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ABSTRACT

We found Deveugle et al.’s comparison of several
techniques for modeling the facies of fluvial-
dominated deltaic reservoirs particularly interesting.
The paper’s main finding confirms the importance
of integrating geological concepts into geostatistical
modeling to generate realistic reservoir models.
Although we think that the paper is quite thorough in
its investigation into several geological themes and

multidisciplinary integrations, we want to comment
on the following two issues.

• How the statistics of well data should be used in
three-dimensional modeling.

• How to properly calculate and use facies probability.

HOW THE STATISTICS OF WELL DATA
SHOULD BE USED IN THREE-DIMENSIONAL
MODELING

Should Models Honor the Statistics of Well
Data?

Though it is generally recommended that well
data be honored in a reservoir model, which
Deveugle et al. (2014) adhere to in their paper,
should the statistics of well data be honored in the
model? This is a tricky question because the answer
depends on several factors. Generally, when well
data are representative of the reservoir condition,
their statistics should be honored in the model.
However, if they are not, their statistics may not be
honored.

Deveugle et al. (2014) summarized their paper
as follows: “Models constructed using all four algo-
rithms fail to match the facies-association pro-
portions of the reference model because they are
conditioned to well data that sample a small
unrepresentative volume of the reservoir” (p.
729). Clearly, the authors recognized the “un-
representativeness of the well data,” but the facies
models constructed in their study still honor the
statistics of their well data.

Well data sampling a small unrepresentative
reservoir volume is a common problem in exploration
and production because wells are not only drilled for
collecting data, but also for the overall optimization of
field development (Ma, 2011, p. 6). A facies model
that honors unrepresentative well data is generally
biased because it does not capture the correct target
facies proportions. In such a situation, it is difficult to
test the impact of different modeling techniques on
describing geologic heterogeneity, a main objective of

Copyright ©2018. The American Association of Petroleum Geologists. All rights
reserved.
1School of Energy Resources, China University of Geosciences (Beijing), No. 29 Xueyuan
Road, Haidian District, Beijing 100083, China; 2004011820@cugb.edu.cn
2Department of Geology and Geophysics, Department 3006, 1000 East University
Avenue, University of Wyoming, Laramie, Wyoming 82071; yzhang9@uwyo.edu
3Schlumberger SIS, 1675 Broadway, Suite 900, Denver, Colorado 80202; yma2@slb.com
4Schlumberger SIS, 1675 Broadway, Suite 900, Denver, Colorado; CDorion@slb.com
5Abingdon Technology Center, Schlumberger SIS, 1A Forest Walk, London N10 2ER,
United Kingdom; cdaly@slb.com
6Schlumberger-Doll Research Center, 1 Hampshire Street, Cambridge, Massachusetts
02139; tzhang2@slb.com

Manuscript received July 22, 2016; provisional acceptance October 13, 2016; revised
manuscript received October 19, 2016; revised provisional acceptance December 20,
2016; 2nd revised manuscript received December 22, 2016; final acceptance January 8,
2018.
DOI:10.1306/0108181613516519

AAPG Bulletin, v. 102, no. 8 (August 2018), pp. 1659–1663 1659

mailto:2004011820@cugb.edu.cn
mailto:yzhang9@uwyo.edu
mailto:yma2@slb.com
mailto:CDorion@slb.com
mailto:cdaly@slb.com
mailto:tzhang2@slb.com
http://dx.doi.org/10.1306/0108181613516519


the study by Deveugle et al. (2014), because the
accurate capture of facies proportions, as a set of first-
order statistical moments, has a stronger influence on
model performance than the heterogeneities repre-
sented by second- or higher-order statistics. We think
that this is why the impact of different modeling
algorithms on facies reconstruction was found in-
significant in their study. Had the models been con-
structed with unbiased facies proportions similar to
those of the reference model, the impact of different
modeling methods should have been more pro-
nounced. Deveugle et al. (2014) seem to support our
assessment because they also noted that “In-place
hydrocarbon volume is controlled by the facies pro-
portions of the models” (p. 761). We understand that
facies proportions may be uncertain in practice be-
cause of limited data, but debiasing facies proportions
from unrepresentative well data should be an im-
portant step before a realistic facies model can be
built.

