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Abstract Anew computationally efficient directmethod is applied to estimating unsaturated
hydraulic properties during steady-state infiltration and evaporation at soil surface. For dif-
ferent soil types with homogeneous and layered heterogeneity, soil hydraulic parameters and
unsaturated conductivities are estimated. Unlike the traditional indirect inversion method,
the direct method does not require forward simulations to assess the measurement-to-model
fit; thus, the knowledge of model boundary conditions (BC) is not required. Instead, the
method employs a set of local approximate solutions to impose continuity of pressure head
and soil water fluxes throughout the inversion domain, while measurements act to condition
these solutions. Given sufficient measurements, it yields a well-posed system of nonlinear
equations that can be solved with optimization in a single step and is thus computationally
efficient. For both Gardner’s and van Genuchten’s soil water models, unsaturated hydraulic
conductivities and pressure heads (including the unknown BC) can be accurately recovered.
When increasing measurement errors are imposed, inversion becomes less accurate, but the
solution is stable, i.e., estimation errors remain bounded. Moreover, when the unsaturated
conductivity model is known, inversion can recover its parameters; if it is unknown, inversion
can recover a nonparametric, piecewise continuous function to which soil parameters can
be obtained via fitting. Overall, inversion accuracy of the direct method is influenced by (1)
measurement density and errors; (2) rate of infiltration or evaporation; (3) variation of the
unsaturated conductivity; (4) flow direction; (5) the number of soil layers.
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1 Introduction

Simulation of flow through unsaturated soils requires accurate knowledge of the soil hydraulic
properties, namely the water retention function and the unsaturated hydraulic conductivity. A
variety of laboratory and field methods exist to estimate these highly nonlinear soil hydraulic
functions. A review with a discussion of the relative advantages and limitations of the dif-
ferent methods can be found in Dirksen (2000), Durner and Lipsius (2005), among others.
Due to sampling “support effect,” spatial correlation of soil hydraulic parameters, and non-
representativeness of the laboratory flow conditions, soil properties obtained from laboratory
experiments using small cores are often inadequate for simulating unsaturated flow dynamics
at field or larger scales (Mertens et al. 2005). Though field-based testing methods have also
been developed to estimate these properties under in situ conditions (e.g., Zhang et al. 2003),
such methods tend to be range restrictive, time-consuming, and expensive to implement.
Another approach is to use inverse modeling to estimate the coupled soil water retention
and unsaturated hydraulic conductivity functions (Vrugt et al. 2008; Dai et al. 2008). In
general, inverse methods are developed using parameter estimation techniques, often under
controlled conditions by imposing well-defined soil water pressure boundary conditions,
thereby inducing outflow (e.g., Nasta et al. 2011).

One of the most popular applications of the inverse solution techniques to estimate
hydraulic properties of unsaturated soils in the laboratory is the one-dimensional (1D) column
test. Three types of methodologies exist (To-Viet et al. 2013): one-step outflow experiments
(instantaneous application of one large pressure step), multi-step outflow experiments (appli-
cation of several, sequentially smaller pressure steps), and continuous flow experiments
(application of a continuous change in pressure gradient). These experiments are performed
under steady-state or transient flow conditions which can also include wetting or drying
cycles. The hydraulic properties of the unsaturated soils are determined using numerical
methods based on the measured discharge water velocity as well as the evolution of soil
suction and water content during the test. With these methods, the unknown parameters of
the hydraulic properties are estimated by minimizing the difference between the predicted
and observed measurements of flow rate, water content, and soil suction. The application of
inversion to one-step outflowexperimentswas proposed early to estimate hydraulic properties
using cumulative outflow data (Kool et al. 1985a, b; Kool and Parker 1988).

In estimating soil hydraulic parameters, inverse methods are typically based upon the
minimization of a suitable objective function, which expresses the discrepancy between
the observed values and the predicted system responses using a model. Estimation for
the hydraulic property functions and parameters is usually accomplished with an indirect
approach of parameter optimization. For example, soil hydraulic properties are commonly
assumed to be described by an analytical model with unknown parameter values. The system
response is represented by a numerical or analytical solution of the unsaturated flow equation
in conjunction with the parameterized hydraulic functions and suitable initial and boundary
conditions (BC), which are assumed fully known. Using parameter search algorithms (e.g.,
Metropolis et al. 1953; Hastings 1970; Vrugt et al. 2008; Ines and Mohanty 2008; Shin et al.
2013; Carrera and Neuman 1986; Sun 1994; Dai and Samper 2004; Ye et al. 2005; Yang
et al. 2014), initial estimates of the hydraulic parameters are iteratively improved by mini-
mizing the objective function until a desired degree of precision or convergence is obtained.
With the indirect approach, both parameter spatial distribution and their correlations can be
assessed. However, because soils consist of complexmaterials and flow boundary conditions,
which, for the simulation of the flow process, are often unknown or uncertain in the field,
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indirect inversion of the hydraulic properties often leads to nonunique solutions (Levasseur
et al. 2009). To overcome this problem in estimating the hydraulic property functions, inver-
sion using a combination of time-dependent outflow, water content, and capillary pressure
measurements has been proposed (Durner et al. 1997). Numerous methods have also been
developed to include additional components, such as water content (Van Dam et al. 1992;
Bohne et al. 1993; Simunek et al. 1998) or capillary pressures (Toorman et al. 1992; Eching
and Hopmans 1993), into the objective function formulation for optimization (Crescimanno
and Iovino 1995).

