
A direct method of parameter estimation for steady state flow
in heterogeneous aquifers with unknown boundary conditions

J. Irsa1 and Y. Zhang1

Received 14 December 2011; revised 23 July 2012; accepted 3 August 2012; published 19 September 2012.

[1] We propose a novel direct method for estimating steady state hydrogeological model
parameters and model state variables in an aquifer where boundary conditions are
unknown. The method is adapted from a recently developed potential theory technique for
solving general inverse/reconstruction problems. Unlike many inverse techniques used
for groundwater model calibration, the newmethod is not based on fitting and optimizing an
objective function, which usually requires forward simulation and iterative parameter
updates. Instead, it directly incorporates noisy observed data (hydraulic heads and flow
rates) at the measurement points in a single step, without solving a boundary value
problem. The new method is computationally efficient and is robust to the presence of
observation errors. It has been tested on two-dimensional groundwater flow problems
with regular and irregular geometries, different heterogeneity patterns, variances of
heterogeneity, and error magnitudes. In all cases, parameters (hydraulic conductivities)
converge to the correct or expected values and are thus unique, based on which heads and
flow fields are constructed directly via a set of analytical expressions. Accurate boundary
conditions are then inferred from these fields. The accuracy of the direct method also
improves with increasing amount of observed data, lower measurement errors, and grid
refinement. Under natural flow (i.e., no pumping), the direct method yields an equivalent
conductivity of the aquifer, suggesting that the method can be used as an inexpensive
characterization tool with which both aquifer parameters and aquifer boundary conditions
can be inferred.

Citation: Irsa, J., and Y. Zhang (2012), A direct method of parameter estimation for steady state flow in heterogeneous aquifers
with unknown boundary conditions, Water Resour. Res., 48, W09526, doi:10.1029/2011WR011756.

1. Introduction

[2] In many physical sciences we have surveyed, param-
eter estimation studies have focused on the indirect inverse
method solving a boundary value problem (BVP) to optimize
an objective function, e.g., measurement-to-model misfits.
Such approaches satisfy the known physical and mathe-
matical constraints, are easily adaptable, and have proven
to be robust and efficient in many applications. However,
solution of the BVP requires the prescription of boundary
conditions (BCs) which are often unknown. In nonlinear
problems, parameter estimation via the indirect method is
often an iterative procedure involving repeated simulations
of the BVP, a computationally demanding task when the
model size is large. Though both model parameters and
model BCs can be modified/updated during iterations, the
inverse problem can be ill posed, e.g., instability, nonunique-
ness, and failure to converge. These issues can be addressed
by providing additional (independent) constraints in the form

of supplemental or prior information on parameters. However,
BVP domain is often a cutout region where the BCs can be
highly discontinuous, causing convergence issues. Further-
more, an infinite number of BCs may provide the same solu-
tion at the same observation points, thus the inferred BCs are
generally nonunique.
[3] The indirect inverse method is extensively investigated

