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Functional parameterization for hydraulic conductivity inversion
with uncertainty quantification

Jianying Jiao & Ye Zhang

Abstract Functional inversion based on local approxi-
mate solutions (LAS) is developed for steady-state flow in
heterogeneous aquifers. The method employs a set of LAS
of flow to impose spatial continuity of hydraulic head and
Darcy fluxes in the solution domain, which are condi-
tioned to limited measurements. Hydraulic conductivity is
first parameterized as piecewise continuous, which re-
quires the addition of a smoothness constraint to reduce
inversion artifacts. Alternatively, it is formulated as
piecewise constant, for which the smoothness constraint
is not required, but the data requirement is much higher.
Success of the inversion with both parameterizations is
demonstrated for both one-dimensional synthetic exam-
ples and an oil-field permeability profile. When measure-
ment errors are increased, estimation becomes less
accurate but the solution is stable, i.e., estimation errors
remain bounded. Compared to piecewise constant param-
eterization, piecewise continuous parameterization leads
to more stable and accurate inversion. Moreover, conduc-
tivity variation can also be captured at two spatial scales
reflecting sub-facies smooth-varying heterogeneity as well
as abrupt changes at facies boundaries. By combining
inversion with geostatistical simulation, uncertainty in the
estimated conductivity and the hydraulic head field can be
quantified. For a given measurement dataset, inversion
accuracy and estimation uncertainty with the piecewise
continuous parameterization is not sensitive to increasing
conductivity contrast.

Keywords Groundwater flow . Inverse modeling . Direct
method . Hydraulic conductivity . Uncertainty

Introduction

Hydraulic conductivity (K) is a key parameter influencing
fluid flow and solute transport in aquifers. Accurate

estimation of aquifer conductivity is a challenging task,
however, due to issues related to aquifer heterogeneity,
parameter and measurement scale effect, uncertainty in
aquifer boundary conditions (BC), and the lack of efficient
estimation techniques. In modeling groundwater flow,
besides conductivity, aquifer BC also need to be
ascertained which are typically poorly known (in transient
analysis, initial condition is also required). In
hydrogeology, the estimation of aquifer conductivity and
the assignment of appropriate initial and boundary
conditions are commonly addressed with the inverse
method, which according to Sagar et al. (1975), can be
categorized into five types based on the types of
unknowns: (1) model parameters, (2) initial conditions,
(3) boundary conditions, (4) sources and sinks, and (5) a
mixture of the preceding. This article addresses type 5
inversion by estimating aquifer conductivity and BC
simultaneously, for which K is parameterized as a set of
functions in the inversion grid. Such functions can be
piecewise continuous or piecewise constant, the latter
parameterization is similar to those adopted in inverting
highly parameterized problems (Zhou et al. 2014).
Moreover, by combining type 5 inversion with geostatistical
simulation, uncertainty in the estimated conductivities and
the flow will be quantified. Sources/sinks, such as pumping
and recharge, are not addressed, thus problems investigated
here pertain to the aquifer monitoring condition where
ambient flow dominates.

The majority of the existing inverse methods fall into
those of type 1 or parameter estimation techniques (Yeh
1986; Ginn and Cushman 1990; McLaughlin and Townley
1996; Carrera et al. 2005; Hill and Tiedeman 2007; Vrugt
et al. 2008). Typically, type 1 inversion adopts the indirect
techniques which minimize a (regularized) measurement-to-
model misfit, or an objective function. Such techniques may
be classified into three kinds: classic, highly parameterized,
and hybrid. In the classic approach, a model can be divided
into a number of pre-defined zones, with each zone
characterized with homogeneous parameters. A limited
number of parameters are sought during calibration, some-
times with the goal of identifying the most parsimonious
model. The classic approach has been implemented in a
number of model-independent computer programs (e.g.,
UCODE and PEST) that are widely used in practice (Poeter
et al. 2005; Hill 1992; Doherty 2005). Highly parameterized
methods typically have many more parameters to estimate

Received: 31 March 2014 /Accepted: 15 October 2014
Published online: 25 November 2014

J. Jiao :Y. Zhang ())
Department of Geology and Geophysics,
University of Wyoming, Laramie, WY 82071, USA
e-mail: yzhang9@uwyo.edu

Hydrogeology Journal (2015) 23: 597–610
DOI 10.1007/s10040-014-1202-5

* Springer-Verlag Berlin Heidelberg 2014

Author's personal copy



than there are observations and can be divided into
deterministic and stochastic approaches. A representative of
the former is the Pilot Point estimation method (Doherty
2005); that of the latter is based on geostatistical inverse
theory, where stochastic simulation, in addition to estimation,
can be used to describe parameter variations and their
probabilistic uncertainty (Carrera and Neuman 1986a,b,c;
Kitanidis 1995; Yeh et al. 1996; Zimmerman et al.; 1998;
Capilla et al. 1999; Medina and Carrera 2003; Janssen et al.
2006; Zanini and Kitanidis 2009). Hybrid or evolutionary
approaches have also been developed. For example, PEST
can incorporate Pilot Points within a zonation scheme, with
zone-by-zone calibration of many parameters. Pilot Point
locations can be iteratively selected (LaVenue and Pickens
1992), while zonation patterns can be derived from calibration
(Eppstein and Dougherty 1996; Roggero and Hu 1998; Gallo
and Ravalec-Dupin 2000). Based on Kalman Filter, a variety
of data fusion techniques have been developed, whereas
parameters are updated recursively using recent or near-real-
time measurements (Ferraresi et al. 1996; Porter et al. 2000;
Zhu and Yeh 2006). Related developments in petroleum
engineering have incorporated production data into reservoir
history-matching, within either a geostatistical (Deutsch and
Journel 1994; Wen et al. 2000) or optimization framework
(Romero et al. 2000; Schulze-Riegert et al. 2002; Kromah
et al. 2005; Eide et al. 1994; Amudo et al. 2008).

The aforementioned estimation techniques differ in their
implementation, although a common theme is the building and
calibration of a forwardmodelwithwhichmodelfit againstfield
observations is iteratively improved until model parameters are
determined. Because a forward model is needed to evaluate the
objective functions, aquifer BC need to be ascertained prior to
parameter estimation. However, due to data limitation, BC are
often poorly known and, as demonstrated in Irsa and Zhang
(2012), BC calibration can lead to non-unique estimation of
aquifer parameters and flow field. To address this issue, a direct
method was recently developed for inverting steady-state flows,
where analytical solutions of the groundwater flow equation
(i.e., fundamental solutions of inversion) were used to enforce
fluid flow continuity in space (Irsa and Zhang 2012; Zhang
2014; Jiao and Zhang 2014a; Jiao and Zhang 2014b; Zhang
et al. 2014). The direct method does not require forward
simulations to assess measurement-to-model misfits; thus the
knowledge of aquifer BC is not required.Measurements used in
the inverse model include hydraulic heads, Darcy fluxes, and
pumping rates. Given sufficient (although limited) measure-
ments, the direct method yields a set of well-posed systems of
linear or nonlinear equations that can be solved efficiently with
optimization. The method is thus computationally efficient and
the solution includes the simultaneous estimation of
conductivities and flow field (i.e., hydraulic head and Darcy
flux) including the unknown BC. For transient flows, Jiao and
Zhang (2014c) extended the earlier techniques by adopting a set
of local approximate solutions (LAS) offlowas the fundamental
solutions of inversion. Hydraulic conductivities, storage coeffi-
cients, BC, as well as the unknown aquifer initial conditions can
be estimated. Finally, because the direct method does not
simulate the forward model, a separate grid is developed for the
inverse analysis and is referred to herein as the “inversion grid”.

