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Abstract: Solute transport in aquifers is strongly influenced by the spatial distribution of subsurface hydraulic conductivity (K), while
limited drilling typically results in lack of data characterizing both the K and the in situ fluid-flow boundary conditions (BC). To characterize
such environments, this paper presents an efficient direct inverse method to simultaneously identify an aquifer’s K pattern, values, and flow
field. The method ensures fluid-flow continuity using local approximate solutions of the governing flow equation conditioned to limited
measurements, while the physics of flow are enforced, making the inverse problem well-posed. A single system of equations is assembled and
solved, from which parameters and BC can be simultaneously estimated. For problems with irregular and regular K distributions, inversion is
demonstrated for different measurement types, qualities, and quantities. When measurement error is increased, the estimated K pattern is
largely insensitive to the error, although the inverted flow field suffers greater inaccuracy. Local conductivity and Darcy flux measurements
are found to have similar information content, although subtle differences exist in the inversion outcomes when long-term contaminant release
is simulated. Local conductivity measurements lead to better identification of conductivity pattern, values, and hydraulic head field; Darcy
flux measurements lead to more-accurate estimation of the velocity field and thus improved transport predictions. Overall, velocity field
estimated by the direct inverse method based on hydraulic measurements can lead to reasonable predictions of contaminant migration under
unknown aquifer BC. DOI: 10.1061/(ASCE)HE.1943-5584.0001410. © 2016 American Society of Civil Engineers.
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Introduction

Transport processes in aquifers are critically controlled by hy-
draulic head gradient, porosity, and the spatial distribution of hy-
draulic conductivity (K). In environmental and energy studies, the
heterogeneity patterns of aquifer K exert a first-order impact on
fluid-flow pathways and where/when solute transport and break-
through occur. Accordingly, subsurface flow and transport models
have become increasingly elaborate, and it is common to create
complex two-dimensional and three-dimensional grids to represent
spatial heterogeneity, which then enables detailed delineation of the
solute transport pathways. Limited spatial borehole data for subsur-
face environments, however, generally lead to a poor knowledge
of K heterogeneity and therefore to significant uncertainty in both
flow and transport predictions using models. As the subsurface is
increasingly used both as a resource (e.g., water, hydrocarbon, geo-
thermal extraction) and energy and waste repository (e.g., natural
gas storage, geologic CO2 sequestration, and waste disposal), sub-
surface characterization has received significant attention in recent
years. In both shallow and deep aquifers, however, whenever bore-
hole access is limited, subsurface fluid-flow boundary conditions
(including both the Dirichlet and the Neuman boundaries) are
highly uncertain in addition to the uncertain distribution of conduc-
tivity. Clearly, aquifer characterization requires the estimation

of both K distribution and the in situ fluid-flow boundary condi-
tions (BC), which together determine the aquifer state, i.e., hydraulic
head and fluid velocity. Velocity, in particular, determines pathways
and rates of solute transport.

To estimate conductivity, direct measurement via aquifer-
stimulation techniques often suffer the well-known scale effect that
occurs as K measurements depend on the volume being tested
(Sanchez-Vila et al. 1996; Zlotnik et al. 2000; Zhang et al.
2007). Thus, K values measured at smaller support volumes
may not adequately represent the values at greater grid-cell vol-
umes. By developing a numerical model, K values of the model
can be calibrated with inverse methods based on measurements
of the hydrological state variables, e.g., water levels, flow rates,
and solute concentrations (Hill and Tiedeman 2007). This article
presents a computationally efficient direct inverse method that uses
hydraulic measurements to simultaneously estimate K patterns,
values, and flow fields, including the unknown aquifer BC. By
reconstructing the velocity distribution, contaminant transport in
the aquifer can then be predicted. The next paragraphs will briefly
review prior research on parameter identification. The next sections
will then illustrate the direct method in greater detail.

Sun and Yeh (1985) and Carrera and Neuman (1986b) were
among the first to propose parameter structure identification in
aquifer inversion. Subsequently, different methods were developed,
including the Pilot Points method, Sequential Self-Calibration, Mo-
ment Equations Method, Representer Method, Zonation Method,
and Semianalytical Method, among others. The Pilot Points method
was first proposed by de Marsily (1978), its key feature consisting
of kriging the parameter values at pilot points and measurement lo-
cations (if they exist) to create the parameter field during inversion
(Certes and de Marsily 1991; Alcolea et al. 2006b, a). The sequential
self-calibration method (Gomez-Hernandez et al. 1997) was the first
to create multiple equally-likely stochastic realizations, providing
unbiased estimates of hydraulic heads and concentrations. The
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moment equations method relies on a nonlinear geostatistical inverse
algorithm (Hernandez et al. 2006), while the representer method is
widely used in meteorological and oceanographic sciences (Kurapov
et al. 2007, Ngodock et al. 2006) before it was adopted in hydro-
geological investigation to estimate large-scale patterns of trans-
missivity and dispersivity from scattered measurements of head,
concentration, and transmissivity (Bennet 1992; Pebesma and
Wesseling 1998; Przybysz-Jarnut et al. 2007). The zonation
method was developed by Carrera and Neuman (1986a, b), and
due to its close link to the classic concept of hydrostratigraphy
(or hydrofacies, petrofacies, flow units, lithofacies, and so on),
has become widely adopted by practitioners. Stauffer et al.
(2000) used the semianalytical method to assess uncertainty of
the well catchments for pumping in heterogeneous aquifers. Most
aquifer inverse methods, including the studies cited here, do not
differ in their essential approaches, but only in their implementation
or computational detail (Ginn and Cushman 1990; McLaughlin and
Townley 1996; Carrera et al. 2005; Vrugt et al. 2008; Yeh et al.
1996; Lu and Robinson 2006; Dai and Samper 2004). A common
scheme among them is the building and calibration of a forward
simulation model with which model fit against field observations
(i.e., model–data mismatch or objective function) is iteratively im-
proved until model parameters and/or structures are identified.
Because a forward model is needed, subsurface fluid flow (and
transport) initial and boundary conditions are assumed known
or are calibrated as part of the inverse solution. However, in deep
aquifers, boundary conditions for fluid flow are rarely known. As
demonstrated in Irsa and Zhang (2012), boundary condition cal-
ibration can lead to nonunique estimation of the parameters and
flow field. Even when BC are reasonably known by drilling and
sampling many wells or by conducting hydraulic tests near aquifer
boundaries, errors in obtaining such information, similar to meas-
urement errors, can lead to inaccurate inversion outcomes (Zhang
et al. 2014). There is additionally the issue of study areas far from
physical boundaries (e.g., river, fault, or aquifer pitch-out), for
which fluid-flow BC needed for developing a site model are at
best ambiguous and often unknown.

