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s u m m a r y

A critical issue facing large scale numerical simulation models is the estimation of representative hydrau-
lic conductivity to account for the unresolved sub-grid-scale heterogeneity. In this study, two experi-
ment-based hydraulic conductivity models offer a test case to evaluate this parameter. Each model
contains a different heterogeneity pattern with connectivity characteristics that cannot be captured by
univariate and bivariate statistics. A three-dimensional numerical upscaling method was developed to
compute an equivalent conductivity full tensor for each model. The equivalent conductivities were com-
pared to direct averages of local conductivities and to an effective conductivity predicted by several ana-
lytical methods. For each model, lnK variances up to 16 were evaluated. The impact of variance on both
upscaled conductivity and three fluid flow connectivity factors was assessed. Results suggest: (1) the
upscaling method gave reliable results comparable to an established method which only gives the diag-
onal components, (2) for both aquifer models, when lnK variances are low (less than 1.0), all analytical
methods evaluated are nearly equally accurate; however, when variance becomes higher, the analytical
methods of Desbarats (1992) and Noetinger and Haas (1996) were found to provide robust estimates of
equivalent conductivities, despite possible violation of the multiGaussian assumption, (3) fluid flow char-
acteristics in each model were significantly impacted by increasing variance, which can result in flow
channeling in the lateral direction and increasing global anisotropy ratios of the equivalent conductivity,
and (4) geometric connectivity, as analyzed by a percolation cluster analysis, indicates the importance of
such features in focusing flow, in addition to the effects of high variance.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

Regional groundwater flow models require the assignment of
hydraulic conductivities to large simulation grid cells used to
discretize the flow domain. However, conductivity of the porous
media is often measured at smaller scales via, e.g., permeameter,
flowmeter, or borehole geophysical tests. Based on such measure-
ments, the method of finding representative conductivities for the
large simulation grid cells is called upscaling. A similar develop-
ment in petroleum engineering is to upscale the intrinsic perme-
ability for the coarse grids of a multiphase flow simulator (e.g.,
Christie, 1996; Pickup and Hern, 2002; Durlofsky, 2005; Gerritsen
and Durlofsky, 2005; Chen and Durlofsky, 2006; Wen et al.,
2006). Due to the nonlinear nature of the coupled flow equations
and the multiple degrees of freedom solved, reservoir simulation

imposes more stringent constraint on the grid size. For reservoirs
where subsurface property data are available, a common practice
is to develop a fully heterogeneous fine-grid geocellular model
using geostatistical techniques. This model is then upscaled to a
coarse grid for flow simulations. Regardless of the goal, i.e.,
groundwater studies or petroleum reservoir modeling, an impor-
tant step is to find large-scale equivalent conductivity (or perme-
ability) based on small-scale measurements or stochastically
generated images at the subgrid level.

Numerous methods have been developed to estimate equiva-
lent hydraulic conductivity for heterogenous porous media (see
reviews, Wen and Gómez-Hernández, 1996; Renard and de Marsily,
1997; Sanchez-Vila et al., 2006). The equivalent conductivity
differs from an effective conductivity which is defined within a
stochastic context where the small-scale conductivity heterogene-
ity is treated as a random space function (RSF) (e.g., Dagan, 1989;
Gelhar, 1993; Zhang, 2002). The effective conductivity can be esti-
mated from the spatial correlation and variability characteristics of
the RSF. It is considered an intrinsic property of the RSF, thus
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independent of the boundary condition and domain size. On the
other hand, the equivalent conductivity represents a fictitious
homogenous medium that preserves the mean flux of the
heterogenous deposit under a given head gradient. Compared to
effective conductivity, the estimation of the equivalent conductiv-
ity does not require restrictive assumptions on the RSF or the flow
condition (e.g., stationarity, mean uniform flow). This is useful for
upscaling deposits that exhibit complex spatial heterogeneities
and long range correlations, i.e., when problem size is finite com-
pared to the conductivity correlation ranges. However, equivalent
conductivity depends on the boundary condition, thus it is not un-
ique. It may approach the effective conductivity when the domain
size is large compared to the conductivity correlation range (Re-
nard and de Marsily, 1997).

In this study, based on an experimental stratigraphy, two three-
dimensional (3D) synthetic aquifer models were evaluated for both
equivalent conductivity and fluid flow connectivity. Both models
are statistically anisotropic while each contains a different hetero-
geneity pattern. One, in particular, contains a high-conductivity
connected structure that cannot be captured by univariate and
bivariate statistics. A 3D numerical upscaling method was used
to compute a full-tensor equivalent conductivity for each model.
The method extends an earlier approach developed for upscaling
two-dimensional datasets (Zhang et al., 2006, 2007). The computed
equivalent conductivities were compared to direct averages of lo-
cal conductivities, and to an effective conductivity predicted by
several analytical methods applicable to upscaling three-dimen-
sional statistically anisotropic media. As reviewed by prior authors,
though a vast literature exists for estimating equivalent or effective
conductivity, few analytical methods are applicable to upscaling
statistically anisotropic media. For such media, due to anisotropy,
the equivalent or effective conductivity are usually tensor quanti-
ties, thus methods developed for isotropic media do not apply.
Since for many problems encountered in field and large scale sim-
ulation studies, anisotropic systems are common (Durlofsky, 1991,
2005; Pickup et al., 1994; Pickup and Hern, 2002; Kerrou et al.,
2008), significant practical interest exists in understanding the
upscaling of such systems that also contain geologically realistic
heterogeneity. The analytical methods investigated in this study
were either developed or proposed for such media. Compared to
numerical upscaling, the main advantage of the analytical methods
is their ability to predict large-scale conductivity without detailed
simulations.

In this study, a sensitivity analysis was conducted for each aqui-
fer model by increasing the natural log conductivity (lnK) variance
to represent systems ranging from weakly heterogeneous to
strongly heterogeneous (Gelhar, 1993). Given the same heteroge-
neity pattern, high lnK variance should exert significant influence
on the simulated flow fields. Herein, such effects were evaluated
systematically for the two synthetic aquifers. Thus an important
contribution of this work is to provide constraints on the applica-
bility of the (anisotropic) analytical methods under increasing het-
erogeneity variance and for different heterogeneity patterns.
Further, since one of the aquifer models exhibits a significant
large-scale connectivity, the effects of geometric connectivity
along with high lnK variance on several fluid flow connectivity fac-
tors were assessed. We explore the conditions under which prefer-
ential flow pathways will form in the simulated flow fields.

Using synthetic aquifer models to reveal insights on subsurface
flow, transport, and parameter scaling is a well-known approach in
understanding naturally inaccessible and heterogeneous systems
(e.g., Scheibe and Freyberg, 1995; Christie and Blunt, 2001). In
sandstones, correlation was found to exist between sedimentary
structures and permeability (Hurst and Rosvoll, 1991; Moreton
et al., 2002). In particular, high-resolution photomosaics can corre-
spond to detailed natural log permeability measurements (Coskun

and Wardlaw, 1992; Makse et al., 1996; Tidwell and Wilson, 1997).
Synthetic models have been created based on images of sediment
outcrops and used in upscaling studies (Pickup and Hern, 2002)
or geostatistical reservoir analysis (Deutsch, 2002). What is unique
about our series of studies is that our conductivity models corre-
spond to physical stratigraphies created by sediment transport
experiments in a laboratory flume. In the current study, a new
stratigraphic dataset was analyzed (our previous works had ana-
lyzed a prototype deposit created in an earlier experiment). In all
experiments, however, deposits were formed by sedimentary pro-
cesses that represent subsets of those active in nature. These in-
clude important forms of self-organization and spontaneous
pattern formation that are common in nature yet difficult to cap-
ture using stochastic simulations. The experimental stratigraphies
thus exhibit multiscale variability that may not satisfy many statis-
tical assumptions used by stochastic algorithms to generate syn-
thetic deposits (e.g., stationarity, multiGaussian distributions)
(e.g., Deutsch and Journel, 1997). The two aquifer models of this
study, developed based on the experimental stratigraphies, will en-
able us to understand how diversity in sedimentary heterogeneity,
when translated to hydraulic conductivity and scaled for variabil-
ity, may result in different fluid flow and upscaling behavior.