This grid can employ flexible discretization, which directly
influences inversion parameterization.

In previous works by the authors, under-determined
inversion can lead to unstable or non-converging solutions
(Zhang 2014), thus K was parameterized using zonation, i.e.,
piecewise constant over groups of inversion cells. This
approach ensures that the inverse systems of equations are
exact or over-determined when measurements are limited.
However, K of natural aquifers varies in a complex and
irregular manner with local trends reflecting sediment grain
size variations (Gelhar 1992). Large aquifer systems can
contain multiple facies where K varies relatively smoothly
within facies, but exhibits abrupt changes at their boundaries
(Fogg 1990; Scheibe and Freyberg 1995; Anderson 1997;
Zhang et al. 2005; Ramanathan et al. 2010). In this study, by
adopting piecewise functions to approximate K (one for each
inversion grid cell), the LAS inverse method is extended to
address more realistic aquifer heterogeneity that is not
described well by zonation. With the new formulation,
spatially variable K can be estimated along with the flow
field based on limited measurements. Conductivity estimation
is also successful for multi-facies systems, where K changes
abruptly at facies boundaries. Moreover, by combining
inversion with geostatistical simulation, uncertainty in the
estimated conductivity and flow field can be quantified.

In this study, using synthetic aquifer problems with
heterogeneous hydraulic conductivity distributions, accuracy
and stability of the LAS inverse method employing functional
parameterization is demonstrated. When K is piecewise
continuous, to maintain a well-posed system of equations
and to eliminate artifacts, a local smoothness constraint is
added. Highly parameterized inversion (i.e., K is piecewise
constant) is found to be a subset of the new inversion,
although the local smoothness constraint is not needed.
However, it requires a large number of measurements to
make the problem well-posed, which is not practical unless
additional regularizations are used. For the synthetic prob-
lems, inversion accuracy and stability of the two formulations
are demonstrated and compared. Piecewise continuous
formulation with the smoothness constraint is found to be
more stable in addition to having a lower data requirement.

In the following, the inverse method is described,
followed by results testing the method using synthetic
problems. Different K parameterizations, data supports,
and measurement errors are tested. The inverse solution is
considered stable if increasing measurement errors do not
lead to unbounded errors in the estimated parameters and
the flow field. The approach combining inversion with
geostatistical simulation to quantify estimation uncertainty
is described. Insights gained are summarized in sections
‘Discussion’ and ‘Conclusion’, where future research
direction is also suggested.

Theory

The forward model
The steady state flow equation for a 1-D confined aquifer
without source/sink effects can be written as:
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∂
∂z

K zð Þ∂h zð Þ
∂z

� �
¼ 0 in Ω ð1Þ

q zð Þ ¼ −K zð Þ∂h zð Þ
∂z

in Ω ð2Þ

where h(z) is hydraulic head [L], K(z) is hydraulic
conductivity [L/T], Ω denotes the model domain, z is
vertical axis [L], and q(z) is Darcy flux [L/T]. Equa-
tions (1) and (2) are written for the vertical axis to reflect
problems in inverting borehole data.

For the forward model, boundary conditions are
Dirichlet-type:

h ¼ g zð Þ on ∂Ω ð3Þ

where ∂Ω is Dirichlet model boundary and g(z)
describes a set of prescribed heads on the boundaries.

The LAS inverse model
The inverse method of this study enforces 4 con-
straints: (1) global continuity of hydraulic head and
Darcy fluxes throughout the solution domain; (2)
conditioning of the LAS to observed hydraulic heads
and Darcy fluxes; (3) a set of equation constraints,
imposed at selected points in the inversion grid; (4)
continuity of K at selected locations according to the
characteristics of heterogeneity. The last constraint is
implemented in the inverse formulation with a piece-
wise continuous parameterization, but is not needed for
the piecewise constant inversion.

The first constraint can be written as a set of continuity
equations of hydraulic head and Darcy’s flux:

Z
Rh Γ j

� �
δ pj−ε
� �

dΓ j ¼ 0; j ¼ 1;…; Y ð4Þ

Z
Rq Γ j

� �
δ pj−ε
� �

dΓ j ¼ 0; j ¼ 1;…; Y ð5Þ

Rh Γ j

� � ¼ hi Γ j

� �
−hk Γ j

� � ð6Þ

Rq Γ j

� � ¼ qi Γ j

� �
−qk Γ j

� � ð7Þ

where h and q are a set of proposed fundamental
solutions of inversion (i.e., LAS in this work, introduced
later), i and k denote cells in the inversion grid adjacent to
a cell interface Γ j , Rh Γ j

� �
and Rq Γ j

� �
are residuals of h

and q at Γ j , respectively, Y is the total number of cell

interfaces, and δ pj–ε
� �

is the Dirac delta weighting

function which samples the residuals at a set of colloca-
tion points on Γ j . In 1D inversion, only one collocation
point exists per cell interface, thus the total number of
collocation points is Y.

In the second constraint, the LAS are conditioned by
local measurements of hydraulic head and flux:

δ pa−εð Þ h pað Þ−hoa
� � ¼ 0 a ¼ 1;…;A; ð8Þ

δ pb−εð Þ qx pbð Þ−qob
� � ¼ 0 b ¼ 1;…;B; ð9Þ

where pa and pb are measurement points, hoa and qob
are observed hydraulic head and Darcy flux at pa and
pb, respectively, A and B are the number of observed
heads and fluxes, respectively, δ pa–εð Þ and δ pb–εð Þ
are weighting functions assigned to reflect the magni-
tude of the measurement errors. In general, δ pa–εð Þ
and δ pb–εð Þ are proportional to the inverse of error
covariance. To evaluate the accuracy and stability of
inversion, inverse solutions under both error-free and
random measurement errors (with zero mean) are
investigated.

To enforce the steady-state flow equation locally, a set
of equation constraints is developed:

δ pc−εð ÞRc ¼ 0; Rc ¼ ∂
∂z

K zð Þ∂h zð Þ
∂z

� �� 	




c

c ¼ 1;…; Y þ Aþ B

ð10Þ

where pc include both the collocation points and the
measurement locations and Rc is residual of the flow
equation at pc. The equation constraint is needed
because, as shown as below, the fundamental solutions
of inversion are local approximate solutions, which
allow the evaluation of general heterogeneous prob-
lems with significant boundary effects. At the pc
locations, Eq. 10 enforces a physical flow constraint
on the LAS.