To address aquifer inversion under unknown BC, a computa-
tionally-efficient direct method is developed and proven accurate
and robust for solving different fluid-flow inverse problems includ-
ing those with significant source/sink effects (Irsa and Zhang 2012;
Zhang 2014; Jiao and Zhang 2014b, a, 2015b, a). Boundary con-
ditions were estimated from the results of inversion, while aquifer
parameters were populated deterministically assuming that their
patterns are known a priori. However, for data-poor and highly
heterogeneous aquifers, both K patterns and BC are typically un-
known. This work develops an improved approach to simultane-
ously estimate parameter structure, parameter values, and flow
field (including the unknown BC), by adopting (1) local approxi-
mate solutions (LAS) of inversion, and (2) a suitable K parameter-
ization that ensures the inverted K values are positive. The key
improvement of this work thus lies in parameter structure identi-
fication. By inverting two synthetic aquifer problems with irregular
versus regular facies distributions, inversion is demonstrated for
different measurement types, qualities, and quantities. Transport
simulation of long-term contaminant release into the aquifer is then
carried out in the original and the reconstructed flow fields. Given
the recovered velocity distribution, the contaminant pathway and
breakthrough curves can then be accurately predicted.

Method

The key difference between the direct method developed in this
work and the majority of existing aquifer inversion techniques is

that an objective function based on model–data mismatch is not
optimized, and therefore a forward groundwater model does not
need to be built and simulated. An independent grid is developed
for inversion and is referred to herein as the inversion grid. Aquifer
hydraulic conductivity is assumed to follow the distribution of fa-
cies, whereas within-facies K is assumed uniform. However, unlike
the zonation method (Carrera and Neuman 1986a, b; Jiao and
Zhang 2014b), conductivity is formulated as a set of locally con-
tinuous functions with unknown coefficients that are mapped onto
individual inversion grid cells. Inversion is then carried out in two
steps: facies distribution is recovered first, followed by the estima-
tion of their conductivities. The next section explains the inversion
method in detail.

Governing Flow Equation

The steady state two-dimensional (2D) groundwater flow equation
for a confined aquifer without sources/sinks is

∂
∂x

�
Kðx; yÞb ∂hðx; yÞ∂x

�
þ ∂
∂y

�
Kðx; yÞb ∂hðx; yÞ∂y

�
¼ 0 on Ω

ð1Þ

where hðx; yÞ = hydraulic head (L); Kðx; yÞ = hydraulic conduc-
tivity (L=T); b = saturated thickness (assumed known); and Ω =
solution domain. To test inversion, Eq. (1) is solved in the forward
mode by assigning a set of Dirichlet and no-flux BC to the domain
boundaries. These BCs will be recovered in inversion along with
the unknown parameters.

Inverse Theory

For the steady-state flow problem described in Eq. (1), the inverse
method for obtaining conductivity pattern enforces three sets
of constraints: (1) global continuity of hydraulic head and Darcy
fluxes at a set of collocation points (Fig. 1); (2) local conditioning
of the inverse solutions to observed heads, fluxes, or locally

Fig. 1. Inversion grid discretization and a set of collocation points
(filled circles); observed data for inversion are also shown: * is ob-
served head, + is observed local conductivity, and × is observed Darcy
flux
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observed hydraulic conductivities (Fig. 1); and (3) a set of equation
constraints at selected points that enforces the flow physics.