In the reminder of the text, the sediment experiment that cre-
ated the experimental deposit was described first, followed by
the procedure used to create the two synthetic aquifer models.
The 3D numerical upscaling method was introduced, along with
a description of the analytical methods evaluated. Three connectiv-
ity flow factors were defined, followed by the Results section
where flow simulation outcomes, upscaled conductivities (both
numerical and analytical predictions), and flow connectivity fac-
tors were presented. Directions for future research were described
in the end.

2. Methods

2.1. Sediment experiment

The experimental stratigraphy used for this study was produced
in a sediment experiment conducted in 1999 at the Saint Anthony
Falls Hydraulics Laboratory, University of Minnesota. The experi-
ment was designed to isolate the influence of various extrinsic con-
trols on stacking patterns in alluvial stratigraphy (e.g., Paola, 2000;
Cazanacli et al., 2002; Sheets et al., 2002; Hickson et al., 2005;
Strong et al., 2005) (Fig. 1; top panel). Two sediment types were
used, a quartz sand and anthracite coal, which generally simulated
coarse-grained and fine-grained bedload sediments, respectively.
While the experiment was not designed as a direct scale model
of any particular natural system, the processes are broadly analo-
gous to those observed in modern alluvial systems. That is, general
fluvial morphological characteristics such as longitudinal grain size
fining, channelized flows, and overbank flows were well developed
in the experiment. As such, we consider the experimental stratig-
raphy a good testing ground for the upscaling techniques pre-
sented herein.

After the deposits were formed, they were dissected every 2 cm
in the direction perpendicular to sediment transport and imaged
with high resolution to create a digital representation of the stra-
tigraphy (Fig. 1; bottom panel). While this process and the stratig-
raphy have been described in more details elsewhere (Sheets et al.,
2002; Hickson et al., 2005), we would note here that the deposits of
the experimental system are dominated by the low aspect ratio
(width:depth) channel bodies and high aspect ratio depositional
sheets. The two modes correlate to scour and deposition associated
with channelized and unchannelized (overbank) flows, respec-
tively (Sheets et al., 2007).
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In this study, two 3D models of hydraulic conductivity hetero-
geneity were created, based on two subsets of the digital stratigra-
phy (Fig. 1). The subsets were selected from the upstream fluvial
portion of the deposits which exhibited significant sedimentary
structures (e.g., channel, floodplain, sheetflow deposits). The
downstream marine deposition tended to be dominated by clay
settling, thus containing less heterogeneities. This choice of model
sites was considered reasonable since this study focuses on the ef-
fects of heterogeneity and connectivity. Further, subset 1 was se-
lected from the upper channel–floodplain belt, directly above
subset 2 (Fig. 1; bottom). It lies within a region of the stratigraphy
that is dominated by sheetflow and floodplain deposits. Along the

transect shown (Fig. 1), a significant lateral sand-rich structure ex-
ists in the lower region of this subset, spanning across the X direc-
tion. On the other hand, subset 2 lies within the lower channel belt,
deposited in a region that is more sand-rich and contains numer-
ous channels. These channels are generally small, with widths (in
the X direction) ranging from 30 to 100 pixels. Subset 2 is of the
same dimensions as subset 1.

To create the third dimension for each subset, 16 image tran-
sects perpendicular to sediment transport (thus parallel to the
stratigraphy of Fig. 1) were stacked. To allow smooth transitions,
linear interpolations between the 16 transects were conducted.
Note that the dissection of the stratigraphy and subsequent
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Fig. 1. Schematic diagram of the experimental apparatus used in the sediment transport experiment (top). Vertical line indicates the position of an image scan of the
stratigraphy at 164 cm downstream from the sediment sources (bottom). Green, yellow and red correspond to increasing brightness of the image, thus increasing sand
content of the stratigraphy. Two boxes indicate the locations of the two subsets used in this study. To create the third dimension, 15 additional transects parallel to this
stratigraphy were used, each separated by 2 cm.
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imaging were carefully coordinated within a single global coordi-
nate, thus the transects were able to be stacked precisely. Their
positions along the Y axis (Fig. 1) were: Y = 146, 148, 150, 152,
154, 156, 158, 160, 162, 164, 168, 170, 172, 174, 176, 178,
180 cm, with increasing distance from the upstream sediment
feeders. Y = 166 cm was not included since during the dissection
of the stratigraphy, a portion of the deposit collapsed and thus
could not be imaged. Conceivably, the stratigraphic information
interpolated between 164 and 168 could contain some minor arti-
facts and alignment issues, though we have not been able to visu-
ally detect them.

2.2. Model construction

In this study, each subset was coarsened to a simulation model
grid using the gridding toolbox lagrit (www.lagrit.lanl.gov), for two
reasons: (1) the stratigraphy was scanned in high resolution, thus
each image pixel has a grayscale corresponding to the average light
reflection of a few dozen sand grains, which is beneath the contin-
uum scale for flow modeling; and (2) each subset contained 2.88
million image pixels, considered large for the 3D full-tensor
upscaling procedure of this study which involves many flow exper-
iments. Using the lagrit ‘‘Interpolate” function, the grayscale of the
grid cell of the coarse simulation model was computed based on
linear interpolation of those of the enclosed fine-grid pixel cells.
After the interpolation, two models of equal dimensions were cre-
ated: Model 1 coarsened from subset 1, Model 2 coarsened from
subset 2 (Fig. 2). Each model has 101 by 101 by 41 grid cells in
the x, y, and z directions, respectively. Each thus has a total
of 418,241 grid cells, efficient for upscaling calculations. After
coarsening, though the shapes of many small-scale structures
(e.g., the tiny channels in subset 2) became less distinct, significant
large-scale connectivity was preserved (Fig. 2).

Following the approach adopted in our previous studies (Zhang
et al., 2005b, 2006, 2007; Zhang and Gable, 2008; Zhang, 2008), the
grid cells of each simulation model assume fixed length scales to
represent a local representative elementary volume (REV) upon
which a local, scalar hydraulic conductivity can be defined.
Depending on the domain size of interest (e.g., field scale up to ba-
sin scale), the grid cell can assume sizes ranging from a few cm to
hundreds of m. In this study, the simulation model cells were as-
signed: Dx = Dy = 25.0 m and Dz = 2.5 m, thus the model domain
dimensions are 2500 � 2500 � 100 m3. These dimensions lie with-
in the range of grid cell sizes for regional- to basin-scale flow sim-
ulators (e.g., Zhang et al., 2005a, 2006). And, using the grid-cell
grayscale and two appropriately chosen end member conductivi-
ties (one for pure sand, with the highest grayscale; one for pure

clay, with the lowest grayscale), a scalar local conductivity was ob-
tained for each cell via log-linear interpolation (detailed discus-
sions on this and alternative interpolation methods can be found

Fig. 2. Visualization of the two models, both scaled to a lnK variance of 0.1.
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Fig. 3. Cumulative distribution function of lnK for four increasing variances
(Var[lnK] = 0.1, 1.0, 7.0, 16.0), for Models 1 and 2.
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in Zhang et al. (2005b)). A synthetic hydraulic conductivity model
was thus created from each subset. Each model exhibits a different
spatial pattern and connectivity in hydraulic conductivity (Fig. 2),
its end member conductivities varied as part of a sensitivity anal-
ysis to create different variability levels in the model.

