fsolve’s
Levenberg–Marquardt algorithm can also minimize underdetermined problems. Both fsolve
and lsqnonlin require that functions f1(x), f2(x), . . . , fM (x) be continuous over the solution
domain. This does not pose a problem because the approximating functions are created by
superposing continuous flow solutions.

To use the nonlinear solvers, an initial guess of the solution (x0) must be provided. x0

can be estimated in two ways: (1) minimize Eq. (5) with an one-cell inverse grid, excluding
the continuity equations, (2) solve an analytical problem assuming an infinite aquifer with
homogeneous parameters. Neither approaches require the knowledge of aquifer BC. As an
example, for test problem 1, x0 can be obtained by creating a single-cell inverse grid for which
the solution is xT

0 = [a0, a1, K ]. Alternatively, x0 can be obtained by fitting the analytical
solutions (h2(x) = a0 + a1x, q(x) = − K a1

2
√

a0+a1x
, or Q(x) = − K a1

2 ) to the observed
heads, fluxes, or flow rate (the above solutions also illustrate that unique estimation of K
requires at least one flux or flow rate measurement). Moreover, the parameterization adopted
for generating x0 needs not be identical to that of the full inversion, e.g., x0 can contain a
single K even if full inversion estimates a number of K s. These initial estimates, whether
they are obtained with numerical or analytical means, provide a set of physically reasonable
parameter values with which the full inversion can be carried out. Because of the homogeneity
assumption implicit in the above approaches, data requirement for obtaining x0 is small.
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2.6 Model Structure Errors

Due to the limited subsurface access, inverse parameterization often does not correspond to
the true parameter fields, which can result in two types of model structure errors: simplifying
and complexifying. For an inverse method to be useful, it is necessary to understand how
it performs when its parameterization contains structure errors. For select problems in this
study, inverse parameterization is modified from that of the forward model. For example, in
test problem 4, the observed data will be sampled from a forward model with multiple K s and
multiple Ns, but inversion only estimates two parameters, assuming uniform K and N over
the solution domain. This corresponds to data-poor situations where the underlying parameter
variability is unknown. The estimated parameters will be tested for bias by comparing them
to an equivalent conductivity (Keq) and an average recharge rate (N ), which are determined
from the forward model using mass balance and upscaling techniques (Zhang et al. 2006).
Other types of structure error also exist. For the above problem, the inverted parameters
can be multiple K s and a single N (K zonation is known to inversion, but N is assumed
homogeneous over the solution domain), or multiple Ns and a single K (N zonation is
known, but K is assumed homogeneous). In all these cases, model structure error arises from
simplifying the true parameter fields. In addition, structure error can arise from complexifying
the true parameter fields. For example, the forward model does not receive recharge (e.g.,
test problem 2), but, without data on moisture content, such information may be difficult
to infer from limited field data. A modeler may choose to estimate a number of recharge
rates by conceptualizing the inversion as that of test problem 4. For this envisioned scenario,
several Ns are estimated along with several K s. The estimated Ns are spurious and how this
structure error affects joint estimation of the parameters is also of interest.

3 Results

To verify the inverse solution, a forward model is created for each test problem. In the cross-
sectional problems, flow is modeled along a vertical transect, generating observations that
can be analyzed in 1D (x axis) under the Dupuit–Forchheimer assumption. After applying
the same assumption to the pumping problems, inversion is carried out along the radial
axis from the well. A “rule of thumb” was proposed for homogeneous unconfined aquifers,
defining the conditions under which the Dupuit–Forchheimer assumption is valid (Haitjema
and Mitchell-Bruker 2005):

L �
√

KH

KV
D (8)

where KH and KV are horizontal and vertical conductivities (KH/KV = 1.0 in this work),
respectively, L is distance between hydrogeological boundaries (i.e., lateral extent of the
forward model), and D is aquifer thickness. Geometry of the forward models is designed
following this criterion, which results in negligible vertical flow, even when conductivity is
inhomogeneous. Because simultaneous parameter and BC estimation is of interest in this
work, boundary effects on flow can be significant. Besides the geometrical constraint placed
to satisfy the Dupuit–Forchheimer assumption, each forward model does not adhere to the
popular practice of placing the model lateral boundaries far from the center of flow distur-
bance, i.e., pumping and drawdown. On the contrary, in several problems, BC significantly
influence flow.
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In the following sub sections, the forward model of each test problem is described, fol-
lowed by results of the inverse analysis. Some problems are sufficiently simple for which
the forward models are analytical solutions; others are more complex, for which the forward
models are detailed finite difference solutions by MODFLOW2000. To accurately model
well flow with a cartesian grid, the forward model employs local grid refinement at the well.
MODFLOW2000 is implemented in the software package Groundwater Vista, which adopts
the English unit. Results of this study are presented in: heads and distances (ft), fluxes, con-
ductivities, recharge rates (ft/day or ft/d), and flow rates (ft3/day or ft3/d). Alternatively, all
dimensional information can be removed, assuming that a consistent set of units is used
(Neuman et al. 2007).