in hydrogeology (see reviews by, e.g., Yeh [1986], Ginn and
Cushman [1990], McLaughlin and Townley [1996], de
Marsily et al. [2000], Carrera et al. [2005], Vrugt et al.
[2008a]). To address ill-posedness, a variety of approaches
have been proposed, e.g., imposing parameter bounds or
parameter lumping [Hill and Tiedeman, 2007], regulariza-
tion [Cooley, 1982, 1983; Carrera and Neuman, 1986a;
Kitanidis, 2012], sample network design [Delhomme, 1978;
Wagner, 1995; Asefa et al., 2004; Janssen et al., 2008],
reducing model structure error [Doherty and Welter, 2010],
adopting a highly parameterized or geostatistical formulation
[Zimmerman et al., 1998; Hunt et al., 2007; Tonkin and
Doherty, 2009; Liu and Kitanidis, 2011], incorporating
static geologic data [McKenna and Poeter, 1995; Sun et al.,
1995; Tsou et al., 2006], and utilizing auxiliary data such as
solute concentration [Gailey et al., 1991; Medina and
Carrera, 1996; Anderman et al., 1996; Weiss and Smith,
1998a], geophysical measurements [Hyndman et al., 1994;
Day-Lewis et al., 2006; Ronayne et al., 2008; Camporese
et al., 2011], and temperature [Woodbury and Smith, 1988;
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Bravo et al., 2002; Anderson, 2005]. Moreover, to enhance
computational efficiency in calculating sensitivities for the
gradient-based (local) methods, adjoint state techniques are
developed [Sun and Yeh, 1985; Carrera and Neuman,
1986b; Liu and Kitanidis, 2011]. To enhance robustness in
optimizing the objective function, different search algorithms
are proposed, including global methods that are not gradient
based [Wang and Zheng, 1996; Morshed and Kaluarachchi,
1998; Vrugt et al., 2008b;Keating et al., 2010]. Instability due
to overparameterization is usually addressed by regularization
(e.g., parameter bounds, prior information, smoothing, zona-
tion) [Sun and Yeh, 1985; Eppstein and Dougherty, 1996;
McLaughlin and Townley, 1996; Capilla et al., 1997; Weiss
and Smith, 1998b]. In transient or strongly nonlinear cases, a
variety of data assimilation techniques have also been devel-
oped [Eppstein and Dougherty, 1996; Zhu and Yeh, 2005;
Chen and Zhang, 2006; Liu et al., 2008].
[4] Direct methods can also be used to solve the inverse

problem. The direct methods are mathematically straight-
forward and computationally efficient, though their use has
not been widely adopted due to instability in the estimated
parameters when the observed data are corrupted by noise. In
hydrogeology, initial attempts were made to directly deter-
mine transmissibility from streamlines by inverting the flow
equation along these lines, though the method was found
sensitive to measurement errors [Nelson, 1960, 1961, 1968].
Though parameter oscillations can be controlled by imposing
bounds on the observation errors [Kleinecke, 1971], solutions
are often unreliable. Other direct formulations, for example,
the direct matrix method, create a set of superdeterminate
algebraic equations from discretizing the BVP [Neuman,
1973; Sagar et al., 1975]. In a two-dimensional problem,
when random noise was added to the observed data, this
method was found accurate when the parameter dimension
was small [Yeh et al., 1983]. Sun [1994] further stated that
the necessary condition for parameter identifiability is that
the number of parameters is smaller than the number of the
observation data. In addition many direct formulations
require that state variables at measurement points be inter-
polated to all grid nodes, thus inversion results are influenced
by not only the measurement error but also the interpolation
error. Another means of controlling instability is to assume
that transmissibility satisfies a Cauchy criterion [Frind and
Pinder, 1973], although the solution can be sensitive to
the degree of approximation in the finite element shape
functions.
[5] Recently, a new potential theory technique is being

developed for solving general inverse/reconstruction pro-
blems with an efficient direct method, where errors in mea-
surements do not generally cause stability issues even in
certain cases when the systems are ill posed. The method,
referred to as stress trajectories element method, has been
applied to solid mechanics and geophysics problems with
excellent convergence behaviors. Modifications of this
method were also proposed for other applications, yielding
unique and stable parameters that are also robust to the
presence of observation errors [Irsa and Galybin, 2010;
Galybin and Irsa, 2010; Irsa, 2011]. The new method con-
sists of discretizing the problem domain into elements where
a state variable is approximated with a function satisfying
the governing equation a priori, i.e., the Trefftz method
[Trefftz, 1926] (an English translation is found in Maunder
[2003]). It does not rely on formulating superdeterminate

equations, thus the number of parameters is not constrained
by the number of state variables. It directly incorporates the
state variables at the observation points without the need for
interpolation or iterations. Using smooth Laplace’s solution
with unknown coefficients, the method in effect imposes a
form of regularization: the coefficients are estimated by
“bending” the approximate solution toward the true solution,
following the observations with its weights. Unlike the
existing indirect and direct methods, the new method does
not discretize a BVP, thus a priori knowledge of the BCs is
not required. Nor does it attempt to fit BCs to observations
during inversion, obviating the nonuniqueness issue. In a
single step (i.e., single matrix solve), model parameters and
model state variables are simultaneously estimated from
which BCs of the modeled region can be inferred. The
method is thus computationally efficient.
[6] In this study, steady state groundwater flow in a