In this study, we develop a direct and efficient inversion approach for estimating soil
hydraulic properties under steady-state infiltration or evaporation where field BC are
unknown. Such a limitation precludes the development of a forward numerical/analytical
model with which measurement-to-model fit can be evaluated via objective functions. For
saturated flow problems, various earlier approaches of direct methods were developed. For
example, in the comparison model method (Ponzini and Crosta 1988; Pasquier and Marcotte
2006), the steady-state groundwater flow equation is discretized using the finite-difference
method, while to solve the inversion their approach requires the knowledge of aquifer bound-
ary conditions. The differential system method (Vassena et al. 2007) is also a type of direct
approach that is based on the method of fundamental solutions (MFS) (Fairweather and
Karageorghis 1998). Boundary conditions are again required. In Brouwer et al. 2008, the
direct method must be combined with two separate forward simulations requiring boundary
conditions. Moreover, as discussed in the review by Zhou et al. (2014), most of the existing
direct methods suffer from the need to require exhaustive measurements, which are often
obtained from interpolating point measurements. Clearly errors can be introduced into inver-
sion depending on the interpolating algorithms used. In the method we are introducing here,
boundary conditions are not required, nor do we use any interpolation on measurements.
Instead, any boundary conditions are treated as conditioning measurements. Unlike the ear-
lier direct methods, our new approach can simultaneously estimate soil hydraulic properties
and state variables (pressure head profile and fluxes) fromwhich the field BC can be inferred.
Thus, the direct method obviates one source of nonuniqueness that can arise from making
BC assumptions. Also, indirect inversion, when combined with optimization, can be compu-
tationally intensive, as the forward model needs to be run many times. In comparison, only
one inversion system of equation is assembled and solved with the direct method; thus, it is
computationally efficient. Moreover, indirect approaches require parameterizing a specific
soil hydraulic property model a priori in order to run the forward model during optimization.
However, incorrect assumption of this model may contribute to the “structure errors” during
inversion. For example, actual soil properties at a field site could be well approximated by
the van Genuchten’s model (Van Genuchten 1980), but modeler may choose to optimize
parameters of the Gardner’s model (Gardner 1958). The new direct method can infer the soil
hydraulic model without making a priori assumption.

The direct method has been successfully implemented in inverting a variety of saturated
flow problems (Irsa and Zhang 2012; Jiao and Zhang 2014a, b, 2015a, b, 2016; Zhang et al.
2014). This study extends this technique to inverting one-dimensional (1D) unsaturated flow
under unknown BC for a variety of soil types under infiltration or evaporation. The direct
method, similar to other inversion approaches, requires appropriate measurements of suffi-
cient quantity and quality, while its results are influenced by parameterization. Because it
does not solve the forward model, an “inversion grid” can employ flexible discretization.
A variety of parameterizations, ranging from zoned to highly parameterized, can be used,
which influence data requirement as well as inversion quality. The direct method can also be
integrated with geostatistics to quantify uncertainty in the estimated parameters and BC (Jiao
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and Zhang 2015b). Such an analysis, however, is not the focus here. Finally, the proposed
inversion of unsaturated flow uses pressure heads and soil water fluxes for homogeneous or
layered media. As long as appropriate conditions are met yielding these measurements, both
laboratory and field data can be analyzed.

In the following sections, a forward model, which is developed to test the proposed inver-
sion approach, is introduced first. The principle of direct inversion and its solution technique
are then presented. By inverting infiltration and evaporation in soils with homogeneous or lay-
ered configuration, accuracy and stability of the direct method are demonstrated. Assuming
that soil hydraulic properties can be descried by either the Gardner’s or the van Genuchten’s
model, measurement density, measurement error, domain length scale, and BC are systemati-
cally varied in inversion. The effect of each variation on the quality of inversion is examined.
Results and insights of this study are presented and discussed, along with future research
directions.

2 Theory

2.1 The Forward Problem

Under one-dimensional steady-state infiltration or evaporation in the vadose zone, the water
conservation equation without source/sink terms can be expressed as:

∂

∂z
(q) = 0 on � (1)

and Darcy’s Law as:

q = −K (ψ)

(
∂ψ

∂z
+ 1

)
on � (2)

where q is vertical Darcy flux or infiltration rate (positive upward and negative downward)
[L/T ], and z is vertical distance (positive upward) [L], with z = 0 set at the water table.
� is the forward model domain, which is identical with the inversion domain, K (ψ) is
the unsaturated hydraulic conductivity [L/T ], and ψ is the pressure head (negative in the
unsaturated zone) [L].

In this work, the unsaturated hydraulic conductivity is assumed to follow either the Gard-
ner’s model (Gardner 1958) or the van Genuchten’s model (Van Genuchten 1980), which
can be expressed below as:

K (ψ) = Ks exp(αψ) (3)

or,

K (ψ) = Ks

{
1 − (βψ)n−1 [

1 + (βψ)n
]−m

}2
[
1 + (βψ)n

]m/2 , m = 1 − 1

n
(4)

where Ks is the saturated hydraulic conductivity [L/T], α (of Gardner’s, [1/L]) is the rate
of reduction in unsaturated hydraulic conductivity with decreasing pressure head, β [1/L],
m [−], and n [−] (of van Genuchten’s) are the soil–water retention parameters. Ks, β,m,

and n can vary in the vertical direction, representing potentially layered soil formations for
real-world applications.
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Equations (1) and (2) can be solved using finite-differencemethod (FDM) forwhichmodel
boundary conditions (BC) are specified as:

ψ = g(z) on � (5)

where � is a Dirichlet-type domain boundary and g(z) describes a set of prescribed pressure
heads on �. Note that although Dirichlet-type BC are adopted here, other BC types can also
be used in the forward model. To test the quality of inversion, the forward model is solved
for different soil types under infiltration or evaporation, yielding a set of synthetic problems
or reference models. The forward model is solved with the finite-difference method with a
finely discretized domain; thus, flow physics is captured in detail from which observations
of the state variables are sampled. These observations, error-free or imposed with uniform
measurement errors, will be provided to inversion for both parameter and state variable
estimation.