When K is parameterized as piecewise continuous, a
set of continuity equations can be written at selected
locations according to the characteristics of heteroge-
neity:

Z
RK Γ j

� �
δ pj−ε
� �

dΓ j ¼ 0; j ¼ 1;…;X

RK Γ j

� � ¼ Ki Γ j

� �
− Kk Γ j

� � ð11Þ

where K is a local conductivity function (one for each
inversion cell), RK Γ j

� �
is residual of K at Γ j , X is the

number of inversion grid cell interfaces where K continu-
ity is imposed (X≤ Y), and i and k denote cells in the

inversion grid adjacent to Γ j . Again, δ pj–ε
� �

is a Dirac

delta weighting function.
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Fundamental solutions
In this study, conductivity is parameterized as piecewise
functions, one for each inversion cell. (Alternatively, a
function can be parameterized for individual facies
consisting of a group of cells, which is not tested).
Conductivity is thus spatially variable within each
inversion cell. If Ωi denotes such a cell, i=1,…, M (M
is the number of inversion cells), Eqs. (1) and (2) can be
rewritten as a set of local flow equations:

∂
∂z

K zð Þ∂h zð Þ
∂z

� �
¼ 0 on Ωi ð12Þ

q zð Þ ¼ −K zð Þ∂h zð Þ
∂z

on Ωi ð13Þ

where K zð Þ , h zð Þ and q zð Þ are local spatial functions
on Ωi . Because source/sink effects are not considered, a
set of hydraulic head, conductivity, and Darcy flux
functions can be proposed as an approximate solution of
Eqs. 12 and 13:

h zð Þ ¼ a1 þ a2zþ a3z
2 on Ωi ð14Þ

K zð Þ ¼ a4 þ a5zþ a6z
2 on Ωi ð15Þ

q zð Þ ¼ − a4 þ a5zþ a6z
2

� �
a2 þ 2a3zð Þ on Ωi ð16Þ

where al l ¼ 1; …; 6ð Þ are unknown coefficients on Ωi ,
to be determined by inversion. Given Eqs. (14)–(16),
Eq. (10) can be rewritten as:

δ pc−εð Þ 2a3 a4 þ a5zþ a6z
2

� �þ a2 þ 2a3zð Þ a5 þ 2a6zð Þ� � ¼ 0

ð17Þ

Because highly parameterized inversion (i.e., piecewise
constant K in each inversion cell), as implemented in
many classic techniques, is a subset of the functional
parameterization inversion, Eqs. (12), (13), (14), and (16)
can be rewritten as:

Ki
∂
∂z

∂h zð Þ
∂z

� �
¼ 0 on Ωi ð18Þ

q zð Þ ¼ −Ki
∂h zð Þ
∂z

on Ωi ð19Þ

h zð Þ ¼ a1 þ a2zþ a3z
2 on Ωi ð20Þ

q zð Þ ¼ −Ki a2 þ 2a3zð Þ on Ωi ð21Þ

where in each Ωi , its local conductivity (Ki) is assumed
homogeneous, and al l ¼ 1; 2; 3ð Þ are the unknown coeffi-
cients on Ωi . Accordingly, Eq. (10) can be rewritten as:

δ pc−εð Þ2a3Ki ¼ 0 ð22Þ

In the highly parameterized inversion, Eq. (11) is not
enforced when assembling the inverse formulations.

Solution techniques
Depending on parameterization, the inverse system of
equation is assembled by Eqs. (4)–(11) (piecewise continu-
ous), or Eqs. (4)–(10) (piecewise constant). The equation
systems can be under-determined, exact, or over-determined,
depending on both the inverse parameterization and the
number of measurements used to condition the inversion.
For the problems of this study, all equation systems are over-
determined, because under-determined problems generally
yield poor results. Due to the nonlinearity in the LAS, the
inverse system of equations is nonlinear and is solved with
two gradient-based optimization algorithms, i.e., Levenberg-
Marquardt and Trust-Region-Reflective. Both algorithms are
implemented in a MATLAB nonlinear solver, lsqnonlin,
which solves a nonlinear least-squares problem of the form
(The Mathworks, 2012):

min
x

f xð Þ 2
2

 ¼ min
x

f 1 xð Þ2 þ f 2 xð Þ2 þ⋯þ f w xð Þ2
� �

ð23Þ

where x is the inverse solution containing the unknown
parameters and the coefficients, w is the number of
equations, f1(x), f2(x),…, fw(x) are the equations assembled.
For the piecewise continuous parameterization, al
l ¼ 1; …; 6ð Þ are the unknowns for each inversion cell; for
the piecewise constant parameterization, al l ¼ 1; …; 3ð Þ
and Ki are the unknowns for each cell. The optimization
algorithms require that an initial guess of x be provided,
which is generated by assigning to x random values bounded
by the range of the observed heads.

The LAS method, similar to all inversion methods,
may suffer ill-posedness when insufficient and/or noisy
data are used to condition the inversion. Thus, the inverse
solution may not exist, it may not be unique, and it may
be unstable. With sufficient and accurate data that lead to
exact or over-determined equation systems, the inverse
problems are generally well-posed, leading to fast, stable,
and accurate solutions.

Uncertainty quantification
Most indirect inverse methods, particularly those based on
geostatistical techniques, can estimate parameters and flow
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field as well as quantify their estimation uncertainties (e.g.,
Kitanidis 1995; McKenna and Poeter 1995). Though a
variety of uncertainty quantification approaches exist
(Tartakovsky 2013), stochastic inversion based on the
geostatistical technique offers considerable flexibility in its
ability to integrate a variety of static and dynamic data that
can also exhibit spatial (and temporal) correlations. The
direct method, when combined with a geostatistical ap-
proach, can also lead to quantification of the estimation
uncertainty. For selected problems, variogram-based condi-
tional simulation is combined with inversion to quantify
these uncertainties (Fig. 1). Both the piecewise continuous
and piecewise constant parameterizations will be tested. The
conditional simulation will honor the observed hydraulic
heads, while providing a large number of simulated
“measurements” for inversion. These simulated heads will
be of varying qualities, as those closer to the observed heads
generally exhibit smaller errors. The observed fluxes are not
subject to such an analysis because, compared to hydraulic
heads, flux sampling is relatively rare, which can lead to poor
geostatistical simulation outcomes. Along with the observed
heads and the observed fluxes, the simulated heads are used
in the inverse model, leading to an over-determined equation
system and stable inversion. For each conditionally simulat-
ed hydraulic head field, one inversion system will be solved.
Given a large number of the conditionally simulated
hydraulic heads realizations, an ensemble of inverted K and
hydraulic head fields will be created, which leads to
quantification of the estimation uncertainty. For example, a
metric quantifying the calibration uncertainty in hydraulic
head can be computed as (Sakaki et al. 2009):

σnh ¼ 1

nobs

X
i¼1

nobs σest
i

hesti

ð24Þ

where nobs is the number of actual observed heads, hesti is
the ensemble mean of the inverted hydraulic heads at the ith
observed head location, and σest

i is the associated ensemble
hydraulic head standard deviation, assuming that the
inverted hydraulic head distribution at each observed head
location follows a Gaussian distribution. Note that a tradeoff
exists between the number of observed heads (nobs ) and
estimation uncertainty: when nobs is small, uncertainty in the
conditionally simulated heads will be large, which will lead
to larger estimation uncertainty, and vice versa.