homogeneous and isotropic aquifer is first investigated.
Hydraulic head of each element is approximated by a func-
tion satisfying the Laplace’s equation and Darcy flux is
obtained from differentiating the head. The unknown
hydraulic conductivity (K) is estimated together with para-
meters of the head and flux functions. The method is then
extended to the study of a heterogeneous isotropic aquifer
characterized by different hydrofacies zones. To ensure head
and flux continuity at element boundaries, a collocation
technique is used: elements within one hydrofacies assume
continuous heads and fluxes in all directions, where ele-
ments separated by a material interface assume continuity in
head and continuity of the normal fluxes. The inversion
problem is thus stated with correct physical constraints,
with three advantages derived from the direct formulation:
(1) model fits the data directly and there is no need to fit an
objective function; (2) besides measurement error, numerical
discretization is the only source of error, convergence is
assured when collocation error decreases with increasing
number of elements; (3) element shape is flexible, since
nodal connection is not needed in evaluating the fluxes.
Given observed hydraulic head data, the direct method can
uniquely determine the head and flow fields as well as the
BCs. However, to also obtain the parameters (hydraulic
conductivity), at least one flow rate measurement is neces-
sary. Although direct flow rate measurement is not as fre-
quently available as the head data, recent advancements in
field techniques have made such measurements more readily
available [Leap and Kaplan, 1988, Bayless et al., 2011;
Devlin et al., 2012]. In the following sections, nonunique-
ness in fitting BCs for general inversion is discussed first.
Then the new direct method is described and demonstrated
with several groundwater reconstruction problems. Strength
and limitation of the method are then discussed, before
future research is indicated.

2. Nonuniqueness in Fitting Boundary Conditions
to a Steady State Problem

[7] Most existing methods utilize the solution of a BVP
with prescribed BCs which, along with the parameters of the
model, can be modified and updated during inversion.
However, BCs fitted by such procedure can suffer non-
uniqueness, the severity of which depends on the quantity
and quality of the observed data. When data quantity/quality
is high, the nonuniqueness is less pronounced, although
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there still exists an infinite number of BCs providing solu-
tions that satisfy the observed data and prior information.
Here we illustrate this problem by a two-dimensional (2-D)
example of steady state groundwater flow in a homogeneous
isotropic aquifer for which hydraulic head satisfies the
Laplace’s equation: r2h = 0. Solution of this equation is a
harmonic function, which is related to a complex valued
holomorphic function: W(z); z = x + iy; z ∈ C.
[8] W(z) has real and imaginary parts, both of which are

harmonic functions. In some applications the imaginary part
(complex conjugate harmonic function to the real part) has
physical meanings which can be useful to recover. However,
at this point we are only interested in the real part. Let the
solution of the Laplace’s equation be expressed as

h x; yð Þ ¼ Re W zð Þ½ �; ð1Þ

where Re stands for the real part. W(z) can be, for instance,
a polynomial:

W zð Þ ¼
Xn
k¼0

akz
k ð2Þ

where ak is a complex parameter and z is a complex vari-
able. Next, we assume that there exist N observed heads at
locations zj = xj + iyj, j = 1, …, N, which can be directly
sampled from the solution. Given the solution, we can
substitute any boundary points into equation (1) to obtain a
set of Dirichlet BCs. Now, let’s introduce an arbitrary
holomorphic function W*(z � zj) with its roots placed at the

observation points (for the sake of simplicity it is also
assumed a polynomial):