To obtain the inverse solutions, the observation data (hydraulic heads, fluxes, or flow
rates) are sampled from the forward model and are provided to inversion, which results in the
estimation of hydraulic conductivities, recharge rates, and the flow field including the model
BC. Compared to test problems 1 and 2, test problems 3 and 4 are more complex with a greater
number of parameters, thus stability tests are presented for these problems only. For problems
1 and 2, measurements sampled from the forward models are considered error-free (these data
are strictly error-free if the forward model is analytical; they are approximately error-free if the
forward model is a finite difference solution). For problems 3 and 4, hydraulic heads sampled
from the FDM are corrupted by increasing measurement errors: hmeasure = hFDM ± 
h,
where 
h is a noise, assigned as 1, 5, and 10 % of the total head variation in the forward
model. For example, 
h of 10 % results in a set of head measurements that fluctuate over an
interval that is 20 % of the total head change. The larger errors are imposed mainly to test
the stability of inversion. Only the measured heads are subject to errors; flow rates or fluxes,
when sampled from the forward model, are not affected by errors.

3.1 Test Problem 1: Flow Without Source/Sink Effect

The forward models are a suite of analytical and numerical solutions of unconfined flow
between two constant head reservoirs (Fig. 2): h0 = 15 ft and hL = 10 ft. Because there
are no source/sink effects, uniform flow from the high head reservoir toward the low head
reservoir prevails.

For the given BC, if the aquifer is homogeneous (Ktrue = 10 ft/d) with a lateral length
(L) of 120 ft, the forward model is solved analytically: h2(x) = (1/L)(h2

L − h2
0)x + h2

0.
(Solutions of qx and Qx can also be obtained.) From the forward model, the following
observation data are sampled (measurement locations are shown in Fig. 4): (a) 1 head and 1
qx ; (b) 1 head and 1 Qx ; (c) 3 heads and 1 qx ; and (d) 3 heads and 1 Qx . The inverse grid has
6 cells (
x = 20 ft), leading to 10 continuity equations. The inverse systems of equations
are thus underdetermined for (a) and (b), and overdetermined for (c) and (d). For each case,
the recovered head is plotted and compared to the forward solution (Fig. 4). Compared to
Ktrue = 10 ft/d, the estimated conductivity is: (a) 15.78, (b) 14.70, (c) 10.00, and (d) 10.00.
Clearly, the underdetermined systems, despite being supplied with both head and flux (or
flow rate) measurements, lead to inaccurate results, while the overdetermined systems yield
correct K estimates and head profiles. For this problem, as few as 4 measurements (with
a minimum of one qx or Qx ) are needed to accurately recover the forward solution. The
inverted hydraulic head also extends to the model boundaries, where the boundary heads
were not known to inversion. Moreover, qx and Qx appear to possess the same information
content for estimating the conductivity.
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Fig. 4 Inverted heads (symbols) and estimated conductivities (Kest ) for a homogeneous aquifer. The forward
solution is shown as black solid curve. True conductivity is 10 ft/d. For the cases sampling three heads,
measurement location is shown as large empty circles. For the cases sampling a single head, this head is
measured at x = 70 ft. For all cases, flux, or flow rate, is measured at x = 70 ft

Next, the forward model is assigned three K s of equal lateral length (Fig. 2; L is still 120
ft). For the same BC, the forward solution is:

h2(x) =

⎧⎪⎨
⎪⎩

h2
0 − c1x/[c2 K1] 0 ≤ x < 40

h2
0 − c140/[c2 K1] − c1(x − 40)/[c2 K2] 40 ≤ x < 80

h2
L + c140/[c2 K3] − c1(x − 80)/[c2 K3] 80 ≤ x ≤ 120

(9)

where c1 = h2
0 − h2

L and c2 = ∑3
i=1 40/Ka . For this problem, conductivities are assigned

values with increasing contrast, with highest Kmax/Kmin ratio of 10,000. For a given K
distribution, the observed data (hydraulic heads, fluxes, and/or flow rates) are sampled from
Eq. (9). In inversion, both a 6-cell (
x = 20 ft) and a 24-cell (
x = 5 ft) grids are used. For
a given inverse grid, problems inverted with 2 observed heads (i.e., two heads, two heads +
1 qx , two heads + 1 Qx , two heads + 1 qx + 1 Qx ) all lead to underdetermined systems of
equations; those based on 8 observed heads (or 8 observed heads with flux and/or flow rate
measurements) all lead to overdetermined systems of equations. The results of inversion are
compiled in Table 2.