Besides the concerns of capturing heterogeneity and connectiv-
ity (where models were selected from different regions of the
experimental stratigraphy based on visual inspection), two addi-
tional criteria were used to create the models: (1) The model do-
main in all three dimensions was relatively large compared to
the respective lnK integral scales (kx,ky,kz). The integral scales were
estimated by conducting a geostatistical analysis on the lnK field
(next). In both models, ratio of the domain length scale to the inte-
gral scale is much larger than 4.0, minimizing the possible impact
of specified boundary conditions on numerical upscaling results.
This criterion was used in upscaling studies for both statistically
isotropic (Rubin and Dagan, 1988) and anisotropic media (Paleolo-
gos et al., 1996; Sarris and Paleologos, 2004). It ensures that
numerical upscaling results of bounded domains can be compared
to analytic-stochastic theory predictions for unbounded problems
(Zhang et al., 2006). (2) For each model, though coarsened from
the subset, its grid discretization was still resolved enough such
that the lateral lnK integral scale was represented by greater than
5 � 10 grid cells in each direction (Desbarats, 1992).

In this study, both conductivity models were analyzed for
upscaling and flow connectivity characteristics. The connectivity
characteristics were then compared between models to determine
a quantitative metric that can be used to verify the observed differ-
ences in connectivity, i.e., the channel–sheetflow–floodplain pat-
tern versus the more channelized pattern. For each model, lnK
histogram was unimodal and can be approximated well by a Gauss-
ian probability density function (not shown). The variability of each

model was scaled to four global lnK variances (0.1,1.0,7.0,16.0),
while keeping the same global mean lnK value (Fig. 3). By varying
the variance while maintaining the same heterogeneity pattern,
each model reflects a full range of systems from weakly heteroge-
neous to strongly heterogeneous. The scaling of variance should ex-
ert a significant impact on flow, as higher variance increases the
contrast of conductivity between the interbedded sand-rich and
clay-rich facies, thus potentially focusing flow through connected
high-K zones in the model. The low variance systems, on the other
hand, should behave more like a homogeneous deposit, despite the
existence of the same geometric connectivity which is not affected
by variance scaling.

2.3. Spatial correlations

Geostatistical characteristics of the models were evaluated by
computing three directional experimental lnK variograms for each
model: two horizontal; one vertical (Figs. 4 and 5). In these figures,
lnK variance for each model is 0.1. Note that scaling the variance
will proportionally scale the variogram sill without affecting the
correlation ranges. For each model, the directional integral scales
were thus obtained from fitting an exponential function to each
directional experimental variogram. For Model 1, kx = 155.0 m, ky =
690.0 m, and kz = 5.0 m. For Model 2, kx = 155.0 m, ky = 450.0 m,
and kz = 3.5 m. Both the integral scales and the associated statisti-
cal anisotropy ratios (e.g., kx/kz, ky/kz) fall within the range found
for natural braided fluvial deposits (Deutsch, 2002), suggesting
that the grid cell size and aspect ratio chosen in this study are rea-
sonable. In this study, these correlation parameters will be used by
several analytical methods to predict an effective conductivity, to
be compared to the results of numerical upscaling.
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Fig. 4. Directional experimental variograms of lnK for Model 1, shown as circles. Three exponential variogram models are fitted (curves), with the fitted functions shown. For
the variogram calculations, variance of lnK in the aquifer is 0.1.
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For each model, both horizontal integral scales are significantly
larger than the vertical integral scale, attesting to the observed
sedimentary stratification. In both models, a distinct zonal anisot-
ropy exists in the horizontal direction, i.e., sills of the x-direction
experimental variogram are lower than those of the y-direction
variogram. This indicates potential long-range correlation along x
beyond the size of the model domain, which is not represented
by the fitted variogram functions. Instead, a stationary model
was fitted to capture variogram values at shorter lags near the ori-
gin where more data pairs were available. This is important for the
accurate determination of correlation ranges within each aquifer
model (or, the sub-grid-level heterogeneity scales as would be esti-
mated for the grid blocks of a large field simulator). Moreover, in
Model 1, the spatial correlation structure is not axisymmetric,
i.e., the horizontal integral scales are not equal. The same is ob-
served for Model 2. Comparing the correlation structures between
models, their overall correlation characteristics are similar, e.g., the
approximately exponential rise of the variograms towards the sills
(Figs. 4 and 5). Clearly, as previous studies have demonstrated (e.g.,
Gomez-Hernandez and Wen, 1998; Knudby and Carrera, 2005,
2006), two-point correlation functions cannot distinguish either
the existence or lack of existence of important spatial connectivity
as observed in the models (Fig. 2). In this study, besides visual
inspection, such geometric connectivity will be quantified by a
connectivity flow factor via a percolation cluster analysis.

2.4. Numerical upscaling

Upscaling for 3D full-tensor hydraulic conductivity was con-
ducted using numerical flow experiments, in extension to an ear-
lier method developed to upscale two-dimensional datasets

(Zhang et al., 2006). To find the equivalent conductivity (K*) for
each model, a series of single-phase, steady-state, and incompress-
ible flow simulations was conducted by varying the boundary con-
ditions along the periphery of the heterogeneous aquifer model. An
equivalent conductivity was obtained by incorporating results
from all simulations. Specifically, under a fixed boundary condi-
tion, a set of equations was assembled based on the global Darcy’s
Law (assumed to be applicable at both scales), each consisting of
spatially averaged directional hydraulic gradients, Darcy fluxes,
and equivalent conductivity tensor components:
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where hi represents spatial averaging; qx, qy, qz are components of
the Darcy flux; h is hydraulic head; subscripts 1, 2, . . . , m denote a
particular flow experiment; Kxx ,. . . ,Kzz are components of the up-
scaled equivalent conductivity K*. Following Zhang et al. (2006),
the above equations is rewritten as:
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Fig. 5. Directional experimental variograms of lnK for Model 2, shown as circles. Three exponential variogram models are fitted (curves), with the fitted functions shown. For
the variogram calculations, variance of lnK in the aquifer is 0.1.
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The nine equivalent conductivity components were thus obtained
by solving the above equation. Note that to obtain unique solutions,
the total number of flow experiments m must be P3: when m = 3,
Eq. (2) was solved exactly; when m > 3, Eq. (2) was solved via least
square solution. As in the previous studies (Zhang et al., 2006,
2007), symmetry was imposed, i.e., an average of the symmetrical
off-diagonal terms (e.g., Kxy and Kyx) was taken and assigned to its
respective position in the upscaled conductivity. This is not an
unreasonable approach. Due to the lateral stratification exhibited
by both aquifer models, the equivalent conductivity was diagonally
dominant (see Section 3). Thus, for each model, under a fixed global
lnK variance, a symmetric full tensor was evaluated in this study.

Since numerical upscaling results will be compared to analytical
expressions developed for uniform flow conditions (those devel-
oped for radial flows were not investigated in this study), linear
flood patterns were appropriate in the flow experiments. In the
simulations conducted for each model, to assemble Eq. (2), three
sets of global boundary conditions were used (m = 3): (1) x-flow
(specified heads along the left and right faces of the model; no-flow
on all other faces); (2) y-flow (specified heads along the front and
back faces; no-flow on all other faces); and (3) z-flow (specified
heads along the top and bottom faces; no-flow on all other faces).
The specified heads were selected such that in each flow experi-
ment (whether it is x-flow, y-flow, or z-flow), flow was driven to-
wards the positive axis. In each experiment, a fixed head of 100.0
and 10.0 m was assigned to the inflow and outflow boundaries,
respectively.