2.2 The Inverse Problem

In the direct inversion method, three sets of constraints are enforced: (1) Via the development
of approximate solutions (i.e., fundamental solutions for inversion), global continuity of
the pressure head and Darcy flux is imposed throughout the solution domain �; (2) local
conditioning of the fundamental solutions to observed pressure heads and fluxes; (3) an
equation constraint imposing flow physics at selected spatial positions in �. The continuity
constraints can be written as:

∫ Rψ(x)δ
(
x − p j

)
dx = 0, j = 1, . . . , Y (6)

∫ Rq(x)δ
(
x − p j

)
dx = 0, j = 1, . . . , Y (7)

where Rψ(x) and Rq(x) are residuals of the approximating functions of pressure head and
Darcy flux at the j th cell interface in the inversion grid, respectively. Y is the total number
of cell interfaces. δ

(
x − p j

)
is a weighting function which samples the residuals at a set of

collocation points p j on � j . For 1D inversion, only one collocation point is needed on each
cell interface. Both residual equations can be expressed as:

Rψ(x) = ψ i (x) − ψk(x) (8)

Rq(x) = qi (x) − qk(x) (9)

where ψ and q are a set of proposed fundamental solutions for inversion (next), and i and k
denote cells in the inversion grid adjacent to each interface � j .

The fundamental solutions are conditioned at a set of measurement locations:

δ (pa)
(
ψ (pa) − h0a

) = 0 a = 1, . . . , A (10)

δ (pb)
(
qz (pb) − qob

) = 0 b = 1, . . . , B (11)

where pa and pb are measurement points, hoa , q
o
b are observed pressure head and flux,

respectively, A and B are the total number ofmeasured pressure heads andfluxes, respectively,
δ (pa) and δ (pb) are theweighting functions assigned to the equations to reflect themagnitude
of measurement errors. δ (pa) and δ (pb) are generally proportional to the inverse of the error
variance (Hill and Tiedeman 2007). In this study, inversion under both error-free and uniform
measurement errors is investigated to evaluate the accuracy and instability of the outcomes
with increasing data errors.
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To enforce the flow constraints, a third group of equations are developed:

δ (pc) Rc = 0 (12)

where Rc =
[

∂
∂z

(
K (ψ)

(
∂ψ
∂z + 1

))]∣∣∣
c
c = 1, . . . , Y + A + B, where pc include both the

collocation points and the measurement locations, and Rc is residual of the flow equation
[Eq. (1)] at pc. Equations (6) and (7) are written at all Y interfaces in the inversion grid.
Equations (10) and (11) are written at the locations where measurements are available. Equa-
tion (12) imposes the flow constraints at both the collocation points and the measurement
locations. Note that earlier inversion for saturated flow had used local analytical solutions
as the fundamental solutions, for which Eq. (12) becomes trivial. However, for soil water
problems where the physics is strongly nonlinear, local approximate solutions are used for
which Eq. (12) is needed to ensure the correct flow physics.

2.3 Fundamental Solutions

For an individual inversion grid cell (�i), Eqs. (1) and (2) can be written as:

∂

∂z
(q) = 0 on �i (13)

q = −K (ψ)

(
∂ψ

∂z
+ 1

)
on �i (14)

where K (ψ) can be expressed by either Eqs. (3) or (4). However, �i is assumed to have
homogeneous soil properties for which Ks, α (of Gardner’s model), β, m, and n (of van
Genuchten’s model) are constant soil hydraulic parameters. To define heterogeneity, these
parameters can vary among the inversion grid cells which together constitute the solution
domain.

For the Gardner’s model, local approximate solutions of the pressure head and unsaturated
hydraulic conductivity are proposed as:

ψ (z) = a1 + a2z + a3z
2 on �i (15)

K (z) = exp (ks) exp
(
α

(
a1 + a2z + a3z

2)) on �i (16)

where a1, a2, a3, Ks = exp (ks), and α are the unknown coefficients which will be estimated
in inversion. Note that according to the Gardner’s model, K (ψ) = exp (ks) exp(αψ) and
becauseψ is proposed as a function of z under steady-state flow, the unsaturated conductivity
becomes a function of Ks and z. Equation (16) thus serves to approximate the behavior of K
with respect to z and Ks. Using Darcy’s law, the Darcy flux can then be approximated as:

q (z) = −exp (ks) exp
(
α

(
a1 + a2z + a3z

2)) (a2 + 2a3z + 1) on �i (17)

Together, Eqs. (15), (16), and (17) constitute a set of local approximation solutions (LAS)
of inversion, and Eq. (12) must be imposed to ensure flow physics in the solution domain.
Given the above expressions, Eq. (12) can then be rewritten as:

δ (pc) α (a2 + 2a3z) exp (ks) exp
(
α

(
a1 + a2z + a3z

2)) (a2 + 2a3z + 1)

+ exp (ks) exp
(
α

(
a1 + a2z + a3z

2)) (2a3) = 0 on �i (18)

Equations (13) and (14) are discretized over the inversion domain, and the above coefficients
become cellwise constants: xT = [al1, al2, al3, krs , αr ], l = 1, . . ., M (number of inversion grid
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cells), r = 1, . . . , R (number of soil layers), where x is the inverse solution, and superscript
T denotes transpose. Layer location is assumed known in inversion.