Similar to Eq. (24), a metric for quantifying the calibration
uncertainty in hydraulic conductivity can be computed:

σnK ¼ 1

nK

X
i¼1

nK σest
i

Kest
i

ð25Þ

where nK is the number of selected conductivity
locations used for comparison (in this work, these
locations coincide with the observed head locations), Kest

i
is the ensemble mean of the inverted conductivities at the
ith conductivity location, and σest

i is the associated
conductivity estimation standard deviation.

Results

Based on synthetic heterogeneous aquifer problems,
accuracy and stability of the LAS inverse method with
piecewise continuous or constant parameterization is first
demonstrated (deterministic inversion). The inverse meth-
od, when combined with conditional simulation, then
leads to the quantification of estimation uncertainties
(stochastic inversion). For both deterministic and sto-
chastic inversion, the solution is verified by comparing
the estimated hydraulic conductivity and the inverted
hydraulic head profiles to those of the forward (true)
models. Each forward model, which is simulated with
the finite-difference method (FDM), is used to generate
observations for inversion under a set of true model
boundary conditions (herein, FDM denotes a forward
model). Three FDMs, labeled as cases (A), (B), and (C),
have been created. Their K distributions, computational
domain, and true forward model BC are listed in Table
1. Note that to ensure accurate forward solutions, dense
grids are used.

For selected cases, analysis is conducted to evaluate the
stability of inversion under increasing measurement errors.
Hydraulic heads sampled from the FDM are considered
error-free. To impose measurement errors, hm ¼ hFDM �Δ
h , where hm is measured head used in the inverse model,
hFDM is head sampled from the FDM, and Δh is a
random measurement error. The highest error imposed is
±1 % of the total head variation in the FDM. Thus, for
problems with a vertical dimension of 100 m, a hydraulic
head gradient of 1 % yields 1-m total head change. The
measured heads will vary within ±1 cm of the true
hydraulic head values. Because modern tapes and pressure
transducers can yield observed heads with a precision of
<1 cm (Post and von Asmuth 2013), the head measure-
ment errors imposed are considered reasonable. To
facilitate the interpretation of the inverse solution, Darcy
fluxes sampled from the FDM are not corrupted by errors.
In Jiao and Zhang 2014b, for example, inverse analyses
imposing errors on both measured heads and measured
fluxes yielded stable and reasonable solutions, when
compared to those where only hydraulic heads were
imposed with errors.

Deterministic inversion
For two of the forward models (Table 1), three inverse
analyses are carried out: cases 1, 2, and 3. Information
about the observations used in the inverse model, the
inversion grid, and the type of conductivity parameteriza-
tion is shown in Table 2. Each inversion grid has a regular
cell spacing. The observed data were sampled from the
FDM at regular intervals.

In the first problem (case 1), the forward model of case (A)
is inverted with piecewise continuous parameterization for K;
one K(z) function is inverted for each inversion grid cell. To
the observed heads sampled from the FDM, increasing
measurement errors (0, ±0.1, and ±1 %) are imposed. The
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inverted hydraulic heads and estimated K profiles are shown
in Fig. 2a,b, respectively. Under the increasingly larger head
errors, the inverted heads are all close to the true heads of the
FDM. The largest measurement errors only lead to slight
fluctuations of the inverted heads from the true heads.
Conductivity estimation, however, is more sensitive to the
head errors: when measurements are error-free, the inverted
conductivities are close to the trueK profile (labeled as FDM);
when measurement errors are increased, the inverted conduc-
tivities increasingly deviate from the true K profile. Despite
the imposed errors, all inverse solutions are stable: estimation
errors for either the inverted heads or the inverted K remain
bounded.

In case 2, two facies zones exist in the FDM (case B),
which are separated by a discontinuity at the facies boundary.
Within each facies, K exhibits a continuous profile. In
inversion, the same observation locations and the inversion
grid of case 1 are used. Increasing errors (0, ±0.1, and ±1 %)
are also imposed on the observed heads. Conductivity in
inversion is formulated as piecewise continuous. Location of
the facies boundary is assumed to be known in the inverse
model, i.e., the location where Eq. (11) is not imposed is
known. In practice, such locations can be inferred from where
abrupt change in the gradients of the observed hydraulic
heads occurs. (Alternatively, such information can be inferred
from independent data such as downhole lithology logs or
wireline geophysical data). The location of the facies
boundary helps to design the inversion grid where this
boundary coincides with a cell interface, which ensures that
no single K(z) function spans the boundary. Also, for this
problem, Eq. (11) is not enforced at this interface, while it is
enforced elsewhere in the inversion domain to represent
within-facies K variations, i.e., X=Y − 1.

Results of the inverted hydraulic head and conductivity
profiles are shown in Fig. 3. For all levels of the imposed
measurement errors, the inverted heads are very close to
the FDM true profile. When measurements are error-free,

the inverted conductivities are close to those of the FDM.
When measurement errors are increased, the inverted
conductivities exhibit increasing deviations from the true
K profile. This deviation is the most pronounced within
the higher conductivity facies. This is because the same
magnitude of measurement errors are imposed onto the
observed heads throughout the inversion domain, while
the total head variation is smaller in the high-K facies than
in the low-K facies. In the high-K facies, the local head
errors are comparably of higher magnitude, which leads to
greater local K estimation errors. These errors, however,
remain bounded as the estimated K fluctuates around the
true K profile. The inverse solutions are thus considered
stable under increasing measurement errors.

In case 3, the FDM of case (A) is inverted again using
error-free measurements, while K is alternatively parameter-
ized as piecewise continuous and piecewise constant. For the
first parameterization, 30 heads and 10 fluxes are sampled as
measurements, for which Eqs. (4)–(11) are assembled and
solved; for the second parameterization, 100 heads and 100
fluxes are sampled (to ensure that the inverse system of
equations is over-determined) and Eqs. (4)–(10) are assem-
bled and solved. The inversion results are shown in Fig. 4. For
both parameterizations, the inverted hydraulic heads are
extremely close to the true heads of the FDM. However, the
inverted K profiles differ to a much greater extent: despite the
greater number of measurements used, the inverted conduc-
tivities with piecewise constant parameterization are less
accurate than those with piecewise continuous parameteriza-
tion. Conductivity estimation error of the former also appears
to increase with increasing magnitude of the K, while this
effect is absent in the K profile inverted with the latter
formulation. Piecewise continuous parameterization thus
yields more accurate and stable outcomes while requiring
fewer measurements.

Stochastic inversion
The inverse method is combined with geostatistical
simulation to estimate a set of stochastic ensemble of the
inverted hydraulic heads and conductivities. Four inver-
sion cases are tested (cases 4–7), and information about
each case is shown in Table 3. Compared to the preceding
deterministic inversion, fewer observations are needed in
stochastic inversion of the same FDM, because more
hydraulic heads, created by conditional simulation, are
used by the inverse model. The expanded “measurement”
data thus contribute to the well-posedness of the inverse
equat ion systems, al though deviat ion of the
geostatistically simulated heads from the true head profile
will contribute to estimation errors in inversion. Such
errors, however, can be used to define the uncertainty in
estimation, as explained in the following paragraphs.
Moreover, both K parameterization schemes are tested;
compared to piecewise continuous parameterization, when
K is assumed as piecewise constant, more measurements
are needed for the inversion to yield stable solutions.