Is It Possible to Debias Unrepresentative Well
Data?

Facies modeling, when conditioned to well data that
sample a small unrepresentative volume of the res-
ervoir, does not have to produce a biased model.
Debiasing well data or verification of unbiased sam-
pling is one of the most important tasks in reservoir
modeling, and this task should be done before con-
structing a model (Ma, 2009, p. 753–755).

To mitigate bias in well data, nearly all com-
mercial reservoir modeling software provides the
option of using target facies proportions in their fa-
ciesmodelingworkflow, that is, theuser has the choice of
entering (presumably debiased) facies fractions. The
five software platforms that we have used in the last
two decades all provide this option (debiasing algo-
rithms are explained in the next paragraph).
Deveugle et al. (2014) indicated that Petrel was used
for their facies modeling except for spectral com-
ponent geologic modeling (SCGM; not commercially
available), which is not a part of Petrel (the five
software platforms include Schlumberger’s Petrel,
Paradigm’s GOCAD, Roxar’s RMS, and two other
software platforms that are no longer commercially
available). Petrel has the option of allowing users to
set target facies proportions (Petrel, 2014a, b). Based

on the authors’ statement, SCGM “always exactly re-
produces the target facies proportion in the well data”
(p. 761). It shouldbenoted thatwhenwell data conveys
a sampling bias, using facies proportions from such data
as target proportions will lead to a bias in the model.
Only when sampling bias is deemed unimportant
should well facies proportions be used as target pro-
portions for the model to be unbiased (see Coupling
Spatial and Frequency Characteristics in Reservoir
Modeling section in Ma et al., 2011, p. 163). More
commonly, reservoir modelers should avoid re-
producing well facies proportions when sampling
bias is observed (Ma, 2009, p. 753–755; Ma, 2010,
p. 295, see section 3.7 Inference Errors Related to
a Sampling Bias).

To debias well data in reservoir modeling, several
methods have been developed, including the cell-
declustering method (Journel, 1983; Pyrcz and
Deutsch, 2003), Voronoi polygon tessellation (Isaaks
and Srivastava, 1989, p. 238–241; Cressie, 1991,
p. 374–376), and propensity zoning declustering
(Ma, 2009, p. 753–755). For the data used in
Deveugle et al. (2014), both Voronoi polygon tes-
sellation and propensity zoning declustering could
mitigate the unrepresentativeness of the pseudowells,
that is, the inconsistency between facies proportions
from pseudowells and those of the reference model.
In fact, facies proportions presented in their indicator
probability cube (their figure 7) are basically equiv-
alent to those produced by propensity zoning
declustering. This technique, which relies on
geological interpretation, can yield similar facies
proportions as those of the reference model (see
column 6 and column 9 in their figure 11, where
sequential indicator simulation and multiple-point
statistics both derived facies proportions using the
probability cube as a constraint). Alternatively,
propensity zoning declustering using the geologic
interpretations (such as their figure 8 or their fig-
ures 12 and 13) can also yield similar target facies
proportions.

Similarly, polygonal tessellation can be used to
identify potential bias in well data and to correct it if
it is present. Although it may not accurately debias
the data, this method can often significantly mitigate
the bias. For example, channel-fill sandstones (CHs)
represent about 10% of the rock volume sampled in
the eight pseudowells in the upper parasequence
PSS2. Although Deveugle et al. (2014) noticed that
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“the well data contain a higher proportion of chan-
nelized sand bodies (CH facies association; Table 1)
than the reservoir volume (Figure 11)” (p. 759), they
did not debias the data. How polygonal tessellation
can be applied to debiasing the same data is illustrated
in Figure 1, which will lead to a declustered CH facies
proportion of 5% or less (the above is an estimate, as
we do not have the actual well data required for
accurate debiasing. However, comparing their figure
5 and our Figure 1, it is obvious that debiasing will

significantly reduce the biased proportion of the CH
facies from the pseudowells). More details on de-
biasing can be found in Pyrcz and Deutsch (2003,
2014, see p. 53–63).