For the van Genuchten’s model, the unsaturated conductivity is more strongly nonlinear
compared to the Gardner’s model, and the coefficients (ks , β, m, n) are more difficult to
obtain.Adifferent set of fundamental solutions of the pressure head and unsaturated hydraulic
conductivity is proposed:

ψ (z) = b1 + b2z + b3z
2 on �i (19)

K (z) = exp
(
b4 + b5z + b6z

2) on �i (20)

where b1, b2, b3, b4, b5, and b6 are the unknown coefficients which will be estimated in
inversion. Note that the contribution of saturated conductivity to K (ψ) is included in the
coefficients (b4 − b6), which differs from the formulation of Eq. (16). Using Darcy’s law,
the Darcy flux can then be approximated as:

qz (z) = −exp
(
b4 + b5z + b6z

2) (b2 + 2b3z + 1) on �i (21)

Given Eqs. (19), (20), and (21), all of them LAS, Eq. (12) can be rewritten as:

δ (pc) (b5 + 2b6z ) (b2 + 2b3z + 1) exp
(
b4 + b5z + b6z

2)
+exp

(
b4 + b5z + b6z

2) (2b3) = 0 on �i (22)

For the van Genuchten’s model, Eqs. (13) and (14) are also discretized over the inversion
domain and the new set of coefficients are cellwise constants to create a new inverse solution:
xT = [bl1, bl2, bl3, bl4, bl5, bl6], l = 1, . . ., M (number of grid cells).

2.4 Solution Techniques

By substituting in the LAS (one set of solutions proposed for each unsaturated conductivity
model), Eqs. (6)–(12) are assembled to form a system of equations which can be under-
determined, exact, or over-determined:

fi (x) = 0, i = 1, . . . , w (23)

where x is the inverse solution, f1(x), f2(x) , …, fw(x) are the equations assembled accord-
ing to Eqs. (6)–(12), and w is the number of equations. The coefficients of the fundamental
solutions are the unknowns, along with the parameters to be estimated. Due to nonlinearity in
the fundamental solutions, Eq. (23) consists of a system of nonlinear equations and is solved
with the least-squares method. To minimize the norm, two gradient-based local optimization
algorithms are used, i.e., Levenberg–Marquardt and trust-region-reflective (Levenberg 1944;
Marquardt 1963; Yuan 2000). Both algorithms have been implemented in public-domain
optimization solvers. In this work, those implemented in the MATLAB nonlinear solver,
lsqnonlin, are used (The Mathworks 2012). Moreover, while constraints can be placed on
x (e.g., enforcing positive values for Ks), the optimization algorithms require that an ini-
tial guess of x be provided. The initial guess is assigned a random value that varies within
the range of the observed pressure heads. Moreover, because under-determined problems
generally yield poor solutions in inverting saturated flow problems (Zhang 2014), the above
equation system is over-determined for the problems of this study.

The direct inversion method, by assembling the continuity equations, the data equations,
and the constraint equations, yields a system of nonlinear equations whose solution contains
both the unknown parameters and the unknown coefficients of the fundamental solutions.
This is entirely different from the formulation of the traditional indirect techniques. However,
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similar to the indirect techniques, solution of the direct methodmay suffer ill-posedness when
insufficient and/or noisy data are used to condition the inversion. Thus, solutionmay not exist,
solution may not be unique, and solution may be unstable. With sufficient and accurate data
which yield exact or over-determined equations, the inverse problem becomes well-posed,
leading to fast, stable, and accurate solutions. For example, when inversion is well-posed,
experiments with different initial guesses of x generally yield identical results. Moreover,
though the inverted unsaturated conductivity is reconstructed as K (z), it can be re-estimated
as K (ψ) because ψ(z) is also estimated. When the van Genuchten’s model is used, the
inverted K (z) is first converted to K (ψ), on which Eq. (4) can be fitted to obtain the van
Genuchten parameters, i.e., Ks, β, m, n.

After the inverse solution is found, i.e., both the estimated parameters [or K (ψ)] and
the recovered pressure head profile ψ(z) throughout the inversion domain, flow boundary
conditions can be obtained by sampling the pressure heads at the boundary locations. Sim-
ilarly, using Eq. (17) (Gardner’s) or Eq. (21) (van Genuchten’s), the Darcy flux field can be
reconstructed piecewise for each inversion grid cell. Here, the inverted boundary conditions
are included as part of the recovered ψ(z) and there is no need to deal with them separately.
For all the problems presented, measurements (pressure heads or fluxes) are sampled internal
to the solution domain, although there are no limitations to the measurement locations, i.e.,
measurements can certainly be sampled at the boundaries and provided to inversion as a form
of data constraint. Under the Dupuit assumption, Jiao and Zhang (2014a) inverted spatially
variable recharge rates for unconfined aquifers, which in effect provides the vertical flux
(both magnitude and direction) at the water table for unsaturated flow inversion.