In case 4, the FDM of case (A) is inverted. From the
FDM, 10 observed heads and 9 observed fluxes are sampled

Fig. 1 Stochastic inversion for uncertainty quantification of the
estimated parameters and flow field. For conditional simulation of
the observed hydraulic head, an exponential model is fitted to the
experimental variogram of the hydraulic head
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at regular intervals. Given the observed heads, an exponen-
tial model is fitted to the experimental variogram, based on
which 100 hydraulic head conditional realizations are
generated. From each realization, 27 simulated hydraulic
heads, sampled at regular intervals, are used by the inverse
model in addition to the flux measurements (Table 3). Using
the piecewise continuous formulation, these measurements
are inverted to create one realization of the hydraulic head
and conductivity profiles. Given 100 realizations of the
simulated heads (i.e., the locations of the simulated heads
used by the inverse model remain identical), 100 sets of
inverted heads and conductivities are obtained.

A similar stochastic inversion procedure is then carried
out for cases 5–7. In case 5, the problem of case 4 is repeated,
although the number of observed heads is doubled to 20. As a
well-known result in geostatistics, the extra measured heads
will lead to reduced uncertainty in the conditionally simulated
heads (i.e., a smaller standard deviation in the hydraulic head
ensemble at each simulated location), thus reducing deviation
of the simulated heads from the true heads. In inversion, 27
simulated heads are again used (as in case 4).

Figures 5 and 6 present the 100 realizations of the
inverted heads and conductivities for cases 4 and 5,
respectively. The FDM heads and conductivities are plotted
for comparisons. Compared to case 4, because more
observed heads are used in conditional simulation (even
though the total number of heads used by the inverse model
is the same), the inverted heads and conductivities of case 5
are more accurate, i.e., on average, smaller standard
deviations are observed from the true heads and conductiv-
ities at individual inversion grid cells. This is confirmed by
the computed calibration uncertainties at the location of the
observed heads:σnh ¼ 1:35� 10–2; σnK ¼ 6:17 (case 4) and

σnh ¼ 3:73� 10–3; σnK ¼ 1:88 (case 5). Moreover, the
inverted conductivity profiles of both case 4 (Fig. 5b) and

case 5 (Fig. 6b) show regular and near linear fluctuations
along the true K profile. This phenomenon is a result of the
periodic head fluctuations in the conditionally simulated head
profile (not shown): such fluctuation occurs along the true
head profile at regular intervals, yielding fluctuating hydrau-
lic gradient, which results in fluctuation in the estimated K.
Had a different stochastic technique been used (e.g., one that
dampens the head fluctuation in conditional simulation), the
characteristics of the inverted K field will likely change.

In case 6, the FDM case (C) is inverted with piecewise
continuous parameterization (Fig. 7). Compared to case 5,
the number of measurements used and the inversion grid
are the same. Again, 100 conditionally simulated head
profiles are generated. From each realization, 27 simulated
heads are sampled and subsequently used by the inverse
model. In case 6, heterogeneity level of the FDM is
greater than that of case 5: Kmax/Kmin=100 (case 6) and 10
(case 5). Comparing Figs. 6 and 7, uncertainty in the
inverse solution (i.e., spread of the inverted K and heads
from the true K and heads) is found insensitive to the
change in the conductivity contrast. This is confirmed by
the calibration uncertainties (at the same observed head
location): σnh ¼ 3:73� 10−3; σnK ¼ 1:88 (case 5) and σnh

¼ 3:35� 10–3; σnK ¼ 2:1 (case 6). Given the piecewise
continuous parameterization, the inverse method is stable
for the different conductivity models tested, i.e., the
ensemble K and head fields remain bounded.

In case 7, the FDM of case (A) is inverted with
piecewise constant parameterization (Fig. 8). The number
of measurements used and the inversion grid discretization
are shown in Table 3. Compared to case 5, the same
number of observed heads is sampled. Because of the
greater number of unknowns that are sought in inversion,
45 simulated heads are used by the inverse model, and
many more fluxes are also sampled from the FDM.
Comparing Figs. 6a and 8a, the inverted hydraulic heads

Table 1 One-dimensional forward models developed in this study to test the inverse theory. To ensure accuracy in the forward solutions,
dense grids are used to discretize the FDM

FDM Conductivity distribution (cm/day) Computational domain (cm) Boundary condition (cm) Number of grid cells

Case (A) 9sin πz
1;000

� �
+1 [0, 1,000] h(0) = 10, h(1,000) = 20 2,000

Case (B) K1(z): 9sin πz
500

� �
+10 K1(z): [0, 500] h(0) = 10, h(1,000) = 20 5,000

K2(z): 9sin πz
500–1
� �

+30 K2(z): [500,1,000]

Case (C) 99sin πz
1;000

� �
+1 [0, 1,000] h(0) = 10, h(1,000) = 20 5,000

Table 2 Deterministic inversion problems tested in this study

Inversion FDM (true model) Parameterization Observed data sampled from FDM Number of inversion grid cells

Case 1 Case (A) Piecewise continuous 30 heads, 10 fluxes 10
Case 2 Case (B) Piecewise continuous 30 heads, 10 fluxes 10
Case 3 Case (A) Piecewise constant 100 heads, 100 fluxes 100

Piecewise continuous 30 heads, 10 fluxes 10
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are close to the FDM true heads. Calibration uncertainties of
the inverted heads and conductivities are: σnh ¼ 3:73� 10–3

; σnK ¼ 1:88 (case 5) and σnh ¼ 2:53� 10–3; σnK ¼ 13:99
(case 7). Comparing Figs. 6b and 8b, however, the
inverted conductivities with piecewise constant param-
eterization exhibit much larger fluctuations (i.e., aver-
age standard deviation of the ensemble) compared to
those inverted with piecewise continuous parameteriza-
tion. Again, in stochastic inversion, piecewise contin-
uous parameterization yields better outcomes while
requiring fewer measurements.

Discussion

To capture heterogeneity where K exhibits irregular or abrupt
changes corresponding to within- or between-facies

variations, this research extends earlier studies where a direct
method was developed for steady-state and transient flow
inversion under unknown boundary and/or initial conditions.
A set of continuity, data, and equation constraints is imposed
to ensure that the inverse solution is physically based.
However, instead of zonation, K is parameterized as
piecewise continuous or piecewise constant. In the first
parameterization, to ensure a well-posed solution (i.e., stable
inversion generally requires an exact or over-determined
system of equations) and to reduce inversion artifacts (e.g., K
fluctuation in response to measurement errors in the observed
heads and/or fluxes), an additional continuity constraint is
added to enforce smoothness of K at the interfaces between
adjacent inversion cells (but not at facies boundaries, where
abrupt change in K is expected). To assess uncertainty in
inversion and to further reduce data requirement, the inverse
method is combined with geostatistical conditional simulation

Fig. 2 Case 1: a FDM hydraulic heads versus inverted hydraulic
heads under increasing measurement errors; b FDM conductivities
versus inverted conductivities under increasing measurement errors

Fig. 3 Case 2: a FDM hydraulic heads versus inverted hydraulic
heads under increasing measurement errors; b FDM conductivities
versus inverted conductivities under increasing measurement errors
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to yield realizations of the inverted K and hydraulic head
fields. From these realizations, the unknown BC and their
uncertainties can also be quantified by sampling the appro-
priate state variables (not shown).

