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Abstract
A physically based inverse method is developed using hybrid formulation and coordinate transform to simultaneously estimate

hydraulic conductivity tensors, steady-state flow field, and boundary conditions for a confined aquifer under ambient flow or
pumping condition. Unlike existing indirect inversion techniques, the physically based method does not require forward simulations
to assess model-data misfits. It imposes continuity of hydraulic head and Darcy fluxes in the model domain while incorporating
observations (hydraulic heads, Darcy fluxes, or well rates) at measurement locations. Given sufficient measurements, it yields a
well-posed inverse system of equations that can be solved efficiently with coarse grids and nonlinear optimization. When pumping
and injection are active, well rates are used as measurements and flux sampling is not needed. The method is successfully tested
on synthetic aquifer problems with regular and irregular geometries, different hydrofacies and flow patterns, and increasing
conductivity anisotropy ratios. All problems yield stable inverse solutions under increasing head measurement errors. For a given
set of observations, inversion accuracy is strongly affected by the conductivity anisotropy ratio. Conductivity estimation is also
affected by flow pattern: within a hydrofacies, when Darcy flux component is very small, the corresponding directional conductivity
perpendicular to streamlines becomes less identifiable. Finally, inversion is successful even if the location of aquifer boundaries is
unknown. In this case, the inversion domain is defined by the location of the measurements.

Introduction
Hydraulic conductivity (K ) is a critical parameter

influencing fluid flow in aquifers. Owing to subsur-
face heterogeneity, conductivity often exhibits large-scale
anisotropy and must be represented as a tensor property
in groundwater models (Zhang et al. 2006). However,
because of issues related to aquifer heterogeneity, mea-
surement scale effect, uncertain boundary conditions
(BCs), and lack of efficient estimation techniques, tensor
K estimation is challenging. For a confined aquifer with
multiple hydrofacies, this study develops a steady-state
physically based inverse method that can simultaneously
estimate tensor conductivities, groundwater flow field, and
the unknown aquifer BC. In the following, current inverse
methods for estimating aquifer K are briefly discussed,
before key features of the new method are presented.
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To estimate aquifer hydraulic conductivity, existing
inverse methods typically develop a forward simulation
model which is calibrated against observed aquifer
dynamic data such as water levels, flow rates, and solute
concentrations (Zhou et al. 2014). The commonly used
indirect inverse methods minimize an objective function
defined as a misfit between field measurements and
model simulated values. During inversion, parameters
are updated iteratively using the forward model which
provides the link between parameters and data. Because
a forward model is needed, BCs of the model are
either assumed known, or are calibrated as part of the
inversion procedure. However, BCs are rarely known in
real aquifers and, as demonstrated by Irsa and Zhang
(2012), BC calibration can lead to nonuniqueness in the
estimated parameters and flow field. This means that
many combinations of parameters and BC can lead to
the same objective function value, thus results of indirect
inverse methods are generally nonunique (Hunt et al.
1998; Rojas et al. 2008). To address this issue, steady-
state groundwater in a confined aquifer is inverted with a
physically based method which simultaneously estimates
hydraulic conductivity and the flow field including
the unknown aquifer BC (Irsa and Zhang 2012). The
method imposes fluid flow continuity by fitting a set
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of approximating functions of the state variables to
observations at locations where they are measured, which
gives rise to a set of equations that can be solved in
a single step. Because no forward model is simulated,
the inverse method is computationally efficient and has
been successfully extended to three-dimensional flows
(Zhang et al. 2014) as well as to problems with significant
sources/sinks (Jiao and Zhang 2014; Zhang 2014). In
these studies, aquifer conductivities were assumed locally
isotropic, which however may not reflect field conditions.

Using hybrid formulation and coordinate transform,
this study extends our previous works by estimating
tensor conductivities for an aquifer under ambient flow or
pumping condition. In ambient flow, observations needed
for inversion to succeed include hydraulic heads and sub-
surface Darcy fluxes. When pumping is active, pumping
rate can replace flux measurements. The inverse solution
includes hydrofacies conductivities and head and flux
approximating functions throughout the model domain.
Several synthetic problems with regular and irregular
aquifer geometries, different hydrofacies and flow pat-
terns, and increasing conductivity anisotropy ratio are
successfully inverted. Inversion is also successful when
aquifer boundary location is unknown, that is, inversion
domain is defined by the location of measurements, offer-
ing significant flexibility for problems where aquifer phys-
ical boundaries are either far away from the area of interest
(where measurements lie) or their location is uncertain.