Similar to the homogeneous problems, underdetermined systems, despite being supplied
with both heads and fluxes (or flow rates), lead to less accurate results. In overdetermined
problems, if the 8 observed heads are the only measurements used, the estimated conduc-
tivities suffer large errors, but the head recovery is accurate regardless of the conductivity
contrast. If one or more qx (or Qx ) are additionally sampled, conductivity estimations then
become accurate. This is expected: unique estimation of K requires head gradient informa-
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Table 2 Estimated conductivities (in ft/d) for test problem 1 with three conductivity zones

Parameters: K1 K2 K3 h0 hL

True solution: 10.00 1.00 5.00 15.00 10.00
Low K contrast

Inverse grid (6 cells)

Two heads (x = 40, x = 80) 13.34 12.90 12.84 17.60 4.80

Two heads + 1Qx
a 1.04 1.00 1.00 17.55 4.80

Two heads + 1qx
b 1.09 1.05 1.05 17.54 4.81

Two heads + 1Qx
a + 1qx

b 10.00 1.00 1.01 15.00 4.93

Eight heads (equal spacing) 27.95 2.79 13.97 15.00 10.00

Eight heads + 1Qx
a 10.00 1.00 5.00 15.00 10.00

Eight heads + 1qx
b 10.00 1.00 5.00 15.00 10.00

Eight heads + 1Qx
a + 1qx

b 10.00 1.00 5.00 15.00 10.00

Eight heads + 3Qx
c + 5qx

c 10.00 1.00 5.00 15.00 10.00

True solution: 100.00 10.00 1.00 15.00 10.00
Medium K contrast

Inverse grid (24 cells)

Two heads + 1Qx
a 149.38 9.89 5.60 14.99 13.87

Eight heads (equal spacing) 148.27 14.83 1.48 15.00 10.00

Eight heads + 1Qx
a 100.00 10.00 1.00 15.00 10.00

Eight heads + 3Qx
c + 5qx

c 100.00 10.00 1.00 15.00 10.00

True solution 0.10 10.00 1000.00 15.00 10.00
High K contrast

Inverse grid (24 cells)

Two heads + 1Qx
a 0.21 10.00 2499.8 12.64 10.00

Eight heads (equal spacing) 0.25 25.00 2499.5 15.00 10.00

Eight heads + 1Qx
a 0.13 13.14 1297.4 15.00 10.00

Eight heads + 3Qx
c + 5qx

c 0.10 10.00 1000.00 15.00 10.00

Boundary heads (in ft) are shown as h0 and hL . When the recovered head profile is identical to the forward
solution, h0 and hL are shown in bold font
a Qx is sampled at the outflow boundary at x = 120 ft
b qx is sampled at x = 70 ft
c Qx is sampled at x = 0, 60, 120 ft; qx is sampled at x = 30, 40, 70, 80, 110 ft

tion as embodied in the flux or flow rate data, in addition to hydraulic head measurements.
Furthermore, when the conductivity contrast increases, given the same observed data (e.g.,
8 heads + 1Qx ), conductivities of the medium- to high-K -contrast problems suffer greater
errors. In this case, adding more data (e.g., 8 heads + 3Qx + 5qx ) leads to more accurate K
estimates.

Inversion is further tested on a problem with the same BC, but the aquifer bottom is not flat
(Fig. 2; L = 900 ft, aquifer thickness is 30 ft, and H = 8.5 ft). For different K distributions
of increasing contrasts, 2D finite difference forward simulations are carried out with these
parameters: 
x = 
y = 1, 
z = 0.5, Nx = 900, Ny = 1, Nz = 60, where Nx , Ny, Nz are
the number of grid cells along the x, y, z axes, respectively. To represent the triangular aquifer
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Table 3 Estimated conductivities for test problem 1 with a triangular aquifer bottom

Homogeneous Low K contrast
Inverse grid (24 cells) Inverse grid (6 cells)

Parameters: K K1 K2 K3
True solution: 5.00 10.00 1.00 5.00

Nine heads + 3 qx 4.71 Nine heads + 3qx 12.20 1.06 3.42

Nine heads + 3 qx + 2 Qx 4.60 Nine heads + 3qx + 3Qx 9.99 0.73 2.72

Medium K contrast High K contrast
Inverse grid (24 cells) Inverse grid (24 cells)

Parameters: K1 K2 K3 K1 K2 K3
True solution: 100.00 10.00 1.00 0.10 10.00 1,000.00

Nine heads + 3qx 292.57 9.28 0.91 Twelve heads + 3qx + 3 Qx 0.36 6.56 921.5

Eleven heads + 3qx
a 99.80 9.34 0.91 Twelve heads + 4qx

b + 3Qx 0.36 6.56 989.3

In most of these problems, head, qx , and Qx sampling is semi-regular over the 900 ft inversion domain
a Adding 3 Qx measurements first did not improve the solution (not shown). When 2 additional heads are
sampled in the K1 zone (at x = 150.5 and 290.5 ft), K1 estimation improves significantly
b An additional qx is sampled in the K3 zone, leading to an improved K3 estimate

bottom, inactive cells are assigned beneath the triangle. For all K distributions, global mass
balance errors of the forward models are less than 0.1 %, numerical errors in the observed data
sampled from these models are thus considered small. The inverse solutions are summarized
in Table 3, one for each K distribution. For all distributions, head recovery is very good and
is not presented. Despite violation of the Dupuit–Forchheimer assumption (i.e., due to the
8.5 ft rise of the aquifer bottom in the model center, appreciable vertical flow is observed in
the forward models), conductivity estimations are reasonably accurate. Additional sampling
of heads or fluxes within a hydrofacies zone further improves the estimation accuracy of the
hydrofacies conductivity.