W∗ z� zj
� � ¼ Yr

k¼1

bk z� zj
� �k

;
r ¼ N ; j ¼ k

r > N ; j ∈ 1;…Nf g ;
�

ð3Þ

where bk is a complex parameter. The real part of W* is

h* x; yð Þ ¼ Re W* z� zj
� �� �

; ð4Þ

h* satisfies the Laplace’s equation, and its roots are placed
exactly at the observed points zj, thus h* is a solution of the
same problem. Let us introduce an additional arbitrary
parameter m. Due to linearity of the Laplace’s equation,
h + mh*(x, y) is also a solution. Substitution of the observed
data coordinates zj into the superposition does not affect the
observed data (h) since mh*(x,y) vanishes at these points.
For any r ≥ N and any m, h*(x,y) always vanishes at the data
locations. For any bk, r, and m, there exist an infinite number
of solutions satisfying the observed heads and each of the
infinite solutions has a different set of BCs that can be
obtained by substituting z at the boundary. In other words,
there exists an infinite number of BCs satisfying the
observed heads, with associated infinite solutions describing
different flow fields.
[9] One may assume, as it is commonly assumed, that by

adding flow rate data, the nonuniqueness in fitting the heads
can be reduced, and perhaps a unique solution is possible.
For example, a flow rate measured along any distance/

Figure 1. Nonuniqueness in fitting BC in a 2-D homogeneous and isotropic aquifer within a square
region [1,1]–[3,3]. (a) Observation data: three heads and one flow rate at the right boundary. (b) Two
different Dirichlet BCs. (c and d) Streamlines driven by each BC.
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contour in the aquifer would impose an additional constraint
on the solution. Here, however, we demonstrate using a 2-D
square model with a constant K that adding flow rate data
cannot ensure uniqueness of the solution. In this case, a flow
rate Qx [L2/T] along the y axis (�1 to 1) can be used to
modify the arbitrary function h*:

Qxjy ¼
Z1

�1

�K
∂h* x; yð Þ

∂x
dy ¼ �K

Z1

�1

Re
∂W* z� zj

� �
∂z

dy: ð5Þ

[10] Equation (5) provides an additional constraint equa-
tion leading to one less coefficient, i.e., bk, k = 1, …, r � 1.
However, an infinite number of bk satisfies the head solu-
tions. The addition of flow rate does not guarantee a unique
solution, but allows for the determination of K, which would
remain a free undetermined parameter without the flow rate.
To reduce the number of possible solutions, an infinite
number of flow rate measurements are needed. With respect
to equation (3), this would be r flow rates. With each addi-
tional observation, be it head or flow rate, the class of
functions (equation (3)) converges toward a unique solution.
[11] Let’s illustrate this problem graphically (Figure 1).

The solution, W(z), is assumed as a second-order polyno-
mial, with parameters a0 = 300 and a1 = a2 = 1 + i. The
corresponding hydraulic head is h(x, y) = 300 + x� y� 2xy +
(x2 � y2). Three head data (N = 3) are sampled directly from
the solution at locations z ∈ (1.1 + i1.1;1.1 + i2.9;2.9 + i2).
A flow rate is obtained analytically along the y axis on
the right-hand-side boundary (this flow rate could be given
anywhere within the domain). The arbitrary functionW*(z� zj)
of equation (3) is introduced with these parameters: r = N,
m = 0.4 and bk = 1 + i1.19. Parameters bk are uniform and are
derived to satisfy the flow rate for a constant K value of 1
(equation (5)). Two different Dirichlet BCs are specified
along the model boundary (Figure 1b), leading to different
reconstructed flow fields (Figures 1c and 1d), while both
solutions honor the same observed data of 3 heads and one
flow rate. In this problem, the additional flow rate at the right-
hand-side boundary does not lead to a unique estimation of
heads along the same boundary (Figure 1b, between distance
2–4), due to an abrupt change in streamlines which signifi-
cantly changes the flow direction and the interconnected
fluxes, while maintaining the same Qx. In addition, signifi-
cant change in the flow field occurs in the vicinity of the
observed heads, where one would normally expect the
highest accuracy in head predictions.

3. New Direct Method

[12] The new direct method provides the best fit to the
observed data with stable convergence, without the need for
iterations. It is not based on solving a BVP, thus a priori
knowledge of the BCs is not necessary. Nor does it attempt to
fit BCs to observations, obviating the nonuniqueness issue.