In the remainder of this article, the physically based
inverse method is introduced, followed by results testing
the method on several synthetic problems. For each prob-
lem, a forward model generates a set of “true” observa-
tions under a set of true model BCs. The observations are
inverted to estimate conductivities and flow field which
are compared to the forward model to assess the accuracy
of inversion. Strengths and limitations of the method are
discussed, and for a problem where aquifer boundary
location is unknown, inverse solution is compared to one
obtained with an objective function-based technique.

Theory
In this study, model coordinate is assumed aligned

with conductivity principle directions, estimated K are
thus diagonal tensors. Under the Dupuit-Forchheimer
assumption of negligible vertical flow, the steady-state,
two-dimensional (2D), incompressible flow equation for
a horizontal confined aquifer is

∂

∂x

(
Kx b

∂h (x , y)

∂x

)
+ ∂

∂y

(
Ky b

∂h (x , y)

∂y
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+ Qδ (x0, y0) = 0 on � (1)

where (x ,y) is horizontal coordinate, h(x ,y) is hydraulic
head [L], K = diag(Kx, Ky) [L/T], Q is pumping (positive)
or injection (negative) rate per unit area at (x0, y0) [L/T],
� is solution domain, b is aquifer thickness (assumed
known) [L]. The horizontal Darcy flux q = [qx, qy] can

be written as: qx = −Kx
∂h(x ,y)

∂x , qy = −Ky
∂h(x ,y)

∂y . Given
hydraulic conductivities, Equation (1) can be solved in the
forward mode under a set of suitable BCs.

Following our previous works, the inverse method
enforces two constraints:

1. Global continuity of hydraulic head and Darcy flux
throughout �, which can be written as:
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where Rh (�j ) and Rq (�j ) are residuals of approximating
functions of hydraulic head and Darcy flux at j th cell
interface (�j ) in the inversion grid, respectively, m is the
total number of cell interfaces, δ(pj − ε) is a Dirac delta
weighting function which samples the residuals at a set
of collocation points (pj) on the interfaces. Both residuals
can be expanded as
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where h and q are the approximating functions, and i and
k denote cells in the inversion grid adjacent to �j . If �j

lies within a hydrofacies, Rq (�j ) is written for both flux
components; if �j lies on a hydrofacies boundary, Rq (�j )
is written for the normal flux.

2. Local conditioning of h and q to observed heads and
fluxes:
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where pj is a sampling point, ho , qo
x , and qo

y are
measured data, δ(pj − ε) is a weighting function which
reflects measurement errors. When measurement errors
are uncorrelated, δ(pj − ε) is proportional to the inverse
of the error covariance (Hill and Tiedeman 2007).
When data are error-free, δ(pj − ε) = 1. In this work,
inversion under both error-free and random measurement
errors is investigated. For problems with active pumping,
Equations 7 and 8 are optional, whereas well rates (Q)
are considered measurements.

To obtain the approximating functions, local analyti-
cal flow solutions are developed which are applicable to
describing flow in either individual inversion grid cells or
individual hydrofacies. For such a homogeneous subdo-
main (�i ), Equation 1 becomes:
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Equation 9 is linear for which a local analytical flow
solution can be found:

h (x , y) = a1 + a2x

(
Ky

Kx

)0.25

+ a3y

(
Kx

Ky

)0.25

+ a4xy

+ a5x2
(

Ky

Kx

)0.5

− a5y2
(

Kx

Ky

)0.5

+ Q

4πb
√

Kx Ky

× ln

(
(x − x0)

2
(

Ky

Kx

)0.5

+ (y − y0)
2
(

Kx

Ky

)0.5
)

on �i (10)

where a1, a2, a3, a4, and a5 are coefficients of the
subdomain to be determined by inversion, Kx and Ky

are unknown component conductivities of �i , Q is a
(known) well rate at (x0, y0) ∈ �i . Equation 10 is obtained
by transforming the original model coordinate where K
is diagonal to a new coordinate where it is scalar: (1)
in the new coordinate, analytical solution is developed
for Equation 9 using superposition; (2) transform the
analytical solution back to the original coordinate (Chin
2006). For example, the last term of Equation 10 is
based on transforming the Thiem solution for an infinite,
homogeneous, isotropic confined aquifer with a fully
penetrating well of zero radius; the first six terms describe
a superimposed background flow (i.e., a solution of the
Laplace equation) that arises owing to regional BC or
local hydrofacies variations. A single well is represented
in Equation 10. If more than one well exist, Equation 10
will be developed for each well. Based on Equation 10,
Darcy flux in �i can be written as
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For a given inversion grid, Equations 10 to 12 are
discretized with a hydrofacies-based K parameterization
which is in effect a form of regularization (Moore and
Doherty 2006). No other prior information is assumed.
In the inversion grid, grid cells honor hydrofacies bound-
aries but generally coarsen away from these boundaries.
Because analytical solutions are created to represent
pumping, local grid refinement (LGR) at wells is not
needed. Furthermore, because analytical solutions are
populated in a piecewise manner, the inversion grid can