3.2 Test Problem 2: Flow With a Pumping Well (No Areal Recharge)

For a set of four K distributions with increasing contrasts, the forward model (1,800 ×
1,800 × 30 ft3) is simulated with a no-flow boundary at the bottom and a specified head
of 20 ft along the sides (Fig. 3). The top boundary (water table) is solved iteratively by
MODFLOW2000 using convertible layers. Areal recharge is not applied. A single pumping
well, with a constant discharge rate, induces radial flow toward the model center. For each
K distribution, Qw is adjusted to ensure that hydraulic head at the well will not drop below
the top of the well screen (screen length is adjusted as well). The forward model initially
employs a coarse grid (Nx = 60, Ny = 60, Nz = 60), before it is refined at the pumping
well and at the interfaces between hydrofacies. With the refined grid, global mass balance
errors are less than 0.1 % for all K distributions. From the forward models, hydraulic heads
are sampled quasi-regularly along the radial axis at an elevation of 3.5 ft. Darcy fluxes are
not sampled, nor is the head at the pumping well. The well rate is considered known and is
incorporated into the inverse formulation. Inversion is carried out along the same radial axis.

For a case with low K contrast (K1 = 5, K2 = 1, and K3 = 10), a preliminary inversion is
carried out with ten observed heads using a 24-cell, grid (
x = 37.5 ft). Result is inaccurate:
(1) the estimated conductivities contain up to 100 % errors; (2) the recovered head at the
pumping well, exhibits the largest deviation from the true head (smallest head deviation
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Table 4 Estimated conductivities for test problem 2 with three conductivity zones and a pumping well which
lies in the center of the K3 zone (see Fig. 3)

Low K contrast Medium K contrast
Qw = 250 ft3/d Qw = 250 ft3/d

Parameters: K1 K2 K3 hwell K1 K2 K3 hwell
True solution: 5.00 1.00 10.00 17.65 1.0 10.00 100.00 19.10

Eleven heads + Qw 5.14 0.97 11.50 17.67 Eleven heads + Qw 1.11 9.98 113.53 19.08

Eleven heads + Qw + 3qx
a 0.96 14.57 126.44 19.08

Medium K contrast High K contrast
Qw = 125 ft3/d Qw = 125 ft3/d

Parameters: K1 K2 K3 hwell K1 K2 K3 hwell
True solution: 10.00 100.0 1.00 15.20 1,000.00 0.10 10.00 11.30

Eleven heads + Qw 11.14 88.10 1.15 15.23 Eleven heads + Qw 1204.3 0.10 11.48 11.26

Twenty headsb + Qw 11.17 103.62 1.19 15.23 Twenty heads + Qw 698.64 0.12 10.70 11.26

hwell is hydraulic head at the pumping well
a Three qx measurements are made at the inflow boundary, near the pumping well, and in between;
b Sampling density for heads is doubled, with the sampling location following the same semi-regular pattern

occurs at the constant head boundary). The inverse grid is then refined: the previous 24th
cell, located closest to the pumping well, is split into: cell 24 (
x = 18.75 ft), cell 25
(
x = 9.375 ft), and cell 26 (
x = 9.375 ft). Given the same observed data, both the
estimated conductivities and the recovered head profile improve immediately.

With the refined (26-cell) grid, the estimated conductivities are listed in Table 4, along
with the recovered heads at the pumping well. For a case with medium K contrast, K values
are also switched: the pumping well first lies in a high-K zone (K3 = 100 ft/d), and then
in a low-K zone (K3 = 1 ft/d). In all cases, head recovery is excellent, while the estimated
conductivities are reasonably accurate. Given the same observations, the highest-K -contrast
case suffers the greatest K estimation errors, similar to what was observed for test problem
1. Moreover, when K contrast increases, or when the pumping well lies in a low-K zone,
well rate is adjusted lower so as not to dewater the aquifer at the well screen. Head variation,
from a high of 20 ft at the boundary to the lowest value at the well, changes accordingly: it
is less than 3 ft for the case with a low K contrast, but rises to 9 ft for the case with a high
K contrast. Despite this difference in drawdown, conductivity estimation and hydraulic head
recovery are not affected. Data quantity, on the other hand, appears to be more important for
the estimation accuracy.

3.3 Test Problem 3: Flow With Areal Recharge (No Pumping)

The forward model is similar to test problem 1 (Fig. 2; L is now 900 ft). Areal recharge is
applied to the water table throughout the model. Initially, a uniform recharge rate is assigned
(N = 0.005 ft/d), along with these parameters and BC: h0 = 15 ft, hl = 10 ft, K1 = 30
ft/d, K2 = 100 ft/d, K3 = 10 ft/d. The same finite difference grid of test problem 1 is used,
except here the aquifer bottom is flat. Because of the recharge, water table builds up near
the model center, where a hydrological divide occurs at x � 300 ft, and diminishes toward
the boundaries. From the forward model, 8 hydraulic heads, 2 Qx , and 4 qx are sampled
semi-regularly at a fixed elevation.
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Fig. 5 Recovered head profiles (red circles) of test problem 3 under increasing measurement errors. Location
of the observed heads is indicated by large empty circles. The forward solution is shown as black solid curve.
The inverse grid has six cells (
x = 150)