3.1. Background

[13] The new direct method is derived ultimately from the
Trefftz method, which superimposes functions that satisfy
the governing equations a priori, where the unknown coef-
ficients are determined by minimizing these functions. A

similar concept is the Method of Fundamental Solution
[Kupradze and Aleksidze, 1964], which is mathematically
equivalent to the Trefftz method as the number of coeffi-
cients of the individual superimposed functions increases to
infinity [Li et al., 2010]. Application of the Trefftz method
was initially focused on inverse problems, before the current
focus on BVP, with both finite element formulations
[Jirousek and Zielinski, 1997; Kita and Kamiya, 1995;
Herrera, 2000; Li et al., 2008; Kolodziej and Zielinski,
2009] and meshless method [Galybin and Mukhamediev,
2004].
[14] The new direct method extends from the meshless

method of Galybin and Mukhamediev [2004], where a dis-
cretized approach is adopted to eliminate instabilities char-
acterizing the former method. It thus combines the strengths
of the discretization-based approaches and the Trefftz
method. Within a problem domain, the new method seeks a
solution via a set of specialized collocation points which lie
on element interfaces. The technique was initially developed
for two-dimensional geophysical problems using the com-
plex variable theory, e.g., determination of stresses in the
lithospheric plate from observations on the principal stress
directions [Irsa and Galybin, 2010]. It was later extended to
multiple plates and their interactions to identify stress
change in the Earth’s crust after an earthquake [Irsa and
Galybin, 2011b]. A modification of this method led to the
determination of heat fluxes from discrete temperature
measurements [Irsa and Galybin, 2009] and fluid velocity
from its trajectories [Irsa and Galybin, 2011a]. A three-
dimensional version was developed for heat flux recon-
struction as well as for determining deformations from
discrete dilation data [Galybin and Irsa, 2010]. In many
such systems, given the nature of the data and their errors,
conventional indirect methods often fail to converge. The
new method is applicable to any problems described by the
potential theory as long as a fundamental solution exits, i.e.,
a solution can be found that satisfies the governing equations
a priori.

3.2. Fundamental Solution

[15] The equations describing 2-D steady state ground-
water flow without source/sink are:

r ⋅ qð Þ ¼ 0
q ¼ �K x; yð Þrh

ð6Þ

where r is gradient operator, h is hydraulic head, and q is
Darcy flux. The problem domain can be discretized into
elements (or grid cells) where the hydraulic head satisfies
the fundamental solution of equation (6). In the case of a
homogenous and isotropic aquifer, this solution is a har-
monic function in each element. For simplicity, we use the
complex valued holomorphic function W(z), whose real
part is harmonic, and thus is the fundamental solution of
this problem. Here, W(z) is specified as a second-order
polynomial:

W zð Þ ¼
X2
n¼0

anz
n; ð7Þ
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where z = x + iy and an ∈ C. Head and flux of the kth ele-
ment can then be approximated:

~h
kð Þ

x; yð Þ ¼ a kð Þ
00 þ a kð Þ

10 x� a kð Þ
11 yþ a kð Þ

20 x2 � y2
� �� 2a kð Þ

21 xy; ð8aÞ

~q kð Þ
x x; yð Þ ¼ �K a kð Þ

10 þ 2a kð Þ
20 x� 2a kð Þ

21 y
� �

; ð8bÞ

~q kð Þ
y x; yð Þ ¼ �K a kð Þ

11 � 2a kð Þ
20 y� 2a kð Þ

21 x
� �

; ð8cÞ

where a0
(k) = a00

(k); a1
(k) = a10

(k) + ia11
(k); a2

(k) = a20
(k) + ia21

(k). For
each element, five real-valued unknowns need to be deter-
mined. Though the complex variable theory allows for easy
adaptation of the fundamental solution to higher orders, it
was found that a linear or quadratic approximation is often
satisfactory [Galybin and Irsa, 2010]. The use of higher-
order approximations within elements is permissible, which
can lead to coarsened meshes. To simplify our analysis, we
restrict ourselves here to the quadratic approximation with
numerical convergence tests.