be highly flexible, for example, voxel connection is not
necessary. Following discretization, Equations 2 and 3
are written at all inversion grid cell interfaces and
Equations 6 to 8 at the measurement locations. The
equations are nonlinear, and depending on measurement
support, can be underdetermined, exact, or overde-
termined. Here, sufficient observations are provided to
inversion, the equation systems are overdetermined which
can lead to stable solutions. The equations are minimized
with two gradient-based optimization techniques, that
is, Levenberg-Marquardt and Trust-Region-Reflective
(Moré 1977; Coleman and Li 1996). Both algorithms
are implemented in Matlab’s lsqnonlin , which solves a
least-squares problem (The Mathworks 2012):

min
x

‖ f (x) ‖2
2= min

x

(
f1 (x)2 + f2 (x)2 + · · · + fn (x)2)

(13)

where x is the inverse solution: xT = [al
1, al

2, al
3, al

4, al
5,

Km], l = 1 , . . . , M (number of inversion cells), m = 1, . . . ,
R (number of hydrofacies), and f 1(x ), f 2(x ), . . . , fn(x )
are the equations assembled according to Equations 2
to 8. Constraints can also be placed on x , for example,
enforcing positive conductivities. From the solution, K are
estimated and h and q (one set for each inversion cell)
recovered. BC (either head or flux) can be obtained by
sampling the appropriate h and q .

As discussed in Hill and Tiedeman (2007), unique
conductivity estimation requires both hydraulic heads and
measurements related to head gradient, that is, fluxes or
flow rates. This study first investigates ambient flow for
which subsurface Darcy fluxes are sampled, and h and q

are obtained by setting Q = 0 in Equations 10 to 12.
Next, a problem with active pumping and injection is
inverted for which Equations 10 to 12 are implemented
in a hybrid formulation: Q is specified to a “well cell”
and is zero outside the well cell. The size of the well cell
must be carefully adjusted so that it is sufficiently large
to accommodate a number of observed heads (≥2) which
help condition the local solution inside the well cell. This
size is also influenced by proximity to boundaries—if BC
significantly impacts pumping, the well cell dimensions
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must be reduced. Reversely, if BC influence on pumping
is insignificant, the well cell can encompass a greater area.
Overall, the local solution inside the well cell must not
be strongly influenced by BC. Instead, BC influence is
reflected in the solutions of grid cells between the well
cell and the model boundary. This hybrid formulation
leads to significant computational savings, as the number
of unknown coefficients is kept low.

Results
To use synthetic aquifers to test the inverse method,

forward (true) models are first simulated to provide the
inversion with observations. These models are simulated
with MODFLOW2000 (Harbaugh et al. 2000), with a
horizontal base set as the head datum. When pumping
and injection are active, grid cells near wells are
increasingly refined until drawdowns no longer change
with grid refinement. The inverse method is tested next
by comparing the estimated K and the recovered flow
fields to those of the forward models. Five problems with
regular aquifer shapes are investigated, followed by three
with complex geometries—in the last problem, the aquifer
boundary location is unknown and the inversion grid is
defined by the measurement location.

For selected problems, stability tests are conducted
to access inversion under increasing measurement errors.
Because finite difference model (FDM) is used for the for-
ward simulation, measurements sampled from this model
are considered error-free, that is, “true” heads or “true”
fluxes. To impose errors, for example, the true heads are
corrupted by random noises: hm = hFDM ± �h , where hm

is the measured head provided to inversion, hFDM is the
true head, and �h is the measurement error. The high-
est �h is ±1% of the total head variation of the forward
model, with an absolute error up to ±0.2 feet. This is rea-
sonable considering that modern measurement techniques
can determine water level with a precision less than 1 cm
(Post and von Asmuth 2013). In the following, units of
the relevant quantities are: K in ft/d (1 ft/d = 0.305 m/d), q
in ft/d (1 ft/d = 0.305 m/d), h in feet (1 ft = 0.305 m), flow
rate in ft3/d (1 ft3/d = 0.028 m3/d). Alternatively, a consis-
tent set of units can be assumed (Neuman et al. 2007).