In inversion, a grid with six cells is used, using the approximating functions of in Table 1.
Given error-free observed data, inversion yields: (1) nearly perfect recovery of the hydraulic
head profile compared to the true water table (Fig. 5); (2) T1 = 463.75 ft2/d or K1 = 30.12
ft/d; (3) T2 = 1672.20 ft2/d or K2 = 107.34 ft/d; (4) T3 = 142.56 ft2/d or K3 = 10.76
ft/d; and (5) N = 0.0064 ft/d. The estimated parameters are close to their true values.
Next, this problem is inverted by setting Qw = 0 in the inverse code of test problem 4
(see Sect. 3.4), which directly estimates the conductivities. Besides yielding nearly identical
inversion results, both codes have a similar solver performance, i.e., number of iterations
needed to achieve convergence and solver speed. Inversion accuracy and solver performance
are therefore not sensitive to the degree of nonlinearity in the inverse formulation.

Measurement errors (±1 %) are then added to the observed heads, leading to these results:
(1) nearly perfect head recovery (Fig. 5); (2) K1 = 35.69 ft/d; (3) K2 = 93.38 ft/d; (4)
K3 = 10.82 ft/d; and (5) N = 0.0068 ft/d. When ±5 % errors are used, inversion yields:
(1) fairly good head recovery with the leftmost heads slightly overestimated (Fig. 5); (2)
K1 = 105.32 ft/d; (3) K2 = 173.98 ft/d; (4) K3 = 10.08 ft/d; (5) N = 0.0056 ft/d. When
±10 % errors are used, inversion yields: (1) reasonably accurate head recovery (Fig. 5); (2)
K1 = 1457.30 ft/d; (3) K2 = 114.31 ft/d; (4) K3 = 9.73 ft/d; (5) N = 0.0056 ft/d. Clearly,
parameter estimation error increases with increasing measurement error. Compared to the
estimated recharge rate and head recovery, K estimation is more sensitive to the measurement
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errors. Moreover, K1 is consistently overestimated as a result of the specific measurements
used and their specific errors. For the case with ±10 % errors, if error signs are switched
among the observed heads, inversion yields: (1) K1 = 12.59 ft/d; (2) K2 = 85.12 ft/d; (3)
K3 = 11.57 ft/d; (4) N = 0.0056 ft/d. K1 is now underestimated, while the recovered head
near the left boundary (not shown) slightly underestimates the true water table.

Next, the forward model is rerun with spatially variable recharge: N1 = 0.005 ft/d,
N2 = 0.0167 ft/d, N3 = 0.00167 ft/d. The recharge zones are identical to the conductivity
zones. From this model, 17 heads, 3Qx , and 5qx are sampled in a semi-regular pattern. With
error-free data, inversion yields: (1) perfect head recovery (not shown); (2) K1 = 31.02 ft/d;
(3) K2 = 94.15 ft/d; (4) K3 = 10.64 ft/d; (5) N1 = 0.007 ft/d; (6) N2 = 0.0164 ft/d;
and (7) N3 = 0.0065 ft/d. With the exception of N3, all parameters are accurately estimated.
When measurement errors are increased, inverse solutions behave similarly to those observed
previously for the problem with uniform recharge: inversion is stable under increasing errors,
but accuracy of the estimated parameters degrades.

Finally, from the same forward model (i.e., three K s and three Ns), a new set of
observations—8 heads, 2 Qx , and 4 qx , are sampled. Inversion adopts a simplified para-
meterization, whereby three K s and a single N are estimated, yielding: (1) perfect head
recovery (not shown); (2) K1 = 30.48 ft/d; (3) K2 = 107.82 ft/d; (4) K3 = 9.53 ft/d; and
(5) N = 0.0072 ft/d. The estimated N is close to the mean aquifer recharge rate: 0.0078
ft/d. Despite this structure error, accuracy of the simultaneously estimated conductivities is
not affected. In addition, stability tests under increasing measurement errors are conducted,
yielding similar behaviors as those observed for problems without structure errors.

3.4 Test Problem 4: Flow With Areal Recharge and A Pumping Well

The forward model is similar to test problem 2 (Fig. 3), except areal recharge is additionally
applied to the water table. The same finite difference grid of test problem 2 is used, containing
grid refinement at the pumping well and at the hydrofacies interfaces. Except for the recharge
boundary, BC are identical to those of test problem 2. The true conductivities are: K1 = 10
ft/d, K2 = 100 ft/d, and K3 = 30 ft/d. Initially, uniform recharge is applied at the top
boundary, and then, nonuniform recharge. In both cases, a steady-state pumping rate of
3,000 ft3/d can be maintained. Because of the recharge, flow pattern is complex in both cases
though it is still radially symmetric: near the pumping well, converging flow is observed;
away from the well, water table builds up in a circular mound, where recharge water on the
inner side of the divide flows toward the well, and that on the outer side flows toward the
boundary. From the forward model, 19 heads are sampled semi-regularly at a fixed elevation,
from the well toward the boundary. In inversion, conductivity-based formulations are adopted
(Table 1), leading to the following results:

When a uniform recharge is applied to the forward model, inversion recovers the hydraulic
heads, the three conductivities, and the single N (not shown), with a similar level of accuracy
as that of test problem 3. Stability analysis is also conducted, with similar error characteristics
as those of test problem 3.