The first set of constraints is written as

wðpαÞ
Z

RhðpαÞδðpαÞdΓj ¼ 0; j ¼ 1; : : : ; Y; α ¼ 1; : : : ;V

ð2Þ

wðpαÞ
Z

RqðpαÞδðpαÞdΓj ¼ 0; j ¼ 1; : : : ;Y; α ¼ 1; : : : ;V

ð3Þ
where pα = collocation point on the jth cell interface (Γj); α =
number of collocation points on Γj; RhðpαÞ and RqðpαÞ = residuals
of hydraulic head and Darcy fluxes at pα on Γj, respectively; Y =
total number of cell interfaces in the inversion grid; δðpαÞ = Dirac
delta function; and wðpαÞ = weighting function that samples the
residuals at pα on Γj. The residuals can be expanded as

RhðpαÞ ¼ h̄iðpαÞ − h̄kðpαÞ ð4Þ

RqðpαÞ ¼ q̄iðpαÞ − q̄kðpαÞ ð5Þ

where h̄ and q̄ = set of proposed fundamental solutions of inver-
sion; and i and k = cells in the inversion grid adjacent to Γj. For
coordinate ðx; yÞ, q̄ ¼ ½qx; qy�. Because the fluid-flow pathway will
refract at a facies interface whose location is unknown, it is prob-
lematic to impose continuity on both components of the q̄ vector at
the collocation points, i.e., Γj may coincide with a facies interface.
To address this issue, continuity is enforced with one component
only: if pα lies along Γj that is parallel to the x axis, continuity is
enforced on qy, and vice versa. This approach is found to work well
for recognizing facies pattern using the orthogonal inversion grid of
this study. Unlike Irsa and Zhang (2012) and Jiao and Zhang
(2014b, a, 2015b) where the facies pattern is known prior to inver-
sion and thus Γj honors the facies interface, the inversion grid here
is independent of the facies pattern (Γj does not honor the facies
interface), i.e., the same grid can be used for recognizing different
facies patterns.

As the second set of constraints, h̄, q̄, or hydraulic conductivity
are conditioned at the measurement locations

wðpaÞ½h̄ðpaÞ − hoðpaÞ� ¼ 0 a ¼ 1; : : : ;A ð6Þ

wðpbÞ½q̄xðpbÞ − qoxðpbÞ� ¼ 0 b ¼ 1; : : : ;B ð7Þ

wðpcÞ½q̄yðpcÞ − qoyðpcÞ� ¼ 0 c ¼ 1; : : : ;C ð8Þ

wðpdÞ½K̄ðpdÞ − KoðpdÞ� ¼ 0 d ¼ 1; : : : ;D ð9Þ
where pa, pb, pc, and pd = measurement points; ho, qox , qoy , and
Ko = observed heads, fluxes, and local conductivities at these
points (A, B, C, and D are the total number of observations), re-
spectively; and wðpaÞ, wðpbÞ, wðpcÞ, and wðpdÞ are weighting
functions assigned to each observation equation to reflect the mag-
nitude of the measurement errors. Inversion under both error-free
and random measurement errors is investigated in this work. Either
flux or K conditioning, or both, can lead to well-posed solutions
(Zhang 2014). However, inversion cannot lead to unique K estima-
tion by conditioning only to hydraulic head measurements. In this
work, either flux or local K measurements are used, although in-
version is also successful when both measurements are provided.

In this study, the fundamental solutions of inversion (h̄ and q̄)
are local approximate solutions (LAS) rather than exact, as will be
illustrated later. To enforce flow physics, a set of equation con-
straints is developed

wðpeÞRe ¼ ε ð10Þ

Re ¼
� ∂
∂x

�
Kb

∂hðx; yÞ
∂x

�
þ ∂
∂y

�
Kb

∂hðx; yÞ
∂y

������
e

e ¼ 1; : : : ; Yαþ Aþ Bþ CþD

where pe includes both the collocation points and the head, flux, or
local conductivity measurement locations; and Re = residual of the
governing flow equation at pe. At these locations in the inversion
grid, Eq. (10) enforces a set of physical flow constraints on the local
solutions. The residual ε is set to be a small number rather than 0.0,
e.g., ε is less than 10−4.

Facies Recognition

To create the LAS, a local flow equation is solved at each inversion
grid cell (Ωe)

∂
∂x

�
bKðx; yÞ ∂hðx; yÞ∂x

�
þ ∂
∂y

�
bKðx; yÞ ∂hðx; yÞ∂y

�
¼ 0 on Ωe

ð11Þ
where Eq. (11) is discretized over Ω; and Kðx; yÞ and b = local
conductivity and saturated thickness of the grid cell, respectively.
In this work, polynomial and exponential functions are proposed
as the LAS of hydraulic head and conductivity, respectively

h̄ðx; yÞ ¼ a1 þ a2xþ a3yþ a4xyþ a5x2 þ a6y2 on Ωe ð12Þ

K̄ðx; yÞ ¼ expða7 þ a8xþ a9yþ a10xyÞ on Ωe ð13Þ
where aiði ¼ 1; : : : ; 10Þ = unknown cell-wise constants to be esti-
mated by inversion. Using Darcy’s law, Darcy flux can be approxi-
mated, also over Ωe, as

q̄xðx; yÞ ¼ − expða7 þ a8xþ a9yþ a10xyÞða2 þ a4yþ 2a5xÞ
ð14Þ

q̄yðx; yÞ ¼ − expða7 þ a8xþ a9yþ a10xyÞða3 þ a4xþ 2a6yÞ
ð15Þ

h̄ðx; yÞ is any reasonable function that may approximate the
behavior of flow locally, which may be obtained by examining
the forward-flow solution. An exponential function is chosen to
approximate the conductivity, which ensures that the estimated
K̄ðx; yÞ is positive. The Darcy flux approximations are then derived
from both functions.