By designing a set of synthetic examples, a forward
FDM is used to provide measurements for inversion as
well as acting as the ground truth against which each
inverse solution is evaluated. Results suggest that the
LAS inverse method can lead to stable inversion under
increasing measurement errors. The combination of

Fig. 4 Case 3: a Inverted hydraulic heads under piecewise
continuous vs constant parameterization with error-free measure-
ment; b Inverted conductivities based on piecewise continuous vs
constant parameterization with error-free measurement

Table 3 Stochastic inversion problems tested in this study

Inversion FDM Observations (error-free)
from the FDM

Parameterization Observations that are used
by the inverse model

Number of inversion
grid cells

Case 4 Case (A) 10 headsa, 9 fluxes Piecewise continuous 27 headsb, 9 fluxesc 9
Case 5 Case (A) 20 heads, 9 fluxes Piecewise continuous 27 heads, 9 fluxes 9
Case 6 Case (C) 20 heads, 9 fluxes Piecewise continuous 27 heads, 9 fluxes 9
Case 7 Case (A) 20 heads, 45 fluxes Piecewise constant 45 heads, 45 fluxes 45

a Error-free observations are sampled from the FDM at regular intervals, which are used to condition the geostatistical simulations of the
head profile
b Hydraulic heads sampled from a conditionally simulated head profile at regular intervals
c Flux measurements that are used by the inverse model are deterministic and are the same as those sampled from the FDM

Fig. 5 Case 4: a FDM hydraulic heads (black dash curve) versus
100 inverted hydraulic heads profiles (grey curves); b FDM
conductivities (black dash curve) versus 100 inverted conductivities
profiles (grey curves)
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piecewise continuous K formulation with the (local) K
continuity constraint can realistically capture aquifer of
aquifer heterogeneity including abrupt facies changes,
without resorting to zonation. However, for inverting a
problem with two facies, location of the facies boundary
was assumed known in the inverse model, where the local
K continuity constraint was not imposed. While facies
boundaries may be ascertained from indirect data (e.g.,
porosity or lithology logs), it is of interest to invert
problems where the location of facies may be difficult to
determine from existing data. Also, for the two-facies
problem, K was smoothly varying within each facies. It is
of interest to invert problems where sub-facies K varies
irregularly. Using the piecewise continuous formulation, a
segment of hydraulic conductivity profile from an oil field
(Rogers et al. 1995) is inverted by assuming synthetic
fluid flow boundary conditions for the forward model.
The conductivity profile (Fig. 9b; solid curve) exhibit

three district facies, while within-facies K varies irregu-
larly. To solve this problem, the inversion grid is first
designed by examining the (true) hydraulic head profile
simulated by the forward model, from which six points
can be identified where dh/dz change is significant
(Fig. 9a). Based on these locations, an irregular inversion
grid with seven cells is created, with cell sizes corre-
sponding to the observed z intervals with relatively
constant dh/dz. From the forward model, error-free
measurements are sampled randomly while satisfying this
criterion: at least three heads and three fluxes are sampled
for each inversion cell (a total of 21 heads and 21 fluxes
are sampled). Because the true K profile exhibits strong
variability at small scales, the K continuity constraint (i.e.,
Eq. 11) is not imposed. The inverted head profile is very
accurate (Fig. 9a), while the inverted conductivities are
smooth varying, following the mean fluctuation of the

Fig. 6 Case 5: a FDM hydraulic heads (black dash curve) versus
100 inverted hydraulic heads profiles (grey curves); b FDM
conductivities (black dash curve) versus 100 inverted conductivities
profiles (grey curves)

Fig. 7 Case 6: a FDM hydraulic heads (black dash curve) versus
100 inverted hydraulic heads profiles (grey curves); b FDM
conductivities (black dash curve) versus 100 inverted conductivities
profiles (grey curves)
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true profile (Fig. 9b). This is likely a result of the
proposed LAS for conductivity (Eq. 15), which is smooth
varying. The inverted K fails to capture the two peaks at
z=183.86 and z=880.37 cm, where it underestimates the
true values by 20–45 %. To see if this issue can be
addressed with additional sampling, the aforementioned
analysis is repeated using the same inversion grid and
measurements, except for three additional fluxes that are
sampled at z=183.86, 547.45, and 880.37 cm, i.e.,
locations of peak K values in the facies. Results
(Fig. 9c,d) suggest that K estimation (Fig. 9d) improves
at these locations, although due to the nature of the LAS
of K, small fluctuations at the sub-facies scale cannot be
captured well. Moreover, a problem is investigated where
the locations with significant dh/dz changes are unknown.
A non-uniform inversion grid with seven cells is
developed, where all cell interfaces do not correspond to

dh/dz changes. In this case, the grid is the least amenable
to accurate inversion. Measurements of the first problem
(21 heads and 21 fluxes) and the second problem (21
heads and 24 fluxes) are then provided. Both lead to less
accurate inversion, as expected. Figure 9e,f provides the
results when measurements of the first problem were
used. The worsened performance is expected for K
estimation, although head estimation is less influenced
by the new grid. Overall, reasonable inversion outcomes
can be obtained for the realistic conductivity data with the
method of this study.

When the new inverse method is combined with
conditional simulation, it leads to reduced data require-
ment compared to deterministic inversion although this is
at the cost of creating uncertainty in estimation. Clearly,
whether deterministic or stochastic inversion is preferable
depends on the availability of the measurements. With
fewer measurements, the stochastic approach can yield
inversion outcomes with a larger degree of uncertainty
which can be quantified from the ensembles of the
inverted K and head fields. With more measurements,
modelers may choose to adopt the deterministic approach,
although such an approach (with piecewise continuous
parameterization) still requires a sufficient number of
measurements. How sufficient the measurements are can
be determined by examining the rank of the inverse
equations. (Optimization solvers for undetermined sys-
tems do exist, and future work will test alternative solvers
to evaluate whether the data requirement can be further
reduced.) Finally, as the preprocessor for inversion, only
hydraulic heads are simulated by conditional simulation.
Future work will explore co-simulation techniques so that
other data (e.g., local K measurements, lithology data,
geophysical measurements) can be incorporated into the
stochastic conditioning process. The ultimate limitation to
the wider application of the proposed inverse method, the
authors believe, is data limitation. When data, whether
static or dynamic, are too limited, geostatistical techniques
will not likely lead to improved outcomes compared to
deterministic inversion.

Conclusion

The LAS inverse method using piecewise functional K
is introduced for inverting steady-state flow in hetero-
geneous aquifers. By combining inversion with
geostatistical conditional simulation, estimation uncer-
tainty can be quantified. In the stochastic procedure,
observed hydraulic head distribution is modeled and
used to condition the inversion, which leads to
ensemble fields of the inverted hydraulic heads and
Ks. Based on numerical experiments, the inversion
outcomes are verified and their accuracy and stability
evaluated against the forward models. Key results of
this study are summarized as follows:

& The inverse method with continuous parameterization
is accomplished by imposing 4 constraints: (1) spatial

Fig. 8 Case 7: a FDM hydraulic heads (black dash curve) versus
100 inverted hydraulic heads profiles (grey curves); b FDM
conductivities (black dash curve) versus 100 inverted conductivities
profiles (grey curves)
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continuity of hydraulic head and Darcy fluxes; (2)
conditioning of the LAS to observed data; (3) equation
constraints at selected spatial locations to enforce flow
physics; and (4) local K continuity constraint to
enforce smoothness on small-scale K variation.