Regular Domain
Five problems (cases 1 to 5), of regular shapes

(Figure 1), are first inverted. Forward models (or FDM) of
these cases are of the same dimensions (Lx = 1000 feet and
Ly = 1000 feet), discretization (50 × 50 grid), and BCs,
with true K value listed in Tables 1 and 2. Cases 1, 2,
and 3 pertain to a homogeneous aquifer with increasing
conductivity anisotropy ratio (Ky/Kx) (Table 1), for which
eight heads were sampled from the FDM in a quasi-regular
pattern (not shown). In inversion, a 2 × 2 uniform grid is
used. In cases 1 and 2, two Darcy flux vectors (q) were
sampled from the FDM, at location corresponding to the
centers of the two left-hand-side inversion cells. In case 3,
seven q were randomly sampled, although each inversion
cell has at least one q measurement.

Figure 1. Forward true model with true BC. In cases 1 to
3, a single K tensor is estimated. Dashed line indicates an
interface for cases 4 and 5, where 2 K zones (labeled “K 1,”
“K 2”) exist. The length unit is in ft.

Table 1
Estimated K (ft/d) for Cases 1 to 3 under

Increasing Measurement Errors

Conductivity Measurements Grid

FDM (case 1) Kx = 1 Ky = 5 50 × 50
Head error = 0% 1 4.91 8 heads + 2 q 2 × 21

Head error = ±0.5%
(±0.05 feet)

0.85 4.88 8 heads + 2 q 2 × 2

Head error = ±1%
(±0.1 feet)

0.37 4.3 8 heads + 2 q 2 × 2

FDM (case 2) Kx = 1 Ky = 10 50 × 50
Head error = 0% 0.91 10.63 8 heads + 2 q 2 × 2
Head error = ±0.5%

(±0.05 feet)
0.037 10.42 8 heads + 2 q 2 × 2

Head error = ±1%
(±0.1 feet)

0.025 10.99 8 heads + 2 q 2 × 2

FDM (case 3) Kx = 1 Ky = 100 50 × 50
Head error = 0% 0.998 100.7 8 heads + 7 q 2 × 2
Head error = ±0.1%

(±0.01 feet)
1.32 94.64 8 heads + 7 q 2 × 2

Head error = ±0.5%
(±0.05 feet)

1.13 15.37 8 heads + 7 q 2 × 2

1Inversion is carried out with a uniform grid: �x = �y = 500 feet.

In case 1, when error-free heads are provided
to inversion, the estimated K are close to their true
values. The absolute estimation errors (|Kx

true − Kx
est|;

|Ky
true − Ky

est|) range from 0 to 1.8% of the true K . Com-
pared to the FDM, the inverted streamlines and head
contours are reasonably accurate, although local devia-
tions exist (Figure 2). When the same heads, imposed
with ±0.5% error, are used, the estimated K are reason-
ably accurate, with the absolute relative errors (|Kx

true −
Kx

est|/Kx
true × 100%; |Ky

true − Ky
est|/Ky

true × 100%) rang-
ing from 2.4 to 15%. When error is further increased to
±1.0%, the estimated K become less accurate—the abso-
lute relative errors range from 14% to 63%. Despite the
higher K estimation errors, the inversely recovered flow
solutions are stable.

In case 2, anisotropy ratio (Ky/Kx) of the FDM is
increased to 10. The same measurement and inversion
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Table 2
Estimated K (ft/d) for Cases 4 and 5 under Increasing Measurement Errors

Conductivity

K 1 K 2 Measurements Grid

FDM (case 4) K 1x = 1 K 1y = 5 K 2x = 10 K 2y = 50 16 heads + 4 q 50 × 50
Head error = 0% 0.98 5.15 11.3 51.6 — 4 × 4
Head error =±0.1% (±0.01 feet) 0.91 3.68 11.6 51.6 — 4 × 4
Head error =±0.5% (±0.05 feet) 0.65 1.36 12.1 52 — 4 × 4
FDM (case 5) K 1x = 1 K 1y = 10 K 2x = 10 K 2y = 100 16 heads + 8 q 50 × 50
Head error = 0% 1.16 11.5 10.2 98.6 — 4 × 4
Head error =±0.1% (±0.01 feet) 1.15 11.3 10.2 98.9 — 4 × 4
Head error =±0.5% (±0.05 feet) 1.06 10.8 10.2 100.4 — 4 × 4

(a) (b)

(d)(c)

Figure 2. Case 1 results based on error-free observations. Streamlines of the FDM (a) and the inverted model (b). Hydraulic
head distribution of the FDM (c) and the inverted model (d).

grid of case 1 are used. When heads are error-free, K
absolute relative errors range from 6.3% to 9%, higher
than those of case 1. When error is increased to ±0.5%
and ±1%, respectively, higher K estimation errors are also
observed for case 2. For a fixed quantity and quality of the
observations, inversion accuracy suffers with increasing
Ky/Kx.