To find the facies pattern, Eqs. (2)–(10) are first assembled, into
which Eqs. (12)–(15) are substituted. The resulting system of non-
linear equations is solved (see “Solution Techniques”), with the sol-
ution of xT ¼ ½aei �], i ¼ 1; : : : ; 10, e ¼ 1; : : : ;M (number of
inversion grid cells). For each Ωe, then h̄ðx; yÞ, K̄ðx; yÞ,
q̄xðx; yÞ, and q̄yðx; yÞ are reconstructed, from which both the
Dirichlet and Neumann BC can be recovered along the domain
boundaries. The facies pattern is then recognized by selecting an
appropriate conductivity threshold (K0): K0 varies between K1

and K2 and is considered a form of prior information constraint
for inversion. For a two-facies system, given a knownK0 (generally

© ASCE 04016033-3 J. Hydrol. Eng.

 J. Hydrol. Eng., 04016033 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ity
 o

f 
W

yo
m

in
g 

L
ib

ra
ri

es
 o

n 
07

/2
5/

16
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



a value falling into 40–60th linear percentile between K1 and K2),
the facies pattern is recovered by applying the following relation to
the estimated K̄ðx; yÞ field:
if K̄ðx; yÞ < K0; ðx; yÞ ∈ K1facies if K̄ðx; yÞ ≥ K0;

ðx; yÞ ∈ K2facies ð16Þ

As will be demonstrated later, Eq. (16) can be extended to
m facies by selecting a set of (m − 1) threshold conductivities.

Facies K Estimation

To estimate the facies conductivities, Eqs. (2)–(10) are assembled
and solved a second time, although a different set of LAS is used
in inversion. At this point, the facies pattern has been derived and is
assumed fixed. Using the same orthogonal grid as earlier, conduc-
tivity estimation is carried out via the new set of fundamental
solutions, one for each inversion grid cell

~hðx; yÞ ¼ b1 þ b2xþ b3yþ b4xyþ b5ðx2 − y2Þ on Ωe ð17Þ

~qxðx; yÞ ¼ −Kvðb2 þ b4yþ 2b5xÞ ð18Þ

~qyðx; yÞ ¼ −Kvða3 þ b4x − 2b5yÞ ð19Þ
where bj (j ¼ 1; : : : ; 5) is a new set of unknown coefficients of
inversion, and

Kv ¼
�

K1 if ðx; yÞ ∈ K1facies

K2 if ðx; yÞ ∈ K2facies

To condition to the local conductivity measurements, Eq. (9) is
given as

wðpdÞðKv − Ko
i Þ ¼ 0 i ¼ 1;D

where i = a location where an observed (noisy) K falls into a
known facies type, although this facies type (inverted in the pre-
vious step) may suffer from classification errors. By substituting
Eqs. (17)–(19) into Eqs. (2)–(10), a new system of inversion equa-
tions is established for which the solution is xT ¼ ½K1;K2; bej �,
j ¼ 1; : : : ; 5, e ¼ 1; : : : ;M. The same measurements used for
facies identification are used for K estimation, and the preceding
formulation can be extended to a number of facies whereby
Kv ¼ ðK1;K2; : : : Þ.

Solution Techniques

Depending on the inversion grid discretization, the step in inversion
(facies versus K estimation), and the number of conditioning mea-
surements used, the system of equations can be underdetermined,
exact, or overdetermined. For the problems of this study, all
equation systems are overdetermined, because underdetermined
problems generally yield poor or unstable solutions (Zhang
2014). Due to the nonlinearity in the LAS, the inversion system
of equations is nonlinear and is solved using two gradient-based
optimization algorithms, i.e., Levenberg-Marquardt and Trust-
Region-Reflective. Both algorithms are implemented in the
MATLAB nonlinear solver, lsqnonlin, which solves a nonlinear
least-squares problem of the form

min
x
kfðxÞk22 ¼ min

x
ðf1ðxÞ2 þ f2ðxÞ2þ · · · þfwðxÞ2Þ ð20Þ

where x = inverse solution containing the unknown parameters
and coefficients; w = number of equations; and f1ðxÞ;
f2ðxÞ; : : : ; fwðxÞ = equations assembled. The optimization algo-
rithms require that an initial guess of x be provided. In this work,
the initial guess is generated by assigning to x random values
bounded by the range of the observed heads. Finally, the
LAS-based inversion, similar to all inversion methods, can suffer
ill-posedness when insufficient and/or noisy data are used to
condition the inversion (Zhang 2014). This ill-posedness can be
manifested as unstable or nonunique inversion solutions. With
sufficient and accurate data that lead to exact or overdetermined
equation systems, the inverse problems are generally well-posed,
leading to fast, stable, and accurate solutions.

Forward Transport Modeling

The transport equation describing the migration of a solute in aqui-
fers can be written as

∂cðx; y; tÞ
∂t ¼ ∇ · ½D · ∇cðx; y; tÞ� − ∇ · ½vcðx; y; tÞ� on Ω

ð21Þ

cðx; y; 0Þ ¼ 0 on Ω ð22Þ

cðx; y; tÞ ¼ c0ðx; yÞ on Γ1; t > 0 ð23Þ
where c = solute concentration; D = dispersion tensor; v =
groundwater velocity, which is related to Darcy flux q ¼
½qxðx; yÞ; qyðx; yÞ� via porosity θ (v ¼ q=θ); and Γ1 i = Dirichlet
solute BC approximating a constant-source contaminant release
into the aquifer. Zero mass flux is imposed on the remaining
boundaries. D is related to local dispersivities via Dij ¼
½αTδij þ ðαL − αTÞðvivj=v2Þ�v, where vi is the ith component
of v whose magnitude is v; and αL and αT are local longitudinal
and transverse dispersivities, respectively. If porosity is assumed
known, groundwater velocity can be obtained from the estimated
q̄xðx; yÞ and q̄yðx; yÞ fields. In this study, θ ¼ 0.1. When dispersiv-
ities are also assumed known, contaminant migration can be pre-
dicted by solving Eqs. (21)–(23) in the forward mode given both
the original and the inverted flow fields. In this study, αL ¼ 0.1 m
and αT ¼ αL=10.