3 Results

To verify the direct method for inverting unsaturated flow, a set of synthetic forward models
are created. Parameters, geometry, and boundary conditions of these models are shown in
Fig. 1. Each forward model solves Eq. (1) with the finite-difference method subject to a set
of appropriately selected BC. These forward models (FDMs) are used to generate a set of
synthetic observation data for inversion. For the Gardner’s model, 13 FDMs are created. The
relevant information is listed in Table 1. For the van Genuchten’s model, 7 FDMs are created
(see detail below). After simulating the FDM and sampling the appropriate measurements,
the inverse method is verified by comparing the estimated parameters, the recovered K (ψ),
and the estimated pressure head profileψ(z) to those of the forwardmodel. For selected cases
(both for the Gardner’s and for the van Genuchten’s models), stability analysis is conducted
to evaluate the accuracy of inversion under increasing pressure head measurement errors. In
this analysis, pressure heads directly sampled from the FDM are considered error-free. To
impose measurement errors, ψm = ψ FDM ± 	ψ , where ψm is measured pressure head
provided to inversion, ψ FDM is pressure head sampled from the FDM, and 	ψ is a uniform
measurement error that is globally unbiased (sum of 	ψ over all measurements is 0.0). The
highest error imposed is ±10% of the total pressure head variation in the forward model.
Inversion results for each model are presented in the following section.

3.1 Gardner’s Model

Thirteen forward problems, labeled Cases 1–13, are inverted. Cases 1–6 and 11–13 solve
the infiltration problem, while the remaining cases solve flow under evaporation conditions.
Table 1 summarizes the observations provided to inversion and the estimated parameters,
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Fig. 1 Configuration of the
unsaturated flow problem
(L = L1 + L2). Two soil layers
are shown: Layer 1 has a
thickness of L1; layer 2 has a
thickness of L2

along with domain configuration, true parameters, and BC of the FDM. In simulating the
forward models, total domain length (L1 + L2), Ks, α, and BC are varied systematically
to create different flow regimes for inversion. For selected cases, both single- and two-
layered problems are simulated. When two layers are modeled, thicknesses of individual
layers are also variable. From the FDMs, observations were sampled at regular intervals,
while measurement density can vary. The inversion grid has the same domain length as the
forward model, although its discretization is much coarser (10 cells). Each inversion grid is
discretized uniformly and is the same for all cases.

For Cases 1–10, stability analysis is carried out under increasing measurement errors.
Overall, results of this sensitivity analysis suggest that both the variation of K (ψ) and the
magnitude of Darcy flux (i.e., infiltration and evaporation rate) control inversion accuracy.
Observation sampling density (always sufficiently high to ensure a well-posed inversion)
serves to stabilize inversion when measurement errors become large. In the following, the
various cases are discussed with more detail.

For Cases 1–4 (infiltration modeling), L1 + L2 = 50 cm (Table 1). Cases 1 and 2 both
have one homogeneous layer. For the range of ψ defined by the forward model, K (ψ) of
Case 2 varies by 2 orders of magnitude and but varies less than 1 order for Case 1. Given the
same observations (both quantity and locations), inverted parameters of the two cases exhibit
nearly identical accuracy when the measurement errors are low (error-free or ±1%). When
errors are greater (±10% error), inverted parameters of Case 1 are more accurate compared
to those of Case 2. Note that due to the same BC assigned to the forward model, the same
relative error (e.g., ±10%) yields the same error magnitude for the two cases. As shown in
Fig. 2 (a) Case 1 and (c) Case 2, even if the given set of the measured pressure heads are
physically unrealistic (i.e., the rough and saw-tooth shape of the head measurement errors
with discontinuities), the inversion is able to handle such challenging problems with stable
inverted K(ψ) functions for the full range of ψ . Therefore, for the general applications of
our approach, we can invert reasonable K(ψ) for any observed pressure heads. Moreover, the
inverted K (ψ) and ψ(z) are compared to those of the forward FDM (Fig. 2a–d). For Case
1, the inverted ψ(z) is accurate until error becomes large (at which point ψ(z) exhibits large
fluctuations around the true ψ(z) profile), while the inverted K (ψ) is always quite accurate.
For Case 2, while K (ψ) exhibits a similar trend as that of Case 1 under increasing errors,
the inverted K (ψ) becomes significantly underestimated near the water table when error
= ±10%. The above results suggest that when observation errors are significant, K (ψ)
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Fig. 2 Gardner’s model. Inversion outcomes of ψ(z) and K (ψ) compared to those of the forward model
under infiltration. Case 1 (a, b), Case 2 (c, d)

variation can exert a strong control on inversion accuracy. When K (ψ) is more variable,
the forward model is more nonlinear, which poses a greater challenge for the stability of
inversion. However, when measurement errors are small, K (ψ) variation has no discernable
impact on the quality of inversion.

Keeping the same sampling density and domain length as Cases 1 and 2, Cases 3 and 4
inverted a two-layer model using the parameters of Cases 1 and 2. In Case 3, parameters
of Case 1 with a lower K (ψ) variation are assigned to the bottom layer, while parameters
of Case 2 with a larger K (ψ) variation are assigned to the top layer (Fig. 1). The opposite
configuration is used for Case 4. Overall, inversion results—the estimated Ks, α, K (ψ),ψ(z)
(Table 1; Fig. 3 a–d)—are accurate for each layer when measurement errors are small, but
become increasingly inaccurate when errors are large. This is similar to what is observed
above for one-layer inversion. Moreover, when error is large (±10%), inversion of Case 3
appearsmore accurate than that of Case 4, suggesting that heterogeneity configuration (where
the layer with a higher K (ψ) variation lies) can influence the stability of inversion. Case 3,
where the bottom layer has a lower K (ψ) variation, leads to a more stable inversion under
increasing measurement errors.