In case 3, Ky/Kx of the FDM is increased to 100.
Compared to cases 1 and 2, five extra q are sampled.
When error-free observed heads are used, K absolute
relative errors now range from 0.2% to 0.7%, lower
than those of cases 1 and 2. Clearly, despite the higher
anisotropy, the additional flux measurements can improve
K estimation. When heads contain ±0.5% error, the

absolute relative errors of K range from 13% to 85%,
while the corresponding errors are 2.4% to 15% (case 1)
and 4.2% to 96% (case 2). The recovered head distribution
compares well to that of the FDM, but degrades under
increasing measurement errors (Figure 3).

Two more problems (cases 4 and 5), each with two
hydrofacies (Figure 1), are inverted with a 4 × 4 grid. For
case 4, 16 heads were sampled from the FDM at location
corresponding to the center of each inversion cell. Four q
were randomly sampled (each hydrofacies has two fluxes).
For case 5, the same heads were sampled with eight
randomly sampled q (each hydrofacies has four fluxes).
Case 5 has higher Ky/Kx than case 4. When observed heads
are error-free, absolute K estimation errors are relatively
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(a) (b)

(d)(c)

Figure 3. Hydraulic head distribution for case 3: the FDM (a) and the inverted models given error-free (b), ±0.5% (c), and
±1% (d) head measurement errors.

small (1.4% to 16%) for both cases (Table 2). Despite the
extra flux measurements, estimation errors of case 5 are
higher than those of case 4. Higher anisotropy ratio again
poses a challenge for inversion. For case 4, when head
errors increase, K errors increase, as expected. For case 5,
however, K errors decrease slightly with increasing head
errors. Different error sources may have compensated
in contributing to the overall estimation accuracy. For
both cases, when head errors are small, the recovered
streamlines and head contours are quite excellent (not
shown).

Irregular Domain
Ambient flow is investigated first for which the

FDM grid, hydrofacies distribution, and associated true
BCs are shown (Figure 4a). Both aquifer boundaries and
hydrofacies pattern are known to inversion for which a
coarse grid is developed (Figure 4b). At cells 10, 11, 16,
and 17, we can see that voxel connection is not necessary.
Measurement locations are also shown (Figure 4b): 62
heads and 20 q were sampled. Head solution of the
FDM is shown in Figure 4c, compared to the recovered
head under ±0.2% head measurement error (Figure 4d).
Inversion yields accurate head recovery and estimated K
(Table 3).

For the same aquifer geometry, a pair of pumping and
injection wells, operating at a constant rate of 300 ft3/d,
are added (Figure 5a). BCs of the FDM were adjusted
(Figure 5a), while the same 62 observed heads were

sampled (fluxes were not sampled). Both well rates are
known to inversion. The same 31-cell inversion grid
(Figure 4b) is used: the well cells (pumping in cell 11,
injection in cell 21) are large without LGR. Head recovery
(Figure 5c and 5d) and K estimation (Table 3) are accurate
when measurement errors are small.

Finally, the ambient flow problem is repeated but
the location of true model boundaries is not known
to inversion. From the FDM, 18 (error-free) heads
and 4 q are randomly sampled within a subdomain
of the full model (Figure 6a; ‘a-b-c-d-a’). Given these
measurements, a 3 × 2 inversion grid spanning the
subdomain is generated (not shown). The recovered
“boundary” heads along ‘a-b-c-d-a’ are very close to
the true heads sampled from the FDM (Figure 6b).
The estimated K are also close to their true values
(Table 4). Had the inversion been carried out over the
entire FDM, however, the estimation errors would be
higher because approximating functions in the regions
between subdomain and full domain boundaries (where
measurements do not exist) would be extrapolations.
Clearly, new inversion can be used for a problem where
aquifer physical boundaries are either far away from the
area of interest (where measurements lie) or are poorly
known, which is typical in field situations. To apply
this method, the inversion domain should be defined
by the measurement location and it is not necessary
or even desirable to seek “physical” boundaries where
measurements do not exist.
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(a) (b)

(d)(c)

Figure 4. (a) FDM with four hydrofacies and specified aquifer BC. (b) Inversion grid (cell ID is shown) and measurement
location (* denote 62 heads; × denote 20 flux vectors). (c) FDM head contours; (d) recovered head contours when observed
heads contain ±0.2% error. The same contour levels of (c) are used.