When nonuniform recharge is applied (true N1 = 0.005 ft/d, N2 = 0.025 ft/d, and
N3 = 0.010 ft/d), an initial guess of the solution is obtained with error-free observations
(i.e., 19 heads and Qw) using an one-cell inverse grid: K1 = 11.35 ft/d; K2 = 22.78 ft/d;
K3 = 21.84 ft/d; N1 = 0.0214 ft/d; N2 = 0.0078 ft/d; N3 = 0.0125 ft/d; and a0 =556.79.
Interestingly, though these parameters are far from accurate, the recovered hydraulic head
profile (not shown), which spans the single cell, nearly perfectly matches the forward solution.
Given this initial guess, inversion with the 26-cell grid (i.e., the same as that of test problem
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2, with local grid refinement at the well) yields: (1) nearly perfect head recovery (Fig. 6);
(2) K1 = 12.17 ft/d; (3) K2 = 103.69 ft/d; (4) K3 = 21.26 ft/d; (5) N1 = 0.023 ft/d;
(6) N2 = 0.021 ft/d; and (7) N3 = 0.013 ft/d. With the exceptions of N1 and K3, most
parameters are accurately estimated. Moreover, different x0 were generated with the one-cell
inversion by adopting different parameterizations, e.g., inverting K1, K2, K3, and a single N ,
or inverting a single K and a single N . The subsequent full inversions yield identical results
as those for which x0 contains all 6 parameters. Clearly, for the given measurements, the
inverse problem is well-posed, leading to unique solutions that are insensitive to the choice
of x0. Moreover, inversion stability is tested with measurement errors up to ±10 % of the
total head variation. Similar behaviors as those reported above for test problem 3 and for
test problem 4 with uniform recharge are observed. Even with the largest errors, solution is
stable, although accuracy of the estimated parameters degrades.

3.5 Grid Refinement

Previous experimentations with the inverse grid suggest that, for a given set of measurements,
local grid refinement in the high head gradient region (i.e., near the well) can improve the
inversion accuracy. However, this is true only to a certain extent. For example, for test problem
4 with three K s and three Ns, given the same error-free data (19 heads and Qw), inversion
with a 52-cell grid (i.e., the 26-cell grid is uniformly refined) did not improve the results.
The estimated parameters are: (1) nearly perfect head recovery; (2) K1 = 11.00 ft/d; (3)
K2 = 93.54 ft/d; (4) K3 = 20.99 ft/d; (5) N1 = 0.021 ft/d; (6) N2 = 0.019 ft/d; and (7)
N3 = 0.014 ft/d, which do not differ significantly from those obtained using the coarser grid.
On the other hand, for a fixed inverse grid, increasing measurements generally leads to more
accurate results, as discussed above. Clearly, both inverse grid discretization and data density
affect the inversion accuracy.

3.6 Model Structure Errors

For test problem 4 with 3 K s and 3 Ns, despite the existence of converging and diverging
flows, groundwater in the forward model is largely perpendicular to the conductivity zones.
Assuming an infinitely acting aquifer, an approximate lateral equivalent conductivity (Keq)
can be calculated analytically as 20.93 ft/d, a harmonic average of K1, K2, and K3. Using
area-weighted mean of N1, N2, and N3, an average recharge rate is estimated at 0.012
ft/d. Based on same error-free measurements (i.e., 19 heads and Qw), the same 26-cell
grid, conductivities and recharge rates are re-estimated with the inverse parameterization
containing simplifying structure errors:

– A single K and a single N are estimated. In this case, head recovery is reasonably accurate
(Fig. 6). The estimated parameters are: K = 12.88 ft/d, N = 0.016 ft/d. K underestimates
Keq, but N is close to the average recharge rate.

– Three conductivities and a single N are estimated. Head recovery is accurate (Fig. 6).
The estimated parameters are: K1 = 7.84 ft/d, K2 = 67.66 ft/d, K3 = 20.92 ft/d,
and N = 0.015 ft/d. The estimated recharge rate is close to the average value, while the
estimated conductivities are similar to those of test problem 4 without model structure error
(see Sect. 3.4). The accuracy of conductivity estimation is not affected by the incorrect
recharge parameterization.

– Three recharge rates and a single K are estimated. Head recovery is again accurate (Fig. 6).
The estimated parameters are: K = 18.58 ft/d, N1 = 0.033 ft/d, N2 = 0.0089 ft/d, and
N3 = 0.014 ft/d. The estimated conductivity is not far from Keq. The estimated recharge
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Fig. 6 Recovered head profiles (red circles) of test problem 4 with different inverse parameterizations. The
forward model has three K zones and three N zones (Fig. 3), with the true water table shown as black solid
line. The pumping well is located at x = 900 ft. The observed heads are error-free, with their location indicated
by large empty circles. Keq is a single K estimated by inversion; Nave is a single recharge rate estimated by
inversion

rates are similar to those of test problem 4 without model structure error. The accuracy of
recharge estimation is not affected by the incorrect conductivity parameterization.