& Given the piecewise continuous parameterization,
constraint (4) is needed to reduce artifacts in inversion
and to ensure that the inverse system of equation is
well-posed. Abrupt conductivity changes due to facies
changes can also be captured, although constraint (4)

Fig. 9 a, c, e FDM hydraulic heads (solid red curve) versus inverted hydraulic heads (dashed curves): a known locations of facies
transition; c known locations of both facies transition and the maximum K within each facies; e unknown locations of both facies transition
and maximum K within each facies; b, d, f true K profile (solid red curve) versus inverted K profile (dashed curve); b known locations of
facies transition; d known locations of both facies transition and the maximum K within each facies; f unknown locations of both facies
transition and maximum K within each facies
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should be removed at the locations corresponding to
facies changes to ensure accuracy.

& As a subset of the functional parameterization, the
piecewise constant formulation (which is similar to
highly parameterized inversion, and the local K continu-
ity constraint is removed) leads to less accurate K
estimation while requiring higher measurement supports.
In comparison, piecewise continuous parameterization
leads to more stable and accurate inversion while
requiring fewer measurements.

& When increasing measurement errors are imposed on
the observed heads, the estimated conductivities
become less accurate, but the inverse solution is still
stable, i.e., estimation errors remain bounded.

& In stochastic inversion with piecewise continuous pa-
rameterization, inversion improves with increasing num-
ber of the observed heads. Given the same measurement
support, inversion outcomes are insensitive to conduc-
tivity contrast, i.e., Kmax/Kmin is tested up to 100.

In this study, measurement data that are used by the
inverse model include hydraulic heads and Darcy fluxes.
While heads can be easily sampled with pressure
transducers, in-situ flux sampling requires specialized
techniques (Labaky et al. 2009). Future work will extend
the method of this study to higher spatial dimensions and
to transient flows. Pattern recognition will be investigated,
with which location and shape of the facies can be inferred
from the solution. Joint inversion will also be explored,
e.g., co-simulation of hydrological data with indirect data
such as lithology logs or geophysical measurements.

Acknowledgements This work is supported by the University of
Wyoming School of Energy Resources Center for Fundamentals of
Subsurface Flow (WYDEQ49811ZHNG), and NSF CI-WATER
(Cyberinfrastructure to Advance High Performance Water Resource
Modeling), and NSF EPSCoR (EPS 1208909).

References

Anderson MP (1997) Characterization of geological heterogeneity.
In: Subsurface flow and transport: a stochastic approach.
Cambridge University Press, Cambridge, UK, pp 23–43

Amudo C, Graf T, Harris NR, Dandekar R, Amor FB, May R S
(2008) Experimental design and response surface models as a
basis for stochastic history matching: a Niger Delta experience.
SPE paper no. 12665, SPE, Richardson, TX

Capilla JE, Rodrigo J, Gomez-Hernandez JJ (1999) Simulation of
non-Gaussian transmissivity fields honoring piezometric data
and integrating soft and secondary information. Math Geol
31(7):907–927

Carrera JY, Neuman SP (1986a) Estimation of aquifer parameters
under steady-state and transient conditions: I. background and
statistical framework. Water Resour Res 22(2):199–210

Carrera JY, Neuman SP (1986b) Estimation of aquifer parameters
under steady-state and transient conditions: II. uniqueness,
stability, and solution algorithms. Water Resour Res
22(2):211–227

Carrera JY, Neuman SP (1986c) Estimation of aquifer parameters
under steady-state and transient conditions: III. applications.
Water Resour Res 22(2):228–242

Carrera J, Alcolea A, Medina A, Hidalgo J, Slooten LJ (2005)
Inverse problem in hydrogeology. Hydrogeol J 13:206–222

Deutsch CV, Journel AG (1994) Integrating well test-derived
effective absolute permeabilities in geostatistical reservoir
modeling. In: Yarus JM, Chambers RL (eds) Stochastic
modeling and geostatistics, vol 3. AAPG, Tulsa, OK, pp 131–
142

Doherty J (2005) PEST: Software for model-independent parameter
estimation, Watermark Numerical Computing, Brisbane, Aus-
tralia. http://www.pesthomepage.org/Home.php. Accessed Oc-
tober 2013.

Eide A L, Holden L, Reiso E, Aanonsen SI (1994) Automatic
history-matching by use of response surfaces and experimental
design. Proceedings, 4th European Conference on the Mathe-
matics of Oil Recovery, Roros, Norway, June 1994

Eppstein MJ, Dougherty DE (1996) Simultaneous estimation of
transmissivity values and zonation. Water Resour Res
32(11):3321–3336

Ferraresi M, Todini E, Vignoli R (1996) A solution to the inverse
problem in groundwater hydrology based on Kalman filtering. J
Hydrol 175:567–581

Fogg GE (1990) Architecture and interconnectedness of geologic
media: role of the low-permeability facies in flow and transport.
Heise, Hannover, Germany, pp 19–40

Gallo YL, Ravalec-Dupin ML (2000) History matching
geostatistical reservoir models with gradual deformation meth-
od. Proceedings, 1st International Energy Agency Workshop
and Symposium, Edinburgh, UK, September 20–22, 2000

Gelhar LW (1992) Stochastic subsurface hydrology, Prentice Hall,
Upper Saddle River, NJ, 480 pp

Ginn TR, Cushman JH (1990) Inverse methods for subsurface flow:
a critical review of stochastic techniques. Stoch Hydrol Hydraul
4(1):1–26

Hill MC (1992) A computer program (MODFLOWP) for estimating
parameters of a transient, three dimensional, groundwater flow
model using nonlinear regression. US Geol Surv Open File Rep
91-484

Hill MC, Tiedeman CR (2007) Effective groundwater model
calibration: with analysis of data, sensitivities, predictions, and
uncertainty. Wiley, New York, 480 pp

Irsa J, Zhang Y (2012) A new direct method of parameter
estimation for steady state flow in heterogeneous aquifers with
unknown boundary conditions. Water Resour Res 48, W09526.
doi:10.1029/2011WR011,756

Janssen GMCM, Valstar JR, Sjoerd EA, van der Zee TM (2006)
Inverse modeling of multimodal conductivity distributions.
Water Resour Res 42, W03410. doi:10.1029/2005WR004356

Jiao JY, Zhang Y (2014a) Two-dimensional inversion of confined
and unconfined aquifers under unknown boundary condition.
Adv Water Resour 65:43–57

Jiao JY, Zhang Y (2014b) Tensor hydraulic conductivity estimation
for heterogeneous aquifers under unknown boundary condi-
tions. Groundwater. doi:10.1111/gwat.12202

Jiao JY, Zhang Y (2014c) A method based on Local Approximate
Solutions (LAS) for inverting transient flow in heterogeneous
aquifers. J Hydrol. doi10.1016/j.hydrol.2014.04.004