Table 3
Estimated K (ft/d) for the Irregular Problems under Increasing Measurement Errors

Conductivities

K 1 K 2 K 3 K 4

FDM K 1x = 1 K 1y = 5 K 2x = 5 K 2y = 25 K 3x = 10 K 3y = 50 K 4x = 20 K 4y = 100

Ambient flow Head error = 0% 0.92 3.2 4.6 29.2 9.6 51.4 16.6 90.2
Head error =±0.2%

(±0.2 feet)
0.9 3.0 4.8 26.6 9.6 51.4 15.7 72.7

Head and flux
errors =±0.2%

0.9 3.0 4.8 26.6 9.6 51.4 15.7 72.8

Pumping and
injection

Head error = 0% 1.2 3.0 5.4 29.3 12.1 56.5 21.0 99.1
Head error =±0.2%

(±0.08 feet)
1.1 4.1 5.3 30.1 11.5 53.7 20.9 94.8

Head and pumping
rate errors =±0.2%

1.1 4.1 5.3 30.1 11.5 53.9 21.0 95.0
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(a) (b)

(d)(c)

Figure 5. (a) FDM with four hydrofacies and specified BC. Pumping and injection are simulated with LGR at each well:
Q1 =−300 ft3/d (pumping) at (1100, 740) and Q2 = 300 ft3/d (injection) at (540, 1100). Location of a profile, AB, is shown.
(b) FDM head contours; (c) recovered head contours with 31 cells (Figure 4b) when head error is ±0.2%. The same contour
levels of (b) are used. (d) Head profiles along AB by the FDM and by inversion under increasing head measurement errors.

Discussion
Inverse solutions for different flow fields, BCs, and

conductivity anisotropy ratios reveal that, in general,
parameter estimation errors arise mostly from inad-
equate quantity and quality of the observation data,
while inversion grid discretization has secondary effect.
For several synthetic problems, adding high-quality
measurements can improve estimation accuracy. The
selection of data location, however, is an issue not treated
here. Because adding insensitive observations will not
generally lead to more accurate results (Hill and Tiedeman
2007), data location optimization will be addressed in the
future by combining inversion with a parameter sensitiv-
ity analysis. Moreover, if the inversion domain is defined
by the location of measurements, accuracy of inversion
(i.e., both conductivities and recovered flow field) can be
very good, because errors due to extrapolating the approx-
imating functions to regions beyond the observations are
limited. For problems where the inversion domain extends
to physical boundaries (e.g., river, no-flow outcrops), large

regions may exist in the model without observations where
extrapolation errors are expected to be high. To apply the
new inversion, it is recommended to limit the solution
domain to the measurement location. In addition, for prob-
lems with pumping and injection, inverse solutions can be
obtained successfully with coarse grids, because well solu-
tions are directly implemented in the inverse formulation.
For these problems, subsurface flux measurements are not
needed. Finally, because the inverse method does not eval-
uate any forward model-data misfit, it is computationally
efficient. In comparison, most indirect inverse methods
are computationally intensive, as they require repeated
forward simulations in order to minimize the objective
function, which also requires BC knowledge. If BCs are
unknown, indirect methods may resort to their calibra-
tion, although this approach will likely be inefficient, as
Irsa and Zhang (2012) has proven that BC calibration can
lead to nonunique estimates of the parameters and flow
fields.

Nonunique parameter estimation due to uncertain
BC is illustrated by calibrating the previous subdomain
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(a)

(b)

Figure 6. Subdomain inversion. (a) Subdomain (a-b-c-d-a)
inside the full FDM of the ambient flow problem. (b)
Recovered heads along a-b-c-d-a, compared to those sampled
from the FDM.

problem (Figure 6) with PEST (Doherty 2005). A forward
model, which is needed for PEST calibration, is extracted
from the full FDM at the subdomain location with a 14 × 8
sub-grid (Figure 6a). The same error-free observations (18
heads and 4 q) were sampled. For initial parameter guess,
true K are used as the starting parameters. To run the
forward model, two different BCs are postulated along
the subdomain boundaries (Figure 7), leading to different
results (Table 4). When the forward model is given the
true BC sampled from the FDM, K estimated by PEST are