For Cases 5 and 6, the same parameters and sampling density of Case 4 are used, while
domain length and BC are modified (Fig. 4a–d). In Case 5, the layer thicknesses are: 40 cm
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Fig. 3 Gardner’s model. Inversion outcomes of ψ(z) and K (ψ) compared to those of the forward model
under infiltration. Case 3 (a, b), Case 4 (c, d)

(top) and 60 cm (bottom), for a total length of 100 cm. In Case 6, the thicknesses are: 160 cm
(top) and 40 cm (bottom), for a total length of 200 cm. At the land surface, the pressure
head (ψL) is more negative (−80 cm) in Case 6 compared to that of Case 5 (−50 cm).
Because the same layer parameters are assigned, the more negative ψL of Case 6 results
in a smaller vertical infiltration rate (qz) compared to that of Case 5. Overall, inversion
accuracy is similar to those observed above for Cases 3 and 4, with better accuracy achieved
at smaller measurement errors. Given the same error magnitude, inversion outcomes of Case
5 (L1 + L2 = 100 cm) and Case 6 (L1 + L2 = 200 cm) do not differ greatly from that of
Case 4 (L1 + L2 = 50 cm), suggesting that domain length does not significantly impact the
accuracy and stability of inversion. However, when error is at its highest (±5%), the inverted
parameters of Case 6 are less accurate compared to those of Case 5. This is likely due to the
smaller infiltration rate in Case 6.

For Cases 7 and 8, the same problems of Cases 1 and 2 are solved except now ψL is
sufficiently more negative to induce evaporation (Fig. 5a–d). Initially, the same sampling
density as that of Cases 1 and 2 is used. However, inversion results are significantly more
inaccurate compared to those of Cases 1 and 2. Additional, regularly spaced measurements
are then sampled from the forward model until both Cases 7 and 8 reach a similar level of
accuracy as Cases 1 and 2. Overall, evaporation is more challenging to invert: To achieve the
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Fig. 4 Gardner’s model. Inversion outcomes of ψ(z) and K (ψ) compared to those of the forward model
under infiltration. Case 5 (a, b), Case 6 (c, d)

same accuracy as the infiltration problems, a greater measurement density is needed. This is
because, for the same problem configuration, magnitudes of qz in the evaporation cases are
much smaller than those of infiltration.

For Cases 9 and 10, the same problems of Cases 3 and 4 are solved except now ψL is
sufficiently more negative to induce evaporation (Fig. 6a–d). Again, compared to Cases 3 and
4, a significantly higher sampling density is needed to achieve similar inversion accuracies.
When ±5% error is imposed on the measurements, Case 9’s inversion results are quite
inaccurate and are excluded. Interestingly, given the same measurement error, results of Case
9 are worse compared to those of Case 10. In the flow fields of Cases 3 and 10 (whose
inversions are more accurate compared to Cases 4 and 9, respectively), the layer with a
greater K (ψ) variation is first encountered during unsaturated flow.

To investigate the effect of qz on inversion accuracy, three additional problems are investi-
gated using error-free measurements. Case 11 has the same parameters and sampling density
as Case 1, but the domain length and BC are varied: L1+ L2 = 200 cm andψL = −100 cm.
The new length and BC give rise to a qz = −1.97 cm/day, which is 3 times smaller than
qz of Case 1 (−5.12 cm/day). The inverted parameters of Case 11 are shown in Table 1,
which are identical those of Case 1. The inverted K (ψ) and ψ(z) (not shown) are also close
to those of Case 1 as well as the forward model. Similarly, Cases 12 and 13 have the same
parameters and sampling density as Case 2, except their domain lengths and BC aremodified,
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Fig. 5 Gardner’s model. Inversion outcomes of ψ(z) and K (ψ) compared to those of the forward model
under evaporation. Case 7 (a, b), Case 8 (c, d)

which give rise to a qz = −0.54 cm/day (Case 12) and −0.001 cm/day (Case 13)—43 and
23,410 times smaller than qz of Case 2 (−23.41 cm/day), respectively. For Case 12, both the
inverted parameters and K (ψ) and ψ(z) (not shown) are close to the forward model. For
Case 13, the inverted parameters, particularly Ks, are not accurate, which leads to inaccurate
K (ψ) recovery. However, the estimated ψ(z) is very accurate. The above exercise suggests
that inversion accuracy is strongly affected by the magnitude of infiltration (or evaporation)
rate, which could be explained by the effect of finite arithmetic. Using the Darcy’s law as
an example, K (ψ) is estimated by the division of qz with the hydraulic gradient. Under low
flow conditions, both qz and gradient are small, and K (ψ) becomes less identifiable.

3.2 Van Genuchten’s Model

With the van Genuchten’s model, both infiltration and evaporation are solved in the forward
model. Seven cases (Cases 14–20) are inverted. Parameters of the forward model and the
inversion outcomes are shown in Table 2 and Figs. 4 and 5. Cases 14–18 solve infiltration,
while the remaining cases solve flow under evaporation. In simulating the forward models,
Ks, β, m, n, and boundary conditions are varied systematically to create different flow
regimes for inversion. The coefficients of van Genuchten’s model are selected from Carsel
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Fig. 6 Gardner’s model. Inversion outcomes of ψ(z) and K (ψ) compared to those of the forward model
under evaporation. Case 9 (a, b), Case 10 (c, d)

and Parrish (1988) for different soil textures (Table 2). For some cases, both single- and two-
layered problems are investigated. From the FDMs, observations were sampled regularly,
while measurement density can vary. The inversion grid has the same domain length as the
forward model. Each inversion grid is discretized uniformly.