Results and Discussion

To test the inverse method, two synthetic aquifer models are
simulated to solve Eq. (1) in the forward mode using MODFLOW
(Harbaugh et al. 2000), which discretizes Eq. (1) with the finite-
difference method. The forward-flow model is referred to herein
as the finite-difference model (FDM). Facies patterns of these mod-
els are irregular (Problem 1) versus regular (Problem 2), with these
conductivities: K1 ¼ 1 m=day and K2 ¼ 10 m=day (Problem 1),
and 10, 20, 30, and 40 m/day (Problem 2). In both problems, do-
main size is Lx ¼ 1,000 m and Ly ¼ 1,000 m, discretized with
100 × 100 grid cells in the FDM. Each model is driven by a set
of true-flow BC: hðx; y ¼ 0Þ ¼ 10 m; hðx; y ¼ 1,000Þ ¼ 20 m;
the remaining sides are no-flux. To obtain measurements for inver-
sion, hydraulic heads, fluxes, or local K are sampled from the FDM
in a regular gridded pattern. Fluxes and local K are sampled at the
same locations. The inversion grid covers the same spatial extent as
the FDM, although its discretization is much coarser. As shown in
Zhang et al. (2014), extent of the inversion grid is determined by
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the measurement locations only, which may span the dimensions of
the forward model (this work), although this is not a requirement
(the inversion grid does not need to extend to the natural aquifer
boundaries). To evaluate the stability of inversion, increasing meas-
urement errors are imposed on the data: the observed hydraulic
heads (hFDM), Darcy fluxes (qFDM), and local conductivities
(KFDM) are all corrupted by uniform noises: hm ¼ hFDM �Δh,
qm ¼ qFDM �Δq, and Km ¼ KFDM �ΔK, where hm, qm, and
Km are measurements provided to inversion, and Δh, Δq, and
ΔK are the corresponding measurement errors. The highest im-
posed error is �5% of the total head, flux, and conductivity var-
iations in the forward model, respectively. In the following, the
facies pattern and inverted hydraulic heads are obtained at the
end of the first inversion step, while the velocity fields are obtained
at the end of the second inversion step, i.e., after the K estimation is
completed.

Inversion accuracy is determined by comparing the solution
(i.e., the recovered K pattern, values, and the flow field) against
those of the FDM. A root-mean square error (RMS) and a relative
root-mean square error (RES) of hydraulic head are defined at the
measurement locations as

RMSðhÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nt

XNt

i¼1

½htrueðxi; yiÞ − hðxi; yiÞ�2
vuut ð24Þ

RESðhÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNt

i¼1 ½htrueðxi; yiÞ − hðxi; yiÞ�2
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNt
i¼1 ½htrueðxi; yiÞ�2

q ð25Þ

where htrueðxi; yiÞ = measured heads from the FDM; hðxi; yiÞ =
inverted hydraulic head at the same measurement location; and
Nt = total number of measured hydraulic heads. For facies com-
parison, a similarity index is expressed as

Similarity Index ¼ totalE
totalG

ð26Þ

where totalE = number of grid cells where the facies type is cor-
rectly recovered by inversion; and totalG = total number of cells.

For each inversion problem, given the original and the recovered
flow fields, contaminant migration is simulated over time to predict
solute concentration in the aquifer using a modular three-
dimensional mutispecies transport model (MT3DMS) (Zheng
2010). The transport model is of the same dimensions as the flow
model (Lx ¼ 1,000 m and Ly ¼ 1,000 m), and is discretized with
100 × 100 grid cells. In these experiments, the same porosity, dis-
persivities, and solute initial and BC are used. The transport model
is simulated for a sufficiently long time and is terminated at
10,000 days when solute concentration in the forward (true) flow
field has reached steady-state. The same termination time is used

Fig. 2. Forward model of Problem 1 with two facies (black facies: K ¼ 10 m=day; white facies: K ¼ 1 m=day): (a) true conductivity pattern
(Reprinted from Journal of Computational Physics, Vol. 229, H. Chang, D. Zhang, and Z. M. Lu, “History matching of facies distribution with
the EnKF and level set parameterization,” pp. 91–102, Copyright 2010, with permission from Elsevier); (b) distribution of the true hydraulic head
(unit: m); (c) distribution of true solute concentration (unit: mg=L at t ¼ 10,000 day)
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for transport modeling in the inverted flow fields. Moreover, along
the outflow boundary, concentration breakthrough over time is com-
puted by averaging the concentrations predicted at all grid cells.

Problem 1 (Two Facies)

The forward model consists of two irregularly shaped facies
[Fig. 2(a)]. For the chosen fluid flow BC, true hydraulic head distri-
bution is computed [Fig. 2(b)]. Transport is then modeled, for which
the concentration distribution at steady-state is shown [Fig. 2(c)].