A 3D Finite Difference flow simulator was developed with a
seven-point block-centered scheme (Desbarats, 1992; Sarris and
Paleologos, 2004). It was first verified by solving equivalent con-
ductivities for problems with known analytical solutions. In one
problem, each local K was homogeneous, thus the equivalent
conductivity computed remained the same as the local conduc-
tivity. In a second problem, local K was deterministically gener-
ated to create a perfectly layered deposit with units of equal
thickness. In this case, the equivalent lateral conductivities were
verified to be the arithmetic mean of the local layer K, and the
equivalent vertical conductivity verified to be the harmonic
mean of the local layer K. In this study, to further verify the
upscaling results of the two aquifer models, equivalent K* was
also computed using the well-established Simple Laplacian
method which can determine a diagonal tensor for a block med-
ium (Wen and Gómez-Hernández, 1996). Since the heterogene-
ities in our models were dominated by horizontal stratification,
the Simple Laplacian method should provide values close to
the diagonal components of the full tensor K* computed with
Eq. (2).

2.5. Analytical upscaling

Numerical upscaling results of the equivalent conductivity were
first compared to two sets of analytical bounds (Renard and de
Marsily, 1997): (1) The Wiener bounds: [KH,KA], where KH and KA

are the harmonic and arithmetic means of the local conductivities,
respectively. The Wiener bounds are valid for predicting the equiv-
alent conductivity components for the end-member cases of flow
parallel (KA) and perpendicular (KH) to perfect layers of uniform
thickness. (2) Cardwell and Parsons bounds: lx

H lz
A ly

A

� �� �
6

Kjj 6 lz
A ly

A lx
H

� �� �
. The lower bound is calculated by the harmonic

mean of the arithmetic means of the point K, along the given direc-
tions indicated (first y, then z, then x); the upper bound is calcu-
lated similarly. This bounds is suitable for determining the
equivalent conductivity range for a block domain. Other analytical
bounds also exist (Renard and de Marsily, 1997), though most are
restricted to statistically isotropic media, binary media, or media of
lower spatial dimensions. The more general bounds were thus
chosen to compare with the numerical results. As upscaling of both
models will demonstrate, most equivalent conductivities are
diagonally dominant. Therefore, only the principal components of
K* (subsequently labeled as K11, K22, and K33) were compared
to the bounds. This also applies to the comparison with the
predictions of select analytical methods (next).

Besides simple bounds, several analytical methods exist that are
applicable to upscaling three-dimensional statistically anisotropic
media. In the following paragraphs, these methods were intro-
duced by grouping them based on similarity in approaches. Within
a stochastic framework, the local point-scale conductivities K(x)
can be defined as a RSF. A natural log transform is then used:
f = Y(x) = lnK(x), also a RSF. If Y(x) is assumed to be stationary,
ergodic, and multivariate Gaussian, its first and second spatial mo-
ments are:

E½YðxÞ� ¼ lf ð3Þ

Cov ½YðxÞ;Yðxþ hÞ� ¼ rðhÞ ð4Þ

Var½YðxÞ� ¼ rð0Þ ¼ r2
f ð5Þ

cðhÞ ¼ r2
f � rðhÞ ð6Þ

where lf and r2
f are the expected value and variance of the point-

scale lnK, respectively. r(h) and c(h) are the spatial covariance func-
tion of lnK and its variogram, respectively. Under these conditions, an
ensemble power mean of K(x) can be obtained: Kx = E[K(x)x]1/x,
where x is the power-averaging exponent. An effective block-scale
conductivity KV can further be defined over volume V. After defining
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an ensemble variogram �c ¼ ð1=V2Þ
R

V

R
V cðjr � sjÞdr ds, an expected

value of KV is obtained (Desbarats, 1992):

E½KV � ’ Kx exp
1�x

2
r2

f � �c
� �� �

ð7Þ

When V is infinite, the ensemble variogram approaches the vari-
ance, and E[KV] ’ Kx. Thus, for a large block, KV can be written as
a spatial power average of the local point-scale conductivities K(x):

KV ¼
1
V

Z
V

KðxÞxdV
� 	1=x

x – 0 ð8Þ

KV ¼ exp
1
V

Z
V

ln KðxÞdV
� 	

x ¼ 0 ð9Þ

The above second equation is the limit of the first equation when
x ? 0. Note that Kx is the asymptotic limit of Eq. (8) (Desbarats,
1992). In this study, to compute the block conductivity principal
components for the two aquifer models which are discretized in
space, the above equations can be written in the discrete form
and further generalized to account for tensor components:

Kjj ¼
1
N

XN

i¼1

K
xj

i

" #1=xj

ðj ¼ 1; . . . ;3Þ xj – 0 ð10Þ

Kjj ¼ KG ¼ exp
1
N

XN

i¼1

ln Ki

" #
ðj ¼ 1; . . . ;3Þ xj ¼ 0 ð11Þ

where N is the number of local conductivities (Ki), Kjj represent the
principal components of the block conductivity, xj represent the
corresponding directional power-averaging exponents. Note that
�1 6xj 6 1: when xj = �1, Kjj = KH; xj = 1, Kjj = KA; when xj ? 0
in the limit, Kjj is the geometric mean (KG). Further, in multiGaus-
sian media with low variance, an approximate relation of Eq. (10)
was found (Desbarats, 1992):

lnðKjjÞ ’ lf þ
xj

2
r2

f ðj ¼ 1; . . . ;3Þ ð12Þ

The validity of this equation can be tested by applying the direc-
tional exponent of Eqs. (10) and (12), i.e., equating Kjj with numer-
ical obtained values and finding the corresponding xj for Eq. (12).
Despite being an approximate equation, it predicted accurate re-
sults for both isotropic and anisotropic correlation structures, and
for r2

f up to 4.0 (Desbarats, 1992). Based on the Green’s function
formulation, a similar expression was developed for a multiGaus-
sian medium of large extent (e.g., domain length greater than lnK
integral scales) (Noetinger and Haas, 1996):

Kjj ’ KG exp xjr2
f =2

� �
ðj ¼ 1; . . . ;3Þ ð13Þ

Eq. (13) was numerically verified by the above authors to be accu-
rate for media with variances up to 1.0. Finally, within a similar
power-averaging framework, Ababou (1991) had earlier on pro-
posed a formulation for estimating xj:

xj ¼ 1� 2
3

kHarmo

kj
ðj ¼ 1; . . . ;3Þ ð14Þ

where kj represent the directional lnK integral scales, kHarmo is their

harmonic mean estimated by kHarmo ¼ 1
3

P3
j¼1k

�1
j

h i�1
. Eqs. (10)–(14)

can be used to predict block conductivity principal components, gi-
ven local conductivities and directional lnK correlation ranges. In
this study, these parameters can be readily estimated for the aquifer
models.