Figure 7. Hydraulic heads sampled from the FDM along the
subdomain boundaries (“True BC”). These BCs are assigned
to a forward subdomain model for PEST calibration. Based
on the True BC, a perturbed set of BC (“Inaccurate BC”) is
also given to PEST.

close to the true values. However, when a set of perturbed
BC (Figure 7) are given to PEST, the estimated K become
inaccurate even though their true values are used as
the initial guess. Given similar convergence criteria, the
final weighted residuals are −3.68 × 10−4 (true BC) and
−1.78 × 10−2 (inaccurate BC). Sensitivities computed by
PEST for each parameters are: K 2x : 4.7 × 10−3; K 3x :
4.7 × 10−3; K 2y : 9.0 × 10−3; K 3y : 2.1 × 10−3 (true BC),
and K 2x : 5.4 × 10−4; K 3x : 5.4 × 10−4; K 2y : 3.9 × 10−4;
K 3y : 6.5 × 10−2 (inaccurate BC). When inaccurate BC
are assigned to the forward model, both the residual and
relative sensitivity suggest difficulty in estimating K 2x ,
K 3x , and K 2y , and in further lowering of the objective
function. In this case, by forcing the forward model to
“fit” 40 boundary heads (all of which contain errors),
these errors overwhelm the accurate 18 heads and 4 q
provided to PEST. In comparison, parameters and BCs
are simultaneously estimated by the new inversion, and
unlike PEST, BC knowledge is not needed. The new
method yields a “unique” solution, while PEST results
are sensitive to the BC assumption.

In ambient flow, when groundwater becomes stagnant
in local areas (i.e., qx ∼ 0, qy ∼ 0), it becomes difficult
to estimate the local conductivity. This is because both

Table 4
Estimated K (ft/d) of the Subdomain with New Inversion and with PEST Given the Same Error-Free

Observations

Conductivities

Grid K 2 K 3 BC

FDM (subdomain) 14 × 8 K 2x = 5 K 2y = 25 K 3x = 10 K 3x = 50 True subdomain BC sampled from FDM
New method 3 × 2 4.4 25.0 8.7 50.3 Estimated by inversion
PEST 14 × 8 4.4 22.4 10.9 62.1 True BC assigned
PEST 14 × 8 0.006 6.2 × 10−8 4.8 × 103 9.6 × 103 Inaccurate BC assigned

Note: For PEST, two sets of assumed subdomain BC are used.
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head gradients and Darcy fluxes are small in these areas,
thus the estimated conductivity becomes less accurate.
Similarly, when flow is uniform and is parallel to a
principal conductivity, it becomes difficult to find the
conductivity component in the direction perpendicular
to flow. For example, in a problem where dominant
flow is along the y axis, qx component of the fluxes
is generally small, as is ∂h/∂x . Using Darcy’s law, Kx is
obtained by dividing a small qx (with numerical error) by a
small ∂h/∂x (also contains error). Owing to floating point
limitations, Kx cannot be accurately computed although
higher precision arithmetic may improve this outcome.
In comparison, when radial flow exists due to pumping,
q near wells are nonnegligible in all directions. This
information is integrated into the well rate; therefore, even
if a similar number of heads are sampled compared to
ambient flow, Kx and Ky estimation near the well location
is more accurate. As distance from the well increases, flow
field may become more uniform or become parallel to
one coordinate. At such locations away from wells, local
component conductivity in the direction perpendicular to
flow again becomes less identifiable.

To apply the new method to ambient flow problems,
subsurface Darcy fluxes are needed. Indirect techniques
exist for measuring fluxes, including tracer experiments
(Davis et al. 1980; Ptak et al. 2004), point dilution
methods (Grisak et al. 1977, Novakowski et al. 2006),
and borehole flowmeters (Molz et al. 1994; Gellasch et al.
2013). With point dilution, it is possible to estimate
horizontal fluxes surrounding a borehole (Pitrak et al.
2007). With flowmeters, vertical fluxes can be determined.
Instruments have also been developed to directly measure
groundwater velocity near wellbores (Labaky et al. 2009).
With the Point Velocity Probe, velocity magnitude and
direction can both be measured from which flux vectors
can be determined if porosity is known. Methods have
also been developed to interrogate horizontal and vertical
permeabilities over a greater rock volume than the typical
logging scale (Domzalski et al. 2003). Fluxes averaged
over a greater aquifer volume can thus be obtained.
Therefore, groundwater flux measurement is possible if
appropriate tests are conducted or if new measurement
technology is developed. Moreover, if fluxes are not
available, subsurface flow rate measurement can be used,
which gives an average flux depending on at what scale
the flow rate is measured. In Irsa and Zhang (2012),
flow rates are used for inversion without sampling fluxes.
Zhang et al. (2014) solved 3D inversion alternatively with
flow rate and flux measurements. In inverting hydrofacies
conductivities, subsurface fluxes and flow rates are found
to possess similar “information content” (Zhang 2014).
Compared to large-scale flow rates, point-scale fluxes
may have the potential to resolve local conductivities at
greater accuracy. Finally, like hydraulic heads, fluxes and
pumping rates can also be subject to measurement errors.
Additional inversions are carried out for the irregular
domain problems where random errors are imposed onto
both heads and fluxes (ambient flow) or both heads and
pumping rates (pumping condition). The estimated K