By varying measurement size, type, errors, and grid discretization,
four inversion cases are tested (Table 1). Cases 1 and 2 share the
same inversion grid and the number of measurements. For Case
1, fluxes are sampled and provided to inversion; for Case 2, local
Ks are used instead. For both cases, observed heads are sampled
at the same locations. To first identify facies, K0 is varied from
4.0 to 6.0, which yields nearly identical facies patterns; thus, only
one set of results (at K0 ¼ 5) is presented. After the facies is iden-
tified, inversion is repeated using the same measurements and
Eqs. (17)–(19) to estimate the conductivities. The problem setups

Table 1. Inversion Cases for Problem 1 (Two Facies)

Inverse
case

Number of observed
data points Inversion

grid
Errors in the

observed data (%)

Estimated conductivities

RMS (h) RES (h)
Similarity
indexHead Flux Local K K1 ðtrueÞ ¼ 1.00 K2 ðtrueÞ ¼ 10.00

Case 1 100 100 0 5 × 5 0 1.74 9.12 0.23 0.014 0.75
�1 1.70 9.04 0.23 0.015 0.74
�5 1.76 9.12 0.30 0.019 0.72

Case 2 100 0 100 5 × 5 0 1.00 10.00 0.23 0.015 0.82
�1 1.00 10.00 0.24 0.015 0.82
�5 1.00 10.01 0.29 0.018 0.82

Case 3 36 36 0 3 × 3 0 2.27 8.96 0.34 0.022 0.64
�1 2.41 7.51 0.35 0.022 0.64
�5 2.26 7.25 0.46 0.029 0.61

Case 4 36 0 36 3 × 3 0 1.00 10.00 0.33 0.021 0.74
�1 1.00 9.99 0.34 0.022 0.74
�5 1.00 9.98 0.45 0.028 0.74

Note: When errors are imposed, all the measured heads, fluxes, or local Ks are subject to the errors; estimated facies Ks (m=day) and observed K (m=day) are
listed; head is given in m; observed flux is given in m=day.

Fig. 3. Case 1 under increasing measurement errors: (a) through (c) show inverted facies patterns and (d) through (f) show hydraulic head fields (head
unit: m; dashed line indicates true hydraulic heads; dashed-dotted line indicates inverted hydraulic heads; solid circles indicate locations of observed
heads and fluxes): (a) 0% error; (b) �1% error; (c) �5% error; (d) 0% error; (e) �1% error; (f) �5% error
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for Cases 3 and 4 are similar, although fewer measurements are
used while inversion grid is also coarsened. The same K0 value is
used. For all cases, the estimated faciesK values and hydraulic head
field degrade with increasing measurement errors, as expected,
although the inverted facies pattern is relatively insensitive to errors
(Figs. 3–6). For the range of the error magnitude tested, inversion
outcome is overall very stable, i.e., estimation error remains
bounded under increasing measurement errors. Given the inverted
velocity fields (not plotted), results of transport modeling are then
compared. The four cases will now be presented and discussed in
greater detail.

For Cases 1 and 2, the recovered facies patterns and hydraulic
head fields are shown in Figs. 3 and 4. The estimated facies con-
ductivities are listed in Table 1, along with the RMSðhÞ, RESðhÞ,
and the similarity index. The similarity index varies from 0.72
at the highest error in the observed heads to 0.75 when observed
heads are error-free for Case 1. Thus, facies recovery degrades
slightly with increasing measurement errors, as expected. The over-
all facies patterns are captured in both cases when compared to
Fig. 2(a), but not the fine detail. Comparing the two cases, Case
2 appears to be slightly better at recovering the facies pattern
(its average similarity index is higher), while its estimated Ks
are also more accurate given the same measurement error (Table 1).
The estimated K1 in Case 1 has the highest accuracy at �1% noise
compared to the same K1 estimated under error-free conditions.
Such an anomaly can be attributed to the fact that many factors
influence inversion accuracy, e.g., weighting function, approxima-
tion function, number of collocation points, and quality, quantity,
and position of the measurements, and the relative error imposed is
small. Moreover, RMSðhÞ and RESðhÞ of the recovered heads at

the measurement locations appear similar for the two cases. These
metrics appear less sensitive to the type of the measurements
(Ks versus fluxes) used to condition the inversion.

For Cases 3 and 4, fewer measurements and a coarser grid are
used. The recovered facies patterns, head fields, and hydraulic con-
ductivities are less accurate compared to those of Cases 1 and 2,
although the coarsest facies’ features are captured reasonably well
(Figs. 5 and 6). The average similarity index ranges from 0.63
(Case 3) to 0.74 (Case 4) (Table 1). Comparing the two cases, Case
4 more accurately estimates the conductivity values, while it also
better capture facies pattern. Again, when local Ks are used to con-
dition inversion, both facies and K estimations are more accurate.
Moreover, the estimated Dirichlet BC, sampled along the inversion
grid boundary from (0, 0), (1000, 0), (1000, 1000), (0, 1000), to (0,
0), are compared between the cases (Fig. 7). Although BC recovery
generally degrades with decreasing measurements and increasing
errors, overall, BC recovery is similar and is relatively insensitive
to the errors of the observed data.