Besides the above power-averaging based approaches, analyti-
cal-stochastic expressions were also developed using perturbation
analyses to relate the effective conductivity to KG, r2

f , and lnK inte-

gral scales. For a stationary medium with low variance, a well-
known result is (Gelhar, 1993):

Kjj ¼ KG 1þ r2
f

1
2
� gjj

� 	� �
ðj ¼ 1; . . . ;3Þ ð15Þ

where gjj is a complex multidimensional integral. For an axisym-
metrical medium (e.g., k1 = k2 > k3) with exponential correlation
functions, Gelhar and Axness (1983) obtained:

g11 ¼ g22 ¼
1
2

1
q2 � 1

q2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � 1

p tan�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � 1

p� �
� 1

" #

g33 ¼
q2

q2 � 1
1� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 � 1
p tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � 1

p� �" #

where q = k1/k3 > 1. In this study, kx and ky are averaged to obtain k1,
representing a horizontal integral scale from modeling an omnidi-
rectional horizontal variogram. For nonsymmetrical structures, gjj

can be evaluated by numerical integration. These results have been
tested and expanded by prior authors (e.g., Zhang, 2002), and for
statistically anisotropic media, have generally been found accurate
for low lnK variances (e.g., less than 1.0). A high-variance version
of the above equation also exists based on the Landau–Lifshitz con-
jecture, which treats the two terms within the brackets of Eq. (15)
as part of a series expansion of an exponential function:

Kjj ¼ KG exp r2
f

1
2
� gjj

� 	� �
ðj ¼ 1; . . . ;3Þ ð16Þ

Along the same line of arguments, Ababou (1995) proposed a sim-
plified formula of the above equation:

Kjj ¼ KG exp r2
f

1
2
� 1

3
kHarmo

kj

� 	� �
ðj ¼ 1; . . . ;3Þ ð17Þ

Finally, a similar expression to Eq. (16) was also proposed for aniso-
tropic transmissivity fields with arbitrary covariance types (Pozd-
niakov and Tsang, 1999). In the new formulation, gjj was replaced
by gscale, a function that depends on two unknown constants and
a multidimensional integral of the lnK autocorrelation function
(see Eq. (21b) in Pozdniakov and Tsang (1999)). The unknown con-
stants were estimatible under limiting conditions (e.g., planar flow,
or, Lz/kz ?1).

Note that the above equations based on stochastic theories aim
to predict an ensemble effective conductivity of a RSF, thus rigor-
ous comparison between upscaled equivalent conductivity with
ensemble effective conductivity will require a stochastic Monte
Carlo analysis (e.g., Zhang, 2002; Dagan et al., 2004; Frippiat
et al., 2009). This may be accomplished by creating a large number
of conductivity realizations, e.g., adding a small random compo-
nent to each synthetic aquifer model. For each realization, an
equivalent conductivity can be computed via upscaling. The
ensemble conductivity is then obtained by averaging results across
all realizations. This, however, would require numerous flow
experiments, beyond the scope of the current study. In this study,
rather than validating theories, we’re interested in whether theo-
ries can be used to predict properties consistent with numerical
simulation results on single realizations containing geologically
complex or ‘‘realistic” heterogeneity, following examples of prior
studies (e.g., Desbarats and Srivastava, 1991; Zhang et al., 2006,
2007; Zhang and Gable, 2008). Further, within the stochastic
framework, an argument can be made that in evaluating single
realizations, if the domain size is large compared to lnK correlation
scale, ergodic limit may be reached whereby deterministic spatial
average coincides with ensemble average.
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2.6. Flow connectivity

For the two select aquifer models, visual inspection suggests
differences in connectivity pattern of the conductivity field
(Fig. 2), despite their similar univariate and bivariate statistics,
i.e., lnK histograms of both models are approximately Gaussian
and lnK variograms are exponential-like (Figs. 4 and 5). To quantify
connectivity (and particular its impact on fluid flow), we followed
prior works and identified three fluid flow connectivity factors
(CF1, CF2, and CF3) (Knudby and Carrera, 2005, 2006). In general,
the higher the flow CF, the higher the degree of conductivity con-
nectivity and associated effects of flow channeling, thus increasing
deviation from a multiGaussian field which exhibits maximum
spatial disorder rather than connectivity.

CF1 is the directional power-averaging exponent of Eq. (10), i.e.,
xj(j = 1, . . . ,3):

CF1x ¼ x1

CF1y ¼ x2

CF1z ¼ x3

ð18Þ

In the subsequent analysis, we will use CF1x to represent x1, CF1y
to represent x2, and CF1z to represent x3.

CF2 is the ratio of equivalent conductivity principal component
to KG:

CF2x ¼ K11=KG

CF2y ¼ K22=KG

CF2z ¼ K33=KG

ð19Þ

where K11, K22, and K33 are the principal components of the equiv-
alent conductivity computed with Eq. (2). Note that CF1 and CF2 are
related by Eq. (13).

CF3 is the ratio of directional critical path conductivity (Kc) to
KG:

CF3x ¼ Kcx=KG

CF3y ¼ Kcy=KG

CF3z ¼ Kcz=KG

ð20Þ

where Kcx, Kcy, and Kcz are the directional critical path conductivi-
ties along the x, y, and z axis, respectively. The critical path con-
ductivity is the conductivity at the percolation threshold for an
indicator transformed field. To determine Kc along a given direc-
tion, an indicator transform value of K was adjusted until a mini-
mum was reached at which a high-K path of connected cells first
spanned the field along the given direction. GEO_OBJ was used for
this identification (Deutsch, 1999). For 3D connectivity, we consid-
ered two cells connected only if they share a face, e.g., cells were
not considered connected if they only share an edge or a corner
point.

Among the three factors, CF1 and CF2 were determined from
numerical upscaling for which flow simulations were conducted.
CF3 was independent of flow simulations. It describes the geomet-
ric connectivity among the high-K cells. For a set of two-dimen-
sional data exhibiting connectivity, Knudby and Carrera (2005)
evaluated all three factors and found CF2 both sensitive to fluid
flow connectivity and the easiest to evaluate. The above authors
also observed that CF2 and CF3 exhibited equivalent behaviors.
In this study, we evaluated all three CF since the models analyzed
are three-dimensional. Connectivity of spatial structures and fluid
flow channeling are expected to be sensitive to the third dimen-
sion. Each of our flow CF is further directional, corresponding to
the principal components of the upscaled conductivity (previous
studies had focused on the lateral direction only). Since an earlier

two-dimensional analysis had suggested that increasing conduc-
tivity variance contributed to increasing effects of flow channeling
(Zhang et al., 2007), in this study, all three flow CF will be
evaluated at increasing global lnK variance. At a fixed variance,
both the flow CF and the directional percolation clusters (which
formed at the critical path conductivities) will be compared be-
tween the aquifer models to confirm the observed differences in
connectivity.

3. Results and discussion

3.1. Flow simulations

As part of the upscaling procedure, for each model, after the
conductivity field was scaled to an appropriate global lnK variance,
three single-phase and steady-state flow simulations were con-
ducted. The simulation results were used to estimate three sets
of spatially averaged fluxes and head gradients for Eq. (2), and an
upscaled equivalent conductivity was calculated. Before we pres-
ent the upscaling results, it is of interest to understand the impact
of increasing variance on the fluid flow behaviors in each model.
Thus, for Model 1, along each of the flow directions (which corre-
spond to specified boundary conditions used in upscaling), both
hydraulic head and Darcy flux are visualized (Fig. 6).

In each column of Fig. 6, the same global boundary condition
was used: x-flow: first column; y-flow: second column; z-flow:
third column. To facilitate comparison between the low variance
and high variance systems, in each column, the same legends in
head and flux were used. Simulation results pertaining to two vari-
ances are shown: r2

f ¼ 0:1 (top row), and r2
f ¼ 7:0 (bottom row).

Comparing these two, the high-variance field exhibits significant
preferential flowpaths for all flow directions simulated. Results
pertaining to r2

f ¼ 1:0 and r2
f ¼ 16:0 are not shown. The flow

behavior of r2
f ¼ 1:0 lies between those of r2

f ¼ 0:1 and r2
f ¼ 7:0

simulations. The flow behavior of r2
f ¼ 16:0 is more extreme:

alongside those of the lower variance systems, its Darcy flux can-
not be visualized well using the same legend. However, for all flow
directions, it preserves and highlights the same preferential flow
behavior as seen in the field with r2

f ¼ 7:0 (bottom row). The same
simulation results are presented for Model 2 (Fig. 7), where prefer-
ential flow behavior also exists for the high-variance system, along
all flow directions.