FACIES PROBABILITY

Reconciliation of Different Facies Probability
Entities

We noticed inconsistencies in the facies proportions
from the pseudowells in Deveugle et al. (2014), for
example, comparing their figures 5 (p. 738) and 11
(p. 749). The pseudowells in their figure 5 contain no
CH facies in PSS1 whereas the same wells in their
figure 11 contain approximately 3% CH facies. In
their Facies Probability Maps and Vertical Trends …
subsection (p. 741–744), geological interpretation
maps were presented without the corresponding fa-
cies probability maps. Yet later on, the same proba-
bility maps were referred to repeatedly, and, under
different names, for example, “interpretation facies
distributions” (p. 745, 746), “facies-associationmaps”
(p. 745), “facies probability maps” (p. 751), or “the
model” (p. 755). This is confusing. From the sub-
section’s title, the authors apparently wanted to
derive facies probability maps from the geological
interpretation maps, but no probability maps were
ever presented. Furthermore, facies probabilitymaps
can only be created after reconciling inconsistencies
between the interpretation maps and vertical facies
proportions at wells. This was apparently not done
in the Deveugle et al. (2014) paper. As a result,
some of the facies maps (their figure 8; p. 742) and
vertical trends are inconsistent with the facies data
atwells (theirfigure 5; p. 738). Below,we list examples
of such inconsistencies.

• Well IC11 contains approximately 50% stream–

mouth–bar sandstones (SMBs) in the FS2.1
stratigraphic interval (i.e., the interval below the
surface FS2.1 in their figure 5), but 100% SMBs are
shown in the interpretation maps for the same
stratigraphic interval (their figure 8). Similarly,
IC11 has less than 40% SMBs for FS1.7, but 100%
SMBs are shown in the facies maps for FS1.7.

• Well IC9A contains less than 50% of proximal
delta-front sandstones (pDFs) in the stratigraphic

Figure 1. An example of Voronoi polygon tessellation (VPT)
using Euclidean distance on declustering facies proportions for
the problem in Deveugle et al. (2014) (modified from their
paper). Notice that the polygonal areas (A-H) for the wells are very
different, and thus a sampling bias is evident. For example, po-
lygonal area A for pseudowell CM is nearly 10 times the size of the
polygonal area H for pseudowell IC11. Regarding VPT, the most
common VPT technique uses the Euclidean distance. Given a finite
set of points (such as wells projected on a surface) in the Euclidean
plane, a Voronoi polygonal cell consists of every point pj, whose
distance to the point pj, is less than or equal to its distance to any
other point pk. Each polygonal cell is obtained from the in-
tersection of these half distances. Hence, the line segments of the
Voronoi diagram are all the points in the Euclidean plane that are
equidistant to the two nearest sites (i.e., well locations), and the
Voronoi nodes are equidistant to three or more sites. For de-
clustering the facies data, a weight is assigned to each site and the
weight is proportional to its relative areal fraction, that is, weight
for site, j is equal to the area of site, j, divided by the total area of
the field (Pyrcz and Deutsch, 2003, 2014).
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interval FS1.6 (their figure 5), but 100% pDFs are
shown in the interpretation maps (their figure 8).
A similar inconsistency is observed for FS2.2.