Under infiltration, Cases 14 and 15 invert a one-layered model under increasing mea-
surement errors, while parameters of “loam” and “sandy clay loam” are assigned to their
respective van Genuchten’s model (Carsel and Parrish 1988). The inverted parameters and
ψ(z) and K (ψ) are shown in Table 2 and Fig. 7a–d. When error magnitude is low (either
error-free or ±1% error), both parameter and state variable estimation are successful. When
error increases to ±5%, inversion accuracy significantly degrades, particularly in the esti-
mated Ks (β, n estimation are reasonable), which then degrades the estimation of K (ψ).
Cases 16–17 invert a similar one-layered problem, although the soil texture has changed to
“clay” (Case 16) and “sand” (Case 17). The same BC of Cases 14 and 15 are adopted, while
sampling density is slightly increased for Case 17. Compared to the previous soil textures,
inverted parameters of the new cases suffer greater inaccuracies even when the same error
magnitude is imposed (Fig. 8a–d). In Case 17, when error= ±5%, inversion outcomes are
physically unreasonable and are excluded. Among the above cases, K (ψ) of Case 17 varies
the most (i.e., over 3 orders of magnitude), which likely leads to its observed high sensitivity
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to error. Moreover, when measurement error is significant, the inverted K (ψ) of all cases is
consistently the least accurate when water table is neared. Inspection of the forward models
suggests that K (ψ) often varies the most at such location.

Case 18 solves a two-layered problem using parameters of Case 14 (bottom layer) and
Case 15 (top layer). Both measurement density and BC are varied. Compared to Cases 14
and 15, given the same error magnitude, the inverted parameters suffer greater inaccuracies,
although the inverted K (ψ) and ψ(z) exhibit similar error behavior (Fig. 9a, b). Overall,
similar to the Gardner’s model, two-layered problem is more challenging to invert.

Cases 19 and 20 solve evaporation. Case 19 uses the same soil model as Case 14 (with
“loam” as the soil texture), except its BC are modified to induce evaporation. Sampling
density of Case 19 is increased from that of Case 14 by 50%. However, at every error
magnitude, the inverted parameters of Case 19 are less accurate compared to those of Case
14. The recovered state variable (Fig. 10a), however, is not too different from those of Case
14. Case 20 (Fig. 10c, d) solves the same problem as Case 18 (two-layered model), except
its BC are modified to induce evaporation. The same sampling density is used. At every
error magnitude, the inverted parameters of Case 20 are less accurate compared to those of
Case 18, e.g., inversion outcomes become unphysical when error magnitude is ±5%, while
those of Case 18 are still reasonable. For the same soil regime, again, evaporation is more
challenging to invert. Finally, Case 14 is inverted under error-free conditions, but the domain
length is extended to 100 cm. Given the same measurement density, inversion accuracy in
both the estimated K(ψ) and the recovered pressure head profile is not significantly affected
(not shown).

4 Discussion

With the direct method, by establishing continuity, data conditioning, and physical flow
constraints in the inversion domain, the unknown unsaturated flow BC are obtained as part
of the local pressure head and flux solutions. BC are therefore not formulated as parameters
of optimization along with the soil hydraulic properties, which has been attempted by the
indirect inversion approaches (e.g., Scharnagl et al. 2011). The direct method developed and
tested for 1D flows thus could be extended to higher spatial dimensions without invoking
numerous BC parameters. Moreover, similar to the earlier works on saturated flow inversion,
this study has utilized flux measurements to condition inversion, although fluxes can be
replaced by flow rates for higher-dimensional problems after an appropriate integration of
the flux-based data constraints (Irsa and Zhang 2012). An advantage of sampling point-
scale fluxes is that these measurements can provide local information on pressure head and
its gradient, which may facilitate accurate estimation of the local soil water parameters. The
theoretical development proposed in this study thus aims to provide an impetus for developing
new soil water characterization techniques that will allow accurate sampling of in situ fluxes,
which may in turn facilitate the inversion of detailed soil parameters.

For all the problems presented above, the forward model domain extends from the land
surface to the water table where ψ(z = 0) = 0, and the measurement design follows suite,
i.e., pressure heads are sampled regularly from near the land surface to above the water table.
All flux measurements are sampled internal to the solution domain. However, the direct
inversion method is not constrained by this sampling design. For example, the domain for
inversion (i.e., sampling locations) does not need to extend to the land surface or the water
table. Inversion can be performed wherever the measurements lie, which can include such
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Fig. 7 Van Genuchten’s model. Inversion outcomes of ψ(z) and K (ψ) compared to those of the forward
model under evaporation. Case 14 (a, b), Case 15 (c, d)

physical flow boundaries or only be part of the unsaturated zone. In addition, if subsurface
flux measurements prove difficult to acquire, the measured water flux can be obtained at the
land surface since the flux is the same everywhere for one-dimensional steady-state flow.
In this case, the upper inversion domain extends to the land surface where this boundary
flux is known as a measurement (the lower boundary location is determined by the deepest
measurements whichmay ormay not extend to the water table). To illustrate this, the problem
of Case 1 is inverted again using a subdomain spanning a vertical interval of z = [10, 50] cm.
From the same interval, which lies 10 cm above the water table, 16 pressure heads and 1
flux were sampled from the forward model. The heads were sampled regularly, while the
flux is sampled at z = 50 cm (land surface). Figure 11 shows the inverted pressure head and
unsaturated conductivity under increasing measurement errors. The behavior of the inverse
solution is nearly identical to that of the earlier result when the domain extends to the water
table (Fig. 2a, b). Moreover, using the same approach as outlined in this work, variably
saturated flow has been successfully inverted for vertical infiltration in a homogeneous soil,
where the lower BC have a positive pressure head corresponding to an arbitrary water depth
below thewater table in the saturated zone. Success of inversion is expected because inversion
honors continuity and physics of flowduring suchflowprocesses. Future researchwill explore
inversion under variably saturated conditions for heterogeneous soils.
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Fig. 8 Van Genuchten’s model. Inversion outcomes of ψ(z) and K (ψ) compared to those of the forward
model under evaporation. Case 16 (a, b), Case 17 (c, d)