Results of both models thus suggest that for a fixed global
boundary condition, when lnK variance becomes high, the flow
field becomes increasingly non-uniform. For all flow directions
investigated, significant flow channeling occurs, accompanied by
an increased spread in the velocity magnitude. Thus, for a fixed
heterogeneity pattern, flow connectivity (i.e., effects of fluid chan-
neling) is positively correlated with variance. Later results for each
model will indeed confirm that increasing variance results in
increasing magnitude of several flow connectivity factors. On the
other hand, at the same variability level (r2

f ¼ 7:0 in Figs. 6 and
7), the characteristics of flow channeling are different between
the models. In particular, a flowpath exists along the x axis in
Model 1, which is absent in Model 2, while both containing flow-
paths in the vertical direction. As part of the CF3 calculations, a
percolation cluster analysis confirms the existence of spanning
high-K clusters (i.e., geometric connectivity) that correspond to
these particular flow pathways. The spanning clusters for Model
1 is shown in Fig. 8. From this figure, significant lateral (along x)
and vertical connectivity exist, corresponding to the location of
the simulated preferential flowpaths. Thus, at a fixed variance, flow
connectivity is also correlated with the existence of geometric con-
nectivity. In Fig. 8, an additional observation is that the spanning
cluster along any direction is non-uniformly distributed in space,
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Fig. 6. Simulation results of hydraulic head (contours) and Darcy flux (vectors) for Model 1. The top row has r2
f of 0.1; the bottom row has r2

f of 7.0. The columns are (left to
right): x-flow, y-flow, z-flow. In each column, the same legends in head and flux are used.

Fig. 7. Simulation results of hydraulic head (contours) and Darcy flux (vectors) for Model 2. The top row has r2
f of 0.1; the bottom row has r2

f of 7.0. The columns are (left to
right): x-flow, y-flow, z-flow. In each column, the same legends in head and flux are used.
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an indicator of non-stationary conductivity. A stationary field, on
the other hand, leads to a uniform distribution of the spanning
cluster. To summarize, both heterogeneity variance and geometric

connectivity contribute to the effects of preferential flow channel-
ing which can occur under different boundary conditions, i.e., glo-
bal flow field parallel or perpendicular to the angle of stratification.

Fig. 8. Geometric connectivity in Model 1 at three directional percolation thresholds, when the global aquifer variance is 0.1. Kcx, Kcy, and Kcz are the directional critical path
conductivities along the x, y, and z axes, respectively. Note that the same directional percolation clusters will form at increasing lnK variances, except the pertinent directional
critical path conductivity will increase, its value scaled by the variance based on those of r2

f ¼ 0:1. This is because topology is not affected by variance scaling.

Table 1
Equivalent hydraulic conductivity (m/yr) computed with Eq. (2) for Model 1 (top panel), its principal components, and the equivalent conductivity computed with the Simple
Laplacian method. Also listed is the results of directly averaging the local conductivities: [KH, KG, KA]. Results pertaining to Model 2 are shown in the lower panel.

r2
f ¼ 0:1 r2

f ¼ 1:0 r2
f ¼ 7:0 r2

f ¼ 16:0

Model 1
K* [Eq. (2)] 40.968 0.019 �0.003 60.735 0.099 �0.037 514.114 �4.348 �0.284 5200.20 �59.500 �1.800

0.019 40.101 0.001 0.099 50.321 0.024 �4.348 185.380 1.868 �59.500 706.300 25.000
�0.003 0.001 38.153 �0.037 0.024 33.434 �0.284 1.868 34.075 �1.800 25.000 89.800

K* [principal components] 40.968 0 0 60.736 0 0 514.172 0 0 5201.00 0 0
0 40.101 0 0 50.320 0 0 185.345 0 0 706.500 0
0 0 38.153 0 0 33.434 0 0 34.052 0 0 88.800

K* [Simple Laplacian] 40.981 0 0 60.747 0 0 512.724 0 0 5183.03 0 0
0 40.147 0 0 50.432 0 0 185.896 0 0 713.983 0
0 0.000 38.434 0 0 34.295 0 0 36.176 0 0 96.440

Averages [KH,KG,KA] [37.260,39.160,41.160] [24.280, 39.160,63.370] [2.510,39.160,803.620] [0.196,39.160,23545.0]

Model 2
K* [Eq. (2)] 26.529 0.0017 0.0003 39.406 0.041 0.014 299.960 4.000 0.749 2025.70 14.200 6.100

0.0017 26.262 0.003 0.041 36.455 0.036 4.000 201.871 1.163 14.200 929.800 3.600
0.0003 0.003 24.526 0.014 0.036 19.804 0.749 1.163 10.229 6.100 3.600 7.800

K* [principal components] 26.529 0 0 39.406 0 0 300.125 0 0 2025.90 0 0
0 26.262 0 0 36.454 0 0 201.715 0 0 929.700
0 0 24.526 0 0 19.804 0 0 10.220 0 0 7.800

K* [Simple Laplacian] 26.5217 0 0 39.351 0 0 298.329 0 0 2015.59 0 0
0 26.244 0 0 36.361 0 0 200.853 0 0 926.130
0 0 24.558 0 0 19.831 0 0 10.154 0 0 7.719

Averages [KH,KG,KA] [24.139,25.366,26.681] [15.527,25.366,42.625] [0.807,25.366,1037.30] [0.013,25.366,89288.00]
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3.2. Upscaled conductivities

For each model, at increasing variance, the upscaled equivalent
conductivities (K*) computed with Eq. (2) is listed in Table 1. They
are full tensors for which the table also lists their principal compo-
nents. Results of a diagonal tensor computed by the Simple Lapla-
cian method (Wen and Gómez-Hernández, 1996) are presented
along with direct averages of local conductivities. For both models
and for all variances evaluated, the equivalent conductivities are
consistent with those of the Simple Laplacian method (i.e., compar-
ing the principal components of K* with the diagonal tensor com-
puted by the later method). For both models, most equivalent
conductivities are diagonally dominant, reflecting the near hori-
zontal stratigraphic dip. As variance increases, the off-diagonal
components become slightly more important, suggesting that the
equivalent conductivity principal axis has experienced minor rota-
tion when variance is very high (i.e., r2

f ¼ 16 ). This is likely due to
the enhanced local flow channeling effects, i.e., components of
cross flow that are not aligned with the global axis become impor-
tant at high variances. However, when deposits exhibit lateral
stratification and lnK variance is moderate (e.g., less than 7.0),
the traditional simulation approach (using diagonal tensors for
the grid cells) which assumes global simulation axes aligned with
the sub-grid-scale conductivity principal directions should suffice.

The shape of the tensor (i.e., the relative size of K11, K22, K33,
thus the global conductivity anisotropy ratios) is also changing
with variance (Fig. 9). For Model 1, K11/K33 and K22/K33 are, respec-

tively: 1.07 and 1.05 r2
f ¼ 0:1

� �
, 1.81 and 1.51 r2

f ¼ 1:0
� �

, 15.10

and 5.44 r2
f ¼ 7:0

� �
, 58.57 and 7.96 r2

f ¼ 16:0
� �

. For Model 2,

K11/K33 and K22/K33 are, respectively: 1.08 and 1.07, 1.99 and
1.84, 29.37 and 19.74, 259.73 and 119.19. Clearly, for both models,
higher variance results in higher anisotropy ratio of the global con-
ductivities. As variance increases, fluid flow becomes increasingly
channeled into the high-K connected facies, resulting in increas-
ingly significant lateral flow, while torturous flowpaths in the ver-
tical direction become subdued. In Model 1, the rise of K11/K33 with
variance is six times faster than K22/K33, most likely due to the exis-
tence of a high-K structure which is spanning the domain along the
x axis (Fig. 8). This structure acts to focus flow in the x direction,
thus enhancing K11 and K11/K33. In Model 2, the rise of K11/K33 with
variance is roughly two times faster than K22/K33. In the percola-
tion analysis, this model lacks an obvious preferential pathways
in either direction, i.e., the percolation clusters in x and y directions
are rather planar structures (not shown).