3.3. Continuity

[16] Having the fundamental solutions described for each
element (equation (8)), the solution must also satisfy the
governing equation globally. This is accomplished by min-
imizing a residual function on a set of collocation points pj
which lie on the boundary between adjacent elements
(Figure 2). This minimization forces the residuals to vanish
at each point:Z

R Gj

� �
d pj � ɛ
� �

dGj ¼ 0; j ¼ 1;…;mc; ð9Þ

where mc is the total number of element boundaries, R(Gj) is
the residual of an approximating function at the jth boundary,
and d(pj � ɛ) is the Dirac delta weighting function. In

general, continuity along element boundaries is without
errors, thus limɛ→0d(pj � ɛ) = 1. However, the new direct
method solves an overdetermined problem, thus the weighting
function on the element boundaries can be reduced to d(pj� ɛ)
< 1, reflecting equal weighting of the observations and con-
tinuity at the collocation points. This results in a well-posed
system matrix, leading to faster convergence during its
solution. Equation (9) gives an average residual across an
element boundary, which is replaced in the discrete case by
summation of the residuals at the collocation points (2 are
shown here). The residual R(Gj) is then replaced by the
residual R(pj) at the collocation point. At data locations,
equation (9) is also formulated, where d(pj � ɛ) represents
the measurement error and R(Gj) is replaced with residuals at
the data points R(tj), where tj is the jth data point. The for-
mulation of the data residuals is the same if the observation
data lie on the Dirichlet, Neumann, or mixed boundaries.
[17] In this study, equation (9) is used in analyzing

homogenous and heterogeneous aquifers. However, the
hydraulic head approximation function (equation (8a)) is
modified for the heterogeneous aquifers.

4. Algorithms

[18] The study estimates 2-D steady state hydrogeological
model parameters, model state variables, and the unknown
model BCs for (i) a homogenous aquifer, (ii) single (equiv-
alent) K determination for heterogeneous and stratified
aquifers, and (iii) heterogeneous aquifer where prior infor-
mation on K is available. In the last case, prior information is
in the form of hydrofacies zonation and K relationships
between adjacent hydrofacies zones. Individual measure-
ment errors are specified on the observed data with a
weighting scheme reflecting an assumed magnitude of the
errors.

4.1. Homogeneous Isotropic Aquifer

[19] Conductivity is a scalar constant throughout the
solution domain. Three residuals are evaluated: hydraulic
head, Darcy flux x component, and Darcy flux y component.
To enforce continuity across element boundaries, the head
residual can be written at each element boundary as

d pj � ɛ
� �

Rh pj
� � ¼ d pj � ɛ

� �
K~h

kð Þ
xj; yj
� �� K~h

lð Þ
xj; yj
� �� �

¼ 0; j ¼ 1;…;m ð10Þ

where k and l are elements adjacent to pj, and m is the
number of collocation points on each boundary (here m = 2).
The residual is multiplied by K in order to extract the con-
ductivity value from the solution.
[20] For the flux residuals, continuity is also enforced:

d pj � ɛ
� �

Rqx pj
� � ¼ d pj � ɛ

� �
~q kð Þ
x xj; yj
� �� ~q lð Þ

x xj; yj
� �� �

¼ 0; j ¼ 1;…;m ð11aÞ

d pj � ɛ
� �

Rqy pj
� � ¼ d pj � ɛ

� �
~q kð Þ
y xj; yj
� �� ~q lð Þ

y xj; yj
� �� �

¼ 0; j ¼ 1;…;m ð11bÞ

Thus at each collocation point pj, 3 equations enforce the
condition of continuity. By writing equations (10) and (11)

Figure 2. Domain discretization with n elements and a set
of collocation points (solid circles). The approximating func-
tions are shown in each element. Stars are the head measure-
ment locations (t = 1, …, N).