The above results suggest that hydraulic head (therefore boundary head) estimation can be
accurate even if the inverse formulation contains various parameterization errors. Despite
these errors, inversions are stable and the estimated parameters are physically reasonable,
i.e., they are comparable to the analytical equivalent or average parameters. Because only
limited observations are used to condition the inverse solution, the estimated parameters
will not generally be identical to the equivalent or average values obtained with perfect
knowledge. In addition, when structure error exists for one parameter, estimation accuracy
of the other parameter with correct parameterization is not affected. When both recharge and
conductivity are incorrectly parameterized, the estimated parameters are still reasonable.

Next, complexifying structure error is investigated. For example, when the inverse for-
mulation contains the recharge term, what will happen to its solution if the actual recharge
is zero? Test problem 4 is inverted again, but the forward model is assigned zero recharge,
while maintaining the same pumping rate. From this model, the same 19 error-free heads
are sampled. Inversion with the 26-cell grid yields excellent head recovery (not shown), with
these estimated parameters: (1) K1 = 14.08 ft/d; (2) K2 = 89.70 ft/d; (3) K3 = 23.88
ft/d; (4) N1 = −1.8 × 10−4 ft/d; (5) N2 = 5.8 × 10−5 ft/d; and (6) N1 = 8.2 × 10−4
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ft/d. The three estimated recharge rates are extremely small, pointing to the error in recharge
parameterization. This result can also lead to a more parsimonious future model, e.g., inverse
parameterization can be simplified after new data are collected to confirm the structure error.
The error in parameterizing recharge similarly does not affect the simultaneous estimation
of the conductivities, i.e., all K s are comparable to those found for test problem 4 without
model structure error (see Sect. 3.4).

4 Discussion

The new inverse method, similar to all inversion techniques, can suffer ill-posedness when
insufficient or inaccurate data are provided. Thus, (1) solution may not exist; (2) solution
may not be unique; and (3) solution may be unstable. These issues are explored in this work
by inverting a set of test problems for which observations of different types, quantities, and
qualities are used as conditioning data. Results suggest that exact or overdetermined inversion
systems of equations can lead to stable solutions, but the accuracy of the estimated parameters
(i.e., hydraulic conductivities and recharge rates) is affected by the type of measurements
used and their errors. When the observed data are of the right type (i.e., both heads and a
minimum of one Darcy flux or one flow rate), are of sufficient quantity (i.e., the inverse
equation system is exact or overdetermined), and do not contain extremely large errors, the
inverse problem becomes well-posed, which leads to unique and accurate estimation of the
parameters, flow field, and BC. However, if only hydraulic heads are available, inversion can
accurately recover the head solution throughout the model domain (thus the boundary heads),
but cannot uniquely estimate the parameters. This is expected given our earlier discussion in
Introduction about the parameter identifiability issue. Moreover, for well-posed problems,
starting the full inversion with different initial guesses generally yields identical outcomes
with fast solver convergence. For various unconfined problems subject to different source/sink
effects, the inverse method is shown to be robust and efficient:

– By providing as few as one pumping rate in addition to hydraulic heads, multiple K s and
Ns can be uniquely and simultaneously estimated, along with the model flow field and
BC. This demonstrates that inversion can succeed for heterogeneous problems as long as
a single head-gradient-based measurement is provided. Data requirement of the method
is low.

– Inversion result is stable with increasing measurement errors (up to ±10 % of the total head
variation). As measurement error increases, parameter estimation becomes less accurate,
as expected;

– Inversion is computationally efficient. For well-posed problems, convergence time on a PC
workstation is typically a few seconds. For problems that are not well-posed (e.g., lacking
flux or flow rate measurement, underdetermined equations due to insufficient data), the
method typically does not converge, no matter how stringent the solver convergence
criteria are (in these cases, parameter estimates are those obtained at the maximum solver
iteration);

– Inversion accuracy is relatively insensitive to parameter variability, e.g., Kmax/Kmin is suc-
cessfully tested up to 10,000. However, for a given problem, when Kmax/Kmin increases,
more observation data are needed to achieve the same accuracy. Inversion accuracy is
also insensitive to the transmissibility versus conductivity-based formulations. In the lat-
ter formulation, the approximating functions are more strongly nonlinear;
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– Inversion accuracy is insensitive to flow patterns. The flow path, as long as it is largely
horizontal, can be unidirectional (test problem 1), convergent (test problem 2), divergent
(test problem 3), and quite complex with converging and diverging flows (test problem 4).
This suggests that by developing approximating functions that superpose individual well
solutions, the method can address problems with multiple injection and production wells.
This has been confirmed by successfully inverting a 2D problem with four conductivities,
two recharge rates, and a pair of well dipole.

– Despite the Dupuit–Forchheimer assumption with which the inverse formulation is devel-
oped, inversion accuracy is not significantly affected by minor violation of this assumption,
suggesting a broader applicability of these solutions to aquifers with irregular shapes.