Kitanidis PK (1995) Quasi-linear geostatistical theory for inversing.
Water Resour Res 31(10):2411–2419

Kromah MJ, Liou J, MacDonald DG (2005) Step change in
reservoir simulation breathes life into mature oil field. SPE
paper no. 94940, SPE, Richardson, TX

Labaky W, Devlin JF, Gillham RW (2009) Field comparison of the
point velocity probe with other groundwater velocity measure-
ment method. Water Resour Res 45, W00D30. doi:10.1029/
2008WR007066

LaVenue AM, Pickens JF (1992) Application of a coupled adjoint
sensitivity and kriging approach to calibrate a groundwater
model. Water Resour Res 28(6):1543–1570

McLaughlin D, Townley LR (1996) A reassessment of the groundwa-
ter inverse problem. Water Resour Res 32(5):1131–1161

McKenna SA, Poeter EP (1995) Field example of data fusion in site
characterization. Water Resour Res 31(12):3229–3240

609

Hydrogeology Journal (2015) 23: 597–610 DOI 10.1007/s10040-014-1202-5

Author's personal copy

http://www.pesthomepage.org/Home.php
http://dx.doi.org/10.1029/2011WR011756
http://dx.doi.org/10.1029/2005WR004356
http://dx.doi.org/10.1111/gwat.12202
http://dx.doi.org/10.1016/j.hydrol.2014.04.004
http://dx.doi.org/10.1029/2008WR007066
http://dx.doi.org/10.1029/2008WR007066


Medina A, Carrera J (2003) Geostatistical inversion of coupled
problems: dealing with computational burden and different type
of data. J Hydrol 281(4):251–264

Poeter EP, Hill MC, Banta ER, Mehl S, Christensen S (2005)
UCODE_2005 and six other computer codes for universal
sensitivity analysis, calibration, and uncertainty evaluation. USGS
Techniques and Methods, 6-A11, USGS, Reston, VA, 283 pp

Porter DW, Gibbs BP, Jones WF, Huyakorn PS, Hamm LL, Flach
GP (2000) Data fusion modeling for groundwater systems. J
Contam Hydrol 42:303–335

Post VEA, von Asmuth JR (2013) Review: hydraulic head
measurements: new technologies, classic pitfalls. Hydrogeol J
21:737–750

Ramanathan R, Guin A, Ritzi RW et al (2010) Simulating the
heterogeneity in braided channel belt deposits: 1. a geometric‐
based methodology and code. Water Resour Res 46(4),
W04515. doi:10.1029/2009WR008111

Rogers SJ, Chen HC, Kopaska-Merkel DC, Fang JH (1995)
Predicting permeability from porosity using artificial neural
networks. AAPG Bull 79(12):1786–1796

Roggero F, Hu LY (1998) Gradual deformation of continuous
geostatistical models for history matching. SPE paper no.
49005, SPE, Richardson, TX

Romero CE, Carter JN, Zimmermann RW, Gringarten AC (2000)
Improved reservoir characterization through evolutionary com-
putation. SPE paper no. 62942, SPE, Richardson, TX

Sagar B, Yakowitz S, Duckstein L (1975) A direct method for the
identification of the parameters of dynamic nonhomogeneous aquifers.
Water Resour Res 11(4):563–570. doi:10.1029/WR011i004p00563

Sakaki T, Frippiat CC, Komatsu M, Illangasekare TH (2009) On the
value of lithofacies data for improving groundwater flow model
accuracy in a three-dimensional laboratory-scale synthetic aquifer.
Water Resour Res 45, W11404. doi:10.1029/2008WR007229

Scheibe DT, Freyberg DL (1995) Use of sedimentological informa-
tion for geometric simulation of natural porous media structure.
Water Resour Res 31:3259–3270

Schulze-Riegert R, Axmann J, Haase O, Rian D, You Y (2002)
Evolutionary algorithms applied to history matching of complex
reservoirs. SPE Reserv Eval Eng 5(2):163–173

Tartakovsky DM (2013) Assessment and management of risk in
subsurface hydrology: a review and perspective. Adv Water
Resour 51:247–260

Vrugt JA, Stauffer PH, Wohling T, Robinson BA, Vesselinov VV
(2008) Inverse modeling of subsurface flow and transport
properties: a review with new developments. Vadose Zone J
7:843–864

Wen XH, Deutsch CV, Cullick AS, Reza ZA (2000) Integration of
production data in generating reservoir models. Stanf Cent For
Comput Geostat (CCG) Monogr Ser 1:205

Yeh WWG (1986) Review of parameter identification procedures in
groundwater hydrology: the inverse problem. Water Resour Res
22(2):95–108

Yeh TCJ, Jin M, Hanna S (1996) An iterative stochastic inverse
method: conditional effective transmissivity and hydraulic head
fields. Water Resour Res 32(1):85–92

Zanini A, Kitanidis PK (2009) Geostatistical inversing for large-
contrast transmissivity fields. Stoch Env Res Risk A 23:565–
577

Zhang Y, Person M, Paola C, Gable CW, Wen X-H, Davis JM
(2005) Geostatistical analysis of an experimental stratigraphy.
Water Resour Res 41, W11416. doi:10.1029/2004WR003756

Zhang Y (2014) Nonlinear inversion of an unconfined aquifer:
simultaneous estimation of heterogeneous hydraulic conductiv-
ities, recharge rates, and boundary conditions. Transp Porous
Media 102:275–299. doi:10.1007/s11242-014-0275-x

Zhang Y, Irsa J, Jiao JY (2014) Three-dimensional aquifer inversion
under unknown boundary conditions. J Hydrol 509:416–429.
doi:10.1016/j.jhydrol.2013.11.024

Zhou H, Gomez-Hernandez JJ, Li L (2014) Inverse methods in
hydrogeology: evolution and recent trends. Adv Water Resour
63:22–37

Zhu J, Yeh TCJ (2006) Analysis of hydraulic tomography using
temporal moments of drawdown recovery data. Water Resour
Res 42, W02403. doi:10.1029/2005WR004309

Zimmerman DA et al (1998) A comparison of seven geostatistically
based inverse approaches to estimate transmissivities for
modeling advective transport by groundwater flow. Water
Resour Res 34(6):1373–1413

610

Hydrogeology Journal (2015) 23: 597–610 DOI 10.1007/s10040-014-1202-5

Author's personal copy

http://dx.doi.org/10.1029/2009WR008111
http://dx.doi.org/10.1029/WR011i004p00563
http://dx.doi.org/10.1029/2008WR007229
http://dx.doi.org/10.1029/2004WR003756
http://dx.doi.org/10.1007/s11242-014-0275-x
http://dx.doi.org/10.1016/j.jhydrol.2013.11.024
http://dx.doi.org/10.1029/2005WR004309

	Functional parameterization for hydraulic conductivity inversion with uncertainty quantification
	Abstract
	Introduction
	Theory
	The forward model
	The LAS inverse model
	Fundamental solutions
	Solution techniques
	Uncertainty quantification

	Results
	Deterministic inversion
	Stochastic inversion

	Discussion
	Conclusion
	References