Fig. 9 Van Genuchten’s model. Inversion outcomes of ψ(z) and K (ψ) compared to those of the forward
model under evaporation. Case 18 (a, b)
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Fig. 10 Van Genuchten’s model. Inversion outcomes of ψ(z) and K (ψ) compared to those of the forward
model under evaporation. Case 19 (a, b), Case 20 (c, d)

Fig. 11 Gardner’s model. Inversion outcomes of ψ(z) and K(ψ) compared to those of the forward model
under infiltration for a subdomain of Case 1
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For both the Gardner and the van Genuchten models, the proposed second-order approx-
imate solution of ψ (z) reflects the common use of second-order polynomials as local
interpolation functions for solving partial differential equations with the finite element
method. A linearly weighted function, constructed using these interpolation functions, is
a second-order polynomial and is used to approximate the state variable (e.g., pressure head)
in developing the finite element solution of the forward model (Zhang et al. 2006). In its
weak formulation, second-order polynomials can be implemented using simple elements;
thus, they are considered more desirable compared to higher-order polynomials (Bear and
Cheng 2010). In the inversion, however, higher-order polynomials can certainly be used based
on which continuity on the gradient of fluxes can also be added as constraints. While seeking
a physical basis for these local solutions (e.g., by examining laboratory data), higher-order
local solutions will be investigated in the future.

Finally, this study investigates well-posed problems where flux measurements are used
to constrain the unsaturated K estimation. By examining the Darcy’s law, unique estimation
of the unsaturated K requires both pressure head and flux measurements. This is because
physically it is possible that two identical pressure distributions can correspond to different
unsaturated Ks for different soil water velocities. Fluxes here are assumed to be continuum
properties, and by considering only vertical flow, flux variation in the lateral direction is
ignored. The soil media are considered to be either homogeneous or layered, for which fluxes
can be obtained from flow rates measured over given areas. Though such measurements are
not commonly taken in the field, recent advances in velocity measurement for the saturated
zones (Labaky et al. 2009) may point to the development of such technology for soil studies.
Moreover, because moisture content data are frequently collected in the field, future work
will extend the inversion by conditioning to such data.

5 Conclusion

To invert steady-state infiltration and evaporation in the vadose zone when soil hydraulic
boundary conditions are unknown, this study develops a direct inversion method to simulta-
neously estimate the unsaturated flow parameters (both of the Gardner and the vanGenuchten
models) and the state variables (pressure head profile) which include the unknown boundary
pressure heads. Unlike the objective function-based indirect inversion techniques, the direct
method does not require forward flow simulations to assess measurement-to-model fit; thus,
the knowledge of model boundary conditions is not required. Instead, the method employs
a set of local approximate solutions (LAS) of flow to impose continuity of pressure head
and soil water fluxes throughout the solution domain, which are then conditioned by mea-
surements. The proposed direct method can reduce nonuniqueness often encountered in the
traditional inverse methods. Without the need of iterations which are part of the optimization
and parameter search algorithms in the traditional methods, the approach proposed in this
study can significantly reduce the computational burden. Because these LAS are not exact, a
set of equation constraints is needed,which enforces flowphysics at selected spatial locations.
Success of direct inversion is demonstrated by inverting vertical infiltration and evaporation
in various soil types with homogeneous or layered heterogeneity. Several conclusions are
obtained based on the results of this study:

1. Given sufficient measurements, inversion yields a well-posed system of nonlinear equa-
tions that can be solved in one stepwith optimization. Themethod is thus computationally
efficient without the need to repeatedly run forward simulation model.
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2. Given error-free measurements, pressure heads, soil hydraulic parameters, and a
nonparametric unsaturated conductivity function can be accurately recovered. When
measurement errors are increased, estimation of parameters and pressure head becomes
less accurate, but the inverse solution is still stable, i.e., estimation errors remain bounded.

3. For inverting unsaturated flows with the Gardner’s and the van Genuchten’s models,
difficulty in inversion increases with (1) decreasing infiltration or evaporation rate, (2)
increasing variation of the unsaturated conductivity, (3) change in flow direction (i.e.,
infiltration is easier to invert than evaporation), and (4) increasing number of soil layers.
Overall, for a fixed problem setup (i.e., domain length, BC, unsaturated conductivity,
sampling density and measurement error, flow direction), the van Genuchten model is
more challenging to invert. For both soil water models, increasing domain length does
not appear to play a significant role on either inversion accuracy or its stability.

In thiswork, it is known from the inverted results thatwhen themagnitude ofDarcyflux is very
small, convergence can become an issue in inversion, for both infiltration and evaporation,
and for both Gardner and van Genuchten’s models. Future work will address inversion of
spatially correlated heterogeneity in the unsaturated parameters. Transient inversion will be
attempted,whereas time-dependent datamayprovide additional constraints for parameter and
state estimation. For sites lacking characterization data, effective parameters and functions
will be examined. For such cases, preliminary results with the Gardner’s model have led to
encouraging outcomes. For example, when soil interface is unknown, effective functions are
successfully inverted while accurately capturing the pressure head profile.
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