Although inconsistencies are common in facies
interpretations, it should be reconciled for the con-
sistency of the inputs and integrity of the modeling
process. In Deveugle et al. (2014), such inconsis-
tencies were not reconciled before these maps were
used as probability maps to constrain the facies
models. Methods and workflows for reconciling
geological interpretations and well data to generate
probability maps have been discussed in the literature
(e.g., Ma et al., 2009, see p. 1244–1248, Probability
Maps Integrating Facies Propensity and Frequency
Data section; Ma, 2009, see p. 746–747, Section 4:
Probability Maps Coupling Facies Frequencies and
Spatial Propensities).

Definitions of Facies Probability

Regarding the creation of facies probability volumes
in the third to fifth steps of their five-step workflow,
Deveugle et al. (2014) stated that “(3) The five prob-
ability volumes for each facies association were
combined into a single probability volume. … (4) A
low-pass bandwidth filter was applied to the com-
bined probability volume. … (5) Probabilities in
the filtered probability volume were normalized. …”

(p. 740). However, it is not clear how the probability
volumes of the five facies can be combined into one
volume while preserving the probabilities of each fa-
cies. Additionally, it is not clear how the probabilities
were normalized in their step 5, especially after the
combination in step 3. Recall the three basic proba-
bility axioms: (1) nonnegativity; (2) normalization (all
probabilities lie between 0 and 1, and the sum of all
probabilities equal to 1), and (3) finite additivity
(Billingsley, 1995, p. 22;Hajek, 2007;Ma, 2009).Does
the authors’ normalization adhere to these axioms?

Furthermore, the statement “even a slight in-
crease in the probability of allocating the channel
facies to individual grid cells results in a significant
increase of the cumulative estimated proportion of the
channel facies association over the entire model volume”
(p. 741, our italic emphasis) is confusing. An increase
of probability (or proportion) of any facies over the
entire model should equal an average increase in the

same facies’ probability for all grid cells. Given that
each cell is assigned only one facies code in themodel,
the meaning of “cumulative estimated proportion” is
unclear. Facies proportion or probability can be cu-
mulative in the frequency domain, such as in a his-
togram or probability distribution, but cannot be
cumulative over different cells in a model. If the
probability was cumulative over different cells in
a model, then it could easily become greater than 1,
which violates the second probability axiom pre-
viously stated. We suspect that the authors tried to
express the sensitivity of modeling algorithms to the
input parameters because understanding such sensi-
tivity is their main objective. However, such sensi-
tivity analysis was not discussed within the context
of their problem (no modeling algorithm was men-
tioned in that subsection).

CONCLUDING REMARKS

Most of the conclusions from Deveugle et al. (2014)
may be valid, and the study is useful to a general
geoscience audience. Many of the concepts that have
been known to geomodelers and simulation engineers
are confirmed by the studied fluvial-dominated del-
taic reservoir, which is interesting to see. Neverthe-
less, we think that for a study to fully achieve its stated
aims, the design should test appropriate statistical
moments in relation to geological characteristics.
Specifically, when testing the impact of different
modeling algorithms on generating facies hetero-
geneities and the resultant flow behaviors, facies
proportions from the reference model should be
recognized as a set of first-order statistics to match.
The constructed facies models honoring these sta-
tistics will then become unbiased. From general
statistical theory, this is achievable even without
a reference model, and is easily achievable when
a reference model is available. Otherwise, large
differences in facies proportions between the con-
structed models and the reference model overwhelm
the sensitivities of different modeling algorithms.
Because of nonnegligible bias in the modeled facies
proportions, the second- and higher-order statistics
(heterogeneities) became less important for predicting
flow, and the sensitivities of facies modeling to the
different algorithms became subdued. Although
Deveugle et al. (2014) acknowledged the importance
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of facies proportions, they did not perform this im-
portant test, which resulted in biased models that do
not reproduce the facies proportions of the reference
model. However, generating unbiased facies pro-
portions is important for justifying some of their key
conclusions. We also noted some inconsistencies and
confusing statements in the authors’ discussion on
facies probabilities.
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