3.3. Comparison with analytical predictions

For each model, at increasing variance, the equivalent conductiv-
ity principal components were first compared to the Wiener’s
Bounds and the Cardwell and Parsons bounds (Fig. 10). While all
components fall within the Wiener’s Bounds, as expected, the lower
Cardwell and Parsons bound is often higher than one of the compo-
nents. When the variance is low (less than 1.0), both lateral compo-
nents (K11 and K22) are very close to KA. However, they significantly
deviate from KA as variance increases. This differs from the results of
an earlier study analyzing a two-dimensional stratigraphy (Zhang
et al., 2007). In that study, the maximum (lateral) principal compo-
nents of different hydrogeological units fall extremely close to the
arithmetic mean, for r2

f ranging from 0.31 to 1.85. This suggests
that, for deposit with higher variance r2

f > 1:0
� �

, flow connectivity
characteristics between two-dimensional and three-dimensional
systems are different. In this study, for both models, the lateral
equivalent conductivities (K11, K22) increase with variance, while
K33 fluctuates or decreases with variance. Overall, however, a
heuristic relationship between either bounds and the equivalent
conductivity principal components cannot be established.

The principal components are then compared to the analytical
predictions (Ababou, 1991, 1995; Desbarats, 1992; Gelhar, 1993;
Noetinger and Haas, 1996) (Fig. 11). Since theory by Gelhar
(1993) is strictly valid for low variances, its predictions were made
for models with r2

f ¼ 0:1 and 1.0 only. The high-variance version of
the theory was also tested against the upscaling results and was
found inaccurate and thus not presented. For both aquifer models,
we find: (1) when r2

f ¼ 0:1, all methods are almost equally accu-
rate; (2) when r2

f ¼ 1:0, all methods other than Gelhar (1993) are
accurate; (3) for all variances up to 16.0, the formulations proposed
by Desbarats (1992) (Eq. (12)) and Noetinger and Haas (1996) (Eq.
(13)) are consistently the most accurate. Note that results based on
Eq. (13) were not plotted since they vary from the predictions of Eq.
(12) by less than 1%. These two formulations are thus considered
identical for the range of conductivity varied; and (4) when
r2

f > 1:0, the formulations proposed by Ababou (1991, 1995) con-
sistently overestimate the lateral components and underestimate
the vertical component. Using the most accurate formulation,
anisotropy ratios of the equivalent conductivity from numerical
upscaling and theory predictions are also compared (Fig. 9). Results
are again consistent, though for Model 1 at higher variances, some
overestimation of K11/K33 was made by theory.

Fig. 9. Equivalent conductivity anisotropy ratios (K11/K33, K22/K33) against theory
predictions (Desbarats, 1992) under increasing lnK variance.
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The above finding, besides providing constraints on the range of
applicability of different analytical results, is significant since the
analytical expressions of Desbarats (1992) and Noetinger and Haas
(1996) were developed for multiGaussian media at small vari-
ances. Both formulations had been tested numerically and were
found accurate for multiGaussian models, at small to moderate
variances. Herein, their accuracy is also demonstrated on two
non-multiGaussian models exhibiting connectivities and with a
range of low-to-high variances. This result, however, is not consid-
ered unexpected. Desbarats and Srivastava (1991) had conducted a
similar study on a two-dimensional transmissivity field which also
exhibited a significant domain-spanning channel. In that study, the
authors concluded that ‘‘ensemble theoretical models based on
perturbation approaches can provide reasonable estimates of gen-
eral flow and transport properties of single field realizations under
moderate conditions of heterogeneity”. This statement may sum
up our own observations here. Moreover, formulations of Desba-
rats (1992) and Noetinger and Haas (1996) are based on power-
law averaging which proves to be a reliable tool here to predict
3D grid-block equivalent conductivity components, even when
sub-grid heterogeneities are non-multiGaussian and of high vari-
ance. However, this good match maybe due to multiple factors,
including the single realization approach in evaluating xj, the fact
that global lnK histograms of both models are unimodal, and the
large domain size compared to lnK correlation scales (i.e., the ergo-

dicity assumption). Clearly, grid blocks in large field simulation
models may or may not be able to satisfy these requirements.
Non-ergodic and multi-modal fields will be investigated in the fu-
ture. Further, the power-averaging exponents were identified in
this study using numerical simulations. Future work will investi-
gate a predictive method for such exponents based on, e.g., a mod-
ification of Ababou (1991), although higher-order correlation
parameters are likely needed to capture nonlinear connectivity in
three-dimensions.

3.4. Flow connectivity

Based on results of conductivity upscaling and percolation
analysis, three flow connectivity factors were computed for each
model, for increasing lnK variance and along each of the coordinate
axes (Table 2). For both models, CF1 (power-averaging exponent)
ranges from 0.5 to 0.9 in the x direction, 0.4 to 0.7 in the y direction,
and �0.7 to 0.1 in the z direction. The conductivity field of each
model is statistically anisotropic, thus the power-averaging expo-
nents significantly deviate from 1/3 which is predicted by theory
and verified by numerical experiments for 3D statistically isotropic
media (Desbarats, 1992).

Results also suggest that only certain connectivity factors in-
crease with variance. For both Model 1 and Model 2, these are:
CF2x, CF3x, CF2y, CF3y, CF1z, and CF3z. For the lateral flows

Fig. 10. Equivalent conductivity principal components against the Wiener’s Bounds and the Cardwell and Parsons (CP) Bounds under increasing lnK variance.
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(i.e., CF2x, CF3x, CF2y, and CF3y), this finding is consistent with the
results of Knudby and Carrera (2005). Both studies suggest increas-
ing flow channeling in the horizontal direction with increasing var-
iance, which is captured by CF2 and CF3. On the other hand, for
both models, CF1x decreases with variance while CF1y fluctuates
with variance. As variance increases, the interval of the local con-
ductivity values to be power-averaged increases. This results in a
power exponent that is nonlinear with respect to the equivalent

conductivity (note that both K11 and K22 increase with variance,
see Fig. 10). A similar finding was observed in Knudby and Carrera
(2005). Both studies suggest that unlike CF2 and CF3, CF1 may not
be a useful indicator of flow channeling in the lateral direction. For
example, in statistically isotropic media with infinite horizontal
extent, power-averaging exponent was found to depend on the
ratio of aquifer thickness and kz (Pozdniakov and Tsang, 1999).
To understand its behavior in anisotropic media, additional studies

Fig. 11. Equivalent conductivity principal components (empty circles) against theory predictions (solid symbols linked by lines). The first column lists K11, K22, and K33 against
increasing variance for Model 1. The second column pertains to Model 2.
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will be needed by varying the domain length scales against lnK
integral scales.

For the vertical flow, however, with increasing variance, CF1z of
both models indicates that the equivalent vertical conductivity ap-
proaches KG from KH (note that under mean uniform flow condi-
tions, KG is equivalent conductivity of a 2D horizontal aquifer of
uniform thickness with statistically isotropic correlation, KH is
equivalent conductivity for flow perpendicular to perfect stratifica-
tion). This implies increasing disorder in flow continuity along the
vertical direction with increasing variance. A similar trend exists
for CF2z in Model 2, but not for Model 1, while an opposite trend
is observed for CF3z. Clearly, the interpretation of vertical flow con-
tinuity with variance is not as straightforward as it is for lateral
flows (i.e., flow parallel to stratification). The relation between ver-
tical flow factors with variance appears process-dependent, and it
is likely affected by the specific heterogeneity pattern investigated.