IRSA AND ZHANG: A NEW DIRECT METHOD FOR PARAMETER ESTIMATION W09526W09526

5 of 15



at all collocation points, we obtain a system of linear alge-
braic equations. A domain of n elements will yield 5n
unknowns: {Ka00

(1), Ka10
(1), Ka11

(1), Ka20
(1), Ka21

(1),…, Ka00
(n), Ka10

(n),
Ka11

(n), Ka20
(n), Ka21

(n)}.
[21] After enforcing continuity at every collocation point,

the approximation needs to further honor the observed
heads. For element k, where the tth observed head lies, we

have: ht(xt, yt) = ~h
kð Þ

xt; ytð Þ. Multiplying by K,

Kht xt; ytð Þ ¼ K~h
kð Þ

xt; ytð Þ ð12Þ

where (xt,yt) is the coordinate of the observed head ht(xt, yt).
However, ht(xt, yt) contains measurement errors, thus head
residual for element k is weighted by the inverse of the error
variance d(pj � ɛ) for observation t:

d pt � ɛð Þ K~h
kð Þ

xt; ytð Þ � Kht xt; ytð Þ
� �

¼ 0; t ¼ 1;…;N ; ð13Þ

where N is the number of head measurements. The right-
hand sides of equation (10), (11), and (13) are zeros, thus the
solution of the above system is trivial. To estimate K
uniquely, at least one flow rate measurement is needed.
Equations relating to the flow rates are introduced below,
where the right-hand sides present the weighted flow rate
measurements and the left-hand sides describe the integra-
tion of groundwater fluxes along arbitrary contours where
flow rates are measured. For example, along a vertical line
parallel to the y axis (crossing elements e to f ), flow rate can
be approximated as

~Qy x; yð Þ ¼
Xf
k¼e

Z dy kð Þ

0
~q kð Þ
y dy

" #

¼
Xf
k¼e

�Ka kð Þ
11 dy

kð Þ þ Ka kð Þ
20 dy

kð Þ2 þ 2Ka kð Þ
21 xdy

kð Þ
h i

; ð14Þ

where x is fixed and dy(k) is length of the kth element along
elements e to f. The flow rate is satisfied analytically and
there is no need for collocation points on this line. To further
account for flow rate measurement error, the residual equa-
tion (equation (9)) for the flow rate takes this form at each
flow rate measurement location:

d p� ɛð Þð~Qy x; yð Þ ¼ d p� ɛð ÞQy: ð15Þ

The addition of equation (15) yields a nontrivial solution,
leading to unique estimation of K. The final equation system
consists of equations (10), (11), (13) and (15):

Ax ¼ b: ð16Þ

where A is a sparse matrix (r x s): three diagonals populating
most of the system representing continuities, and sporadi-
cally populated entries representing observations. Here r is
the number of equations, including 3mcm continuity equa-
tions, N observed head equations, and g flow rate equations
(r = 3mcm + N + g). Here s is the number of unknowns (s =
5n + 1), x is the solution vector of size s, x ∈ {Ka00

(1), Ka10
(1),

Ka11
(1), Ka20

(1), Ka21
(1),…, Ka00

(n), Ka10
(n), Ka11

(n), Ka20
(n), Ka21

(n), K},
and b is of size r, consisting of all zeros, except the g non-
zero flow rates. For a detailed formation of the matrix, see
Appendix in Irsa and Galybin [2010]. The system is over-
determined, thus we are solving a least squares solution,
where the approximating functions with the unknown coef-
ficients are minimized to the observations with the assigned
weights. Because A is generally not ill posed, it can be
solved directly:

x ¼ inv ATA
� �

ATb: ð17Þ

Should the system be large, an iterative algorithm is pre-
ferred, e.g., LSQR algorithm [Paige and Saunders, 1982].
After solving for K and the coefficients a(k), head and flux
functions in each element are obtained from equation (8). In
this study, we use a single flow rate measurement (g = 1)
which is found sufficient for uniquely identifying K.

4.2. Heterogeneous Isotropic Aquifer

[22] To solve the heterogeneous isotropic aquifer
(Figure 3), the previous method is modified, where hydro-
facies geometry and prior information on conductivity are
needed:

K gð Þ ¼ ngK
gþ1ð Þ; g ¼ 1;…;M � 1; ð18Þ

where M is number of hydrofacies and ng is a known con-
stant describing the relation between K values of adjacent
facies.
[23] The heterogeneous aquifer is evaluated using the

same set of residual expressions (equation (9)); however,
two types of continuities are enforced. For those element
boundaries lying within a