Given the recovered flow fields, solute concentration in the
aquifer at t ¼ 10,000 days is shown (Fig. 8), which can be com-
pared to that simulated with the true flow field [Fig. 2(c)]. In both
transport simulations, a constant solute mass flux is specified near
the inflow boundary at x ¼ 150–450 m, y ¼ 995 m. At the outflow
boundary, comparison of concentration breakthrough is also pre-
sented (Fig. 9). Both concentration distribution and breakthrough
predicted with the recovered velocity field of Case 1 are more ac-
curate than those of Case 2. When measurements are reduced, as
in Cases 3 and 4, plume prediction suffers greater inaccuracy, as
does the computed breakthrough curve. Between the two, the pre-
dicted extent of the plume does not differ significantly, although the

Fig. 4. Case 2 under increasing measurement errors: (a) through (c) show inverted facies patterns and (d) through (f) show hydraulic head fields (head
unit: m; dashed line indicates true hydraulic heads; dashed-dotted line indicates inverted hydraulic heads; solid circles indicate locations of observed
heads and local conductivities): (a) 0% error; (b) �1% error; (c) �5% error; (d) 0% error; (e) �1% error; (f) �5% error
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Fig. 6. Case 4 under increasing measurement errors: (a) through (c) show inverted facies patterns and (d) through (f) show hydraulic head fields (head
unit: m; dashed line indicates true hydraulic heads; dashed-dotted line indicates inverted hydraulic heads; solid circles indicate locations of observed
heads and local conductivities): (a) 0% error; (b) �1% error; (c) �5% error; (d) 0% error; (e) �1% error; (f) �5% error

Fig. 5. Case 3 under increasing measurement errors: (a) through (c) show inverted facies patterns and (d) through (f) show hydraulic head fields (head
unit: m; dashed line indicates true hydraulic heads; dashed-dotted line indicates inverted hydraulic heads; solid circles indicate locations of observed
heads and fluxes): (a) 0% error; (b) �1% error; (c) �5% error; (d) 0% error; (e) �i1% error; (f) �5% error
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velocity field of Case 3 leads to more accurate breakthrough pre-
diction. Interestingly, for any of the cases, with minor exceptions,
transport prediction is not very sensitive to the imposed random
measurement errors. Because Cases 1 and 3 are conditioned by lo-
cal flux measurements while Cases 2 and 4 are conditioned by local
K measurements, comparison of these problem cases indicates that
flux conditioning can lead to more accurate velocity recovery. Un-
like the local conductivity measurement, which itself does not con-
tain information on the local hydraulic gradient, flux contains
information on both the hydraulic gradient and local conductivity,
which is shown here to be important for accurate velocity recovery.

Problem 2 (Four Facies)

The FDM, of the same dimensions and discretization of Problem 1,
contains four facies bounded by linear interfaces [Fig. 10(a)]. Given
the same fluid flow BC of Problem 1, the true hydraulic head dis-
tribution can be computed [Fig. 10(b)]. Two inversion cases, shar-
ing the same total number of measurements and grid, are evaluated
(Table 2). For facies recognition, a set of threshold conductivities is
selected as [15, 25, 35], which is considered a set of prior infor-
mation constraints. While inversion for Case 5 is conditioned to
fluxes, that of Case 6 is conditioned to local Ks. The recovered
facies patterns appear reasonable (Figs. 11 and 12), again, facies
recognition is not sensitive to increasing measurement error, as
the similarity index does not vary significantly with error (Table 2).

Similar to Problem 1, Case 6, by conditioning to local Ks, yields
more accurate delineation of facies boundaries, facies Ks, and the
hydraulic head field. Its average similarity index is 0.89, which is
higher than that of Case 5. Inversion outcomes are also stable when
measurement error is increased.

Given the original and the inverted flow fields, transport mod-
eling is carried out next. The same porosity, dispersivities, and
model domain size/discretization of Problem 1 are used. The loca-
tion of contaminant release, identically assigned to all models, is
slightly modified at x ¼ 300–700 m and y ¼ 995 m. Transport
simulation is run for 2,000 days, at which time steady conditions
are reached in all models. Fig. 13 shows computed solute break-
through curves at the outflow boundary; those predicted using
the inverted velocity fields are very accurate whether inversion
is conditioned on fluxes or local Ks. The same accuracy is also
accomplished in the capture of the plume shape by both cases.
Compared to the tortuous flow paths of Problem 1, which arise
from irregular facies distribution, those of Problem 2 are relatively
smooth-varying. This yields the inverted velocity fields that are all
relatively close to that of the true model, yielding accurate transport
predictions. Because Problem 1 (Cases 1 and 2) and Problem 2
employ a similar measurement support and an identical inversion
grid, accuracy of the inverted velocity and thus transport prediction
is sensitive to K heterogeneity: a more-irregular facies pattern is
more challenging to invert.

Fig. 7. Inverted hydrauilc heads along model boundaries [sampled along the inversion grid boundary from (0, 0), (1000, 0), (1000, 1000), (0, 1000),
to (0, 0)] for Cases 1–4 under increasing measurement errors: (a) Case 1; (b) Case 2; (c) Case 3; (d) Case 4
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Fig. 8.Modeled concentration (in mg=L) at t ¼ 10,000 day given the recovered flow fields of Problem 1 (two facies): (a) 0% error (Case 1); (b)�1%

error (Case 1); (c) �5% error (Case 1); (d) 0% error (Case 2); (e) �1% error (Case 2); (f) �5% error (Case 2); (g) 0% error (Case 3); (h) �1% error
(Case 3); (i) �5% error (Case 3); (j) 0% error (Case 4); (k) �1% error (Case 4); (l) �5% error (Case 4)
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Conclusions