The inverse method is developed using analytical unconfined flow solutions in idealized
situations, i.e., wellbore radius is assumed zero and vertical flow in the aquifer is considered
negligible. Caution is needed when applying the method to real aquifers, where additional
effects, such as wellbore storage, partial penetration, or skin losses (not all such effects
can be accounted for by the forward model) can affect the accuracy of the observed data
and, therefore, inversion accuracy. Vertical flow can be significant near barriers such as
impervious faults or subsurface engineered structures. Future work is needed to precisely
define the conditions where non-negligible vertical flow may significantly impact the accuracy
of inversion. For such problems, higher dimensional techniques explicitly accounting for
vertical flow are needed.

In this work, parameter zonation is known to inversion, leading to a set of solutions with-
out uncertainty measures. The zonation pattern, in effect, enforces a deterministic constraint
on the parameters. To remove this constraint and to account for static data uncertainty, the
inverse method can be integrated with geostatistics, whereby uncertainty in both the esti-
mated parameters and the estimated state variables (including model BC) can be quantified
(Wang et al. 2013). Because analytical solutions are used to generate the approximating func-
tions, future work can explore inverting such solutions within a stochastic framework, i.e.,
conductivity and recharge become spatial random functions. Moreover, though the current
method adopts a zoned parameterization, whereby the number of parameters is small com-
pared to the number of observations, future work can explore highly parameterized inversion
for which regularization (e.g., smoothness constraint, spatial covariances, cross correlation
between hydrological parameters and geophysical measurements) can be incorporated into
the inversion equations. The additional constraints will allow us to solve for a larger number
of parameters, e.g., one K at each inverse grid cell. Finally, the inverse method does not
explicitly account for unsaturated flow process which is treated as an instantaneous recharge
to the water table. There is a growing body of work that couples and inverts flow in the unsat-
urated and saturated zones for which parameters specific to each zone are estimated (Moench
2004; Mishra and Neuman 2010, 2011; Mao et al. 2013). Whether or not the continuity con-
cept of this study can be extended to unsaturated flow and coupled processes will require
further investigations. For such problems, data requirement to obtain well-posed inversion is
likely higher (Mao et al. 2013).

5 Conclusion

A physically-based inverse method is developed to analyze steady-state flow in an unconfined
aquifer with heterogeneous hydraulic conductivities and significant source/sink effects. The
method extends the confined aquifer inversion of Irsa and Zhang (2012), where a single con-
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ductivity and model boundary conditions were estimated for problems without source/sink
effects. In this work, to address nonlinearity in the unconfined flow equation, the hydraulic
head approximating function is created by superposing analytical flow solutions for homo-
geneous sub-domains. Given appropriate measurements, the inversion system of equations
becomes well-posed and can be solved with nonlinear optimization, which allows the simul-
taneous estimation of multiple conductivities and recharge rates. From the inverse solution,
the flow field including the unknown BC can be recovered. Because the inverse method does
not optimize any objective functions (i.e., data-model mismatch) which require forward flow
simulations, the method is computationally efficient.

Under the Dupuit–Forchheimer assumption, accuracy and stability of the method are
demonstrated by inverting heterogeneous synthetic aquifer problems with increasingly com-
plex flow: (1) aquifer domains without source/sink effects; (2) aquifer domains with a point
sink (a pumping well operating under a constant discharge rate); (3) aquifer domains with
constant or spatially variable recharge; (4) aquifer domains with constant or spatially vari-
able recharge undergoing single-well pumping. In the problems without the pumping well,
observation data are hydraulic heads, Darcy fluxes, and/or flow rates; in the problems with
the pumping well, the observation data are hydraulic heads and the pumping rate. For all
problems, inverse solutions are stable under increasing measurement errors, although accu-
racy of the estimated parameters degrades with increasing errors. The method is successfully
tested on strongly heterogeneous problems with conductivity contrast up to 10,000.

The inverse problem must be well-posed to obtain accurate solutions, i.e., the observation
data must be of sufficient quantity, adequate quality, and of the necessary types. For example,
given only head measurements, inversion can yield accurate head profiles extending to the
model boundaries. Accurate estimation of the conductivities and the recharge rates, how-
ever, requires both hydraulic head and Darcy flux or flow rate measurements. Interestingly,
a single flux or flow rate measurement suffices to enable the unique and simultaneous esti-
mation of multiple conductivity and recharge parameters. Inversion accuracy is also affected
by the resolution of the inverse grid: at locations where hydraulic head gradient is large,
local grid refinement can improve the solution. Moreover, the inverse method obviates the
well-known issue associated with model “structure errors,” whereas inverse parameterization
simplifies or complexifies the true parameter field. For several heterogeneous problems, when
aquifer is assumed homogeneous with a constant recharge, physically meaningful parameter
estimates (i.e., equivalent conductivities and mean recharge rates) can be obtained. Alter-
natively, if the inverse parameterization contains spurious parameters, inversion can iden-
tify such parameters, while the simultaneous estimation of non-spurious parameters is not
affected.
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