(Table 3) and flow fields (not shown) are not appreciably
worsened compared to those when only the observed
heads were subject to errors. In this case, random errors
of the observed heads and observed fluxes (or pumping
rates) may have partially compensated.

In this work, conductivity is parameterized as piece-
wise constant corresponding to mapped (determinis-
tic) hydrofacies. Our ongoing research has relaxed this
assumption by (1) highly parameterized inversion where
conductivity is estimated for each grid cell (more flow
measurements are needed to condition this inversion);
(2) describing conductivity as piecewise functions to bet-
ter capture sub-hydrofacies heterogeneity as well as abrupt
facies changes (no additional flow measurements needed);
(3) facies boundaries are estimated along with the param-
eters, source/sink terms, and flow field. Although this
study does not address uncertainty in inversion due to
the uncertain hydrofacies distribution, the inverse method
can be easily combined with facies modeling to quantify
parameter and flow field uncertainty (Wang et al. 2013).
Inversion is currently conditioned by hydrodynamic data;
future work will extend the technique to allow joint inver-
sion with indirect measurements by developing appropri-
ate regularization constraints.

Because the new method is developed with the
Dupuit-Forchheimer assumption, it is applicable only to
problems where horizontal flow dominates for which
all wells are fully penetrating. Caution is needed when
applying the method to problems where vertical flow
is significant for which three-dimensional techniques
will likely be needed. Because the pump test solution
in the approximating functions is based on the Thiem
equation, near-wellbore effects (e.g., wellbore storage,
partial penetration, and skin effects) cannot be accounted
for. Areal recharge or leakage is not considered, which
can potentially be addressed by superposing additional
recharge terms to the approximating functions (Zhang
2014). The key to developing the physically based
method to address more complex problems is to find
appropriate approximating functions to describe the local
flow field.

Conclusion
A physically based inverse method is developed to

simultaneously estimate conductivity tensors (K ) and flow
field for a confined aquifer under ambient flow or pumping
condition. To represent pumping and injection using a
coarse inversion grid, hybrid formulations are used in
the approximating functions, while coordinate transform
technique is employed to obtain tensor conductivities.
Unlike indirect inverse techniques, the new method does
not require forward flow simulations to assess data-model
misfits; thus knowledge of aquifer BC is not needed.
The method directly incorporates noisy observations (i.e.,
hydraulic heads, Darcy fluxes, or well rates) at the
measurement locations, without solving a boundary value
problem. Given sufficient measurements, it yields well-
posed systems of equations that can be solved efficiently

10 J. Jiao and Y. Zhang Groundwater NGWA.org



with nonlinear optimization. The method is successfully
tested on aquifer problems with regular and irregular
geometries, different hydrofacies and flow patterns, and
increasing conductivity anisotropy ratios. Key results are
summarized as follows:

• All problems yield stable inverse solutions under
increasing measurement errors.

• For a given quantity and quality of the observations,
inversion accuracy is most affected by the conductivity
anisotropy ratio (Ky/Kx).

• Accuracy in estimating K is also affected by the
flow pattern: within a hydrofacies, when a Darcy
flux component is very small, the corresponding
directional conductivity perpendicular to flow becomes
less identifiable.

• Inversion is successful if the location of aquifer bound-
aries is unknown. Compared to indirect techniques
which often require the forward model to extend to
some physical boundaries, problem domain for the new
inversion can be defined by the measurement location.
Therefore, we do not need to seek out physical bound-
aries with the desired BC characteristics which may lie
far from the area of interest.

• In ambient flow, in addition to water levels, subsurface
flux (or flow rate) measurements are needed for
the inversion to succeed; under pumping condition,
pumping rates are needed while flux measurements are
not. With aquifer stimulation, data requirement of the
method is not much greater than that of interpreting
well tests.
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