Parameter structure identification with a direct inverse method is
proposed for estimating subsurface hydraulic conductivity pattern,
values, and the associated flow field under unknown aquifer fluid-
flow boundary conditions. To facilitate inversion, different local
approximate solutions (LAS) of the governing flow equation are
proposed. Given the LAS, inversion imposes fluid-flow continuity

conditioned to limited measurements (e.g., heads, fluxes, or local
conductivities), while enforcing flow physics at discrete spatial lo-
cations, thus making the inverse problem well-posed. Hydraulic
conductivity is formulated as piecewise continuous functions
which, along with a set of threshold values as prior information
constraints, can be used to facilitate facies recognition. Because
forward-flow simulations are not required in order to minimize
measurement-to-model misfits, knowledge of aquifer BC is not

Fig. 9. Concentration breakthrough at the outflow boundary for Problem 1: (a) Case 1; (b) Case 2; (c) Case 3; (d) Case 4

Fig. 10. Forward model of Problem 2 with four facies: (a) true conductivity pattern; (b) true distribution of the hydraulic head (unit: m)
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needed. The inverse method therefore differs significantly from the
majority of inversion techniques, which require the repeated sim-
ulations of the forward model under assumed (known) BC. Instead,
a single set of inversion equations is assembled and solved with
optimization, and thus the method is computationally efficient.
Moreover, given the inverted flow field, estimated based on
hydraulic measurements alone, transport modeling of contaminant
release can be carried out. Results of this study are summarized as
follows:
1. By formulating hydraulic conductivity as piecewise continuous

functions (one for each inversion grid cell), the inverse method
can recognize large-scale facies patterns;

2. The estimated facies, their K values, and the associated flow
field become less accurate with increasing measurement errors,
decreasing measurement support, and coarsened inversion grid.
Fine-scale facies pattern can be recovered only with extremely
high measurement support;

3. For all the cases considered, the inverse solution is stable with
increasing measurement errors, i.e., estimation errors remain
bounded while the facies pattern obtained is relatively insensitive
to errors. When error is at its highest, inversion is able to capture
the largest scale facies feature and thus the overall flow field;

4. Contaminant transport pathway and breakthrough can be cap-
tured given the inverted flow field, although transport prediction

Table 2. Inversion Cases for Problem 2 (Four Facies)

Inverse
case

Number of
observed data

points

Inversion
grid

Errors in
the observed
data (%)

Estimated conductivity

RMS (h) RES (h)
Similarity
patternHead Flux

Local
K

K1 ðtrueÞ ¼
10.00

K2 ðtrueÞ ¼
20.00

K3 ðtrueÞ ¼
30.00

K4 ðtrueÞ ¼
40.00

Case 5 100 100 0 5 × 5 0 10.39 20.6 31.25 41.53 0.056 0.0037 0.83
�1 10.39 20.54 30.82 41.55 0.067 0.0045 0.83
�5 10.44 21.39 32.16 42.76 0.19 0.013 0.80

Case 6 100 0 100 5 × 5 0 10.00 20.00 30.00 40.00 0.057 0.0038 0.89
�1 10.01 19.96 29.94 40.08 0.067 0.0045 0.89
�5 10.04 19.80 29.70 40.40 0.19 0.013 0.89

Note: When errors are imposed, all the measured heads, fluxes, or local Ks are subject to the errors; estimated facies Ks (m=day) and observed K (m=day) are
listed; head is given in m; observed flux is given in m=day.

Fig. 11. Case 5 under increasing measurement errors: (a) through (c) show inverted facies patterns, where grayscale colors represent facies associated
with the distinct K values in Fig. 10(a), and (d) through (f) show hydraulic head fields (unit: m; dashed line indicates true hydraulic heads; dashed-
dotted line indicates inverted hydraulic heads; solid circles indicate locations of observed heads and fluxes): (a) 0% error; (b) �1% error; (c) �5%

error; (d) 0% error; (e) �1% error; (f) �5% error
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is less accurate when facies pattern is more strongly irregular;
and

5. Local conductivity and Darcy flux measurements have similar
information content, although inversion outcomes exhibit subtle
differences: local Ks lead to better identification of facies
pattern, conductivity values, and thydrological state; Darcy
fluxes lead to better identification of the velocity field, and thus
to more-accurate predictions of solute concentration and break-
through curve.

For aquifers with unknown fluid flow boundary conditions, the
inverse method of this study utilizes hydraulic measurements alone
to determine subsurface conductivity distribution and to predict
contaminant migration in aquifers. Only the overall facies pattern
can be recovered, however, without incurring great sampling costs.
To improve on this work and to better resolve fine-scale facies fea-
tures, future work will pursue transient flow inversion under pump-
ing and/or injection or joint flow and transport inversion. In these
cases, new constraints will be provided by adding time-dependent

Fig. 12. Case 6 under increasing measurement errors: (a) through (c) show inverted facies patterns, where grayscale colors represent facies associated
with the distinct K values in Fig. 10(a), and (d) through (f) show hydraulic head fields (unit: m; dashed line indicates true hydraulic heads; dashed-
dotted line indicates inverted hydraulic heads; solid circles indicate locations of observed heads and local conductivities): (a) 0% error; (b)�1% error;
(c) �5% error; (d) 0% error; (e) �1% error; (f) �5% error

Fig. 13. Concentration breakthrough at the outflow boundary for Problem 2 (four facies): (a) Case 5; (b) Case 6
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hydraulic and/or solute concentration measurements. By incorpo-
rating stochastic techniques, future work will quantify uncertainty
in estimating both parameters and flow field. As shown in Jiao and
Zhang (2015a), a trade-off between measurement support and un-
certainty exists, thus data requirements can be reduced at the cost of
creating uncertainty in inversion.
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