To examine potential correlation among the lateral flow con-
nectivity factors, CF2 and CF3 are cross-plotted (Fig. 12). Results
suggest that: (1) CF3 of each model increases with CF2, consistent
with the findings of Knudby and Carrera (2005). Both studies sug-
gest that CF2 and CF3 may be interchangeable in terms of describ-
ing lateral flow channeling effects: higher value of either factor
corresponds to more significant channeling. Since CF2 is based on
flow simulation and upscaling while CF3 based on topological anal-
ysis, a useful avenue for future research is to predict the former
(thus equivalent conductivity) based on topological parameters,
as was done by Samouelian et al. (2007), (2) for Model 1, CF3 along

the x direction (filled circles) is higher than CF3 along the y direc-
tion (filled boxes). This can be explained by the existence of a span-
ning cluster along the x-axis (at the same Kcx, this cluster is absent
in the y direction). For Model 2, this difference is smaller, as the lat-
eral connectivity in terms of directional percolation is similar in
both directions, and (3) since both CF2 and CF3 are dimensionless,
they can be used to compare between heterogeneities. CF3x of
Model 1 (filled circles) is always greater than CF3x of Model 2
(empty circles), while CF3y of Model 1 (filled boxes) is nearly iden-
tical with CF3y of Model 2 (empty boxes). The former can again be
explained by the x-direction spanning cluster in Model 1. Both
models do not contain significant connectivity in the y direction,
thus the same CF3y. This interpretation is confirmed by cross-plot-
ting the lateral CF between Model 1 and Model 2 (Fig. 13). This fig-
ure suggests that both CF2 and CF3 can be used to distinguish the
larger connectivity along the x direction in Model 1 (filled and
empty circles, all falling beneath the y = x line). The similar trajec-
tory for the y-direction CF (filled and empty boxes) indicates sim-
ilar connectivity pattern in the y direction in the two models. To
summarize, directional differences in lateral flow connectivity
can be identified by either CF2 or CF3 by comparing the values
computed for each model along each of the principal directions.

4. Summary and conclusions

In this study, based on a three-dimensional experimental
stratigraphy, two synthetic aquifer models were evaluated for

Fig. 12. CF2 versus CF3 cross plot for lateral flows (i.e., x and y directions). Results
for both Model 1 and Model 2 are shown. CF2 is the equivalent conductivity
normalized by KG, CF3 is the critical path conductivity normalized by the same KG.
CF3 is found to be always higher than CF2, above the 1:1 line.

Fig. 13. CF for the lateral flows (i.e., x and y directions) for Model 1 versus Model 2.

Table 2
Flow connectivity factors (CF) for Model 1 at increasing lnK variances (top panel). Results pertaining to Model 2 are shown in the lower panel. For CF that increases with variance,
the values are highlighted with italic bold.

Var[lnK] CFlx CF2x CF3x CFly CF2y CF3y CFlz CF2z CF3z

Model 1
0.1 0.907 1.046 1.918 0.477 1.024 1.411 �0.521 0.974 1.802
1.0 0.906 1.551 7.840 0.507 1.285 2.970 �0.317 0.854 6.434
7.0 0.828 13.130 232.397 0.469 4.733 17.820 �0.040 0.870 137.723

16.0 0.717 132.814 3778.341 0.390 18.041 77.838 0.103 2.268 1714.282

Model 2
0.1 0.889 1.046 1.519 0.689 1.035 1.519 �0.678 0.967 1.364
1.0 0.853 1.554 3.752 0.707 1.437 3.752 �0.501 0.781 2.670
7.0 0.666 11.833 33.071 0.562 7.953 33.071 �0.264 0.403 13.447

16.0 0.515 79.880 198.236 0.425 36.657 198.236 �0.150 0.308 50.853

318 Y. Zhang et al. / Journal of Hydrology 388 (2010) 304–320



Author's personal copy

both upscaled conductivity and fluid flow connectivity. Both aqui-
fer models exhibit statistical anisotropy which is characteristic of
fluvial sedimentary systems. Model 1 in particular contains a
high-K structure with significant lateral connectivity which can-
not be captured by univariate and bivariate statistics. A 3D
numerical upscaling method was used to compute a full-tensor
equivalent conductivity for each model. Increasing lnK variances
were evaluated: r2

f ¼ 0:1;1:0;7:0;16:0, reflecting the variability
ranges of natural deposits. The numerical upscaling results were
verified by comparing against those of an established method
which gives the diagonal tensor components. The equivalent
conductivities were compared to direct averages of local conduc-
tivities, and, to an effective conductivity predicted by several
analytical methods. For each model, three fluid flow connectivity
factors (CF) were further defined and computed. The impact of
variance on both upscaled conductivity and fluid flow connectiv-
ity was evaluated.

Based on the above analysis, several conclusions were reached:
(1) the 3D upscaling method yielded reliable results of full-tensor
equivalent conductivity, (2) for both aquifer models, when the lnK
variances are low (less than 1.0), all analytical methods evaluated
are nearly equally accurate; however, when variance is higher, the
analytical methods of Desbarats (1992) and Noetinger and Haas
(1996) were found to provide robust estimates of equivalent con-
ductivities, despite the possible violation of the multiGaussian
assumption, (3) fluid flow characteristics in each model were sig-
nificantly impacted by increasing variance, which can result in
flow channeling in the lateral direction and increasing global
anisotropy ratios of the equivalent conductivity. Among the lateral
flow connectivity factors analyzed, both the equivalent conductiv-
ity, normalized by the geometric mean of local conductivities
(CF2), and the critical path conductivities, normalized by the same
geometric mean (CF3), were found to increase with variance. Thus,
a positive correlation exists between these two connectivity fac-
tors, and (4) geometric connectivity, as analyzed by a percolation
cluster analysis, indicates the importance of such features in focus-
ing flow, thus both high variance and geometric connectivity con-
tribute to preferential flow channeling.

The above insights are applicable to two specific heterogeneity
patterns, scaled at increasing variances. Whether the insights can
be extended to other patterns (e.g., significant curvilinear features,
bimodal or multimodal lnK histograms, non-ergodic condition)
will be determined in future studies. It is important to point out
that the numerical upscaling method of this study is applicable
to computing equivalent conductivities for irregularly shaped geo-
logical deposits. For example, Eq. (2) can be assembled for a group
of cells that belong to a particular facies. This was demonstrated
for a hierarchical two-dimensional deposit in Zhang et al. (2006),
where K* was upscaled for various facies- and formation-scale
hydrogeological units. Future work will upscale the sub-aquifer
zones in the 3D models, based on either geological interpretations
(e.g., different facies: channel, floodplain, sheetflow), percolation
characteristics (e.g., spanning clusters at the critical path conduc-
tivities), or simulator requirements (e.g., creating layer-cake model
layers irrespective of facies or cluster definitions). The impact of
different upscaling strategies on the accuracies of both the equiva-
lent conductivities and the homogenized models using them will
help answer: what is an optimal method and associated level of
heterogeneity homogenization to simulate fluid flow in 3D hetero-
geneous systems? A related question will address the problem of
upscaling for solute transport at multiple scales, following Zhang
et al. (2007). In that study, macrodispersivity was analyzed for dis-
tinct facies units for a two-dimensional dataset. The extension of
the method to three-dimensions to evaluate conductivity
models with or without significant geometric connectivity will be
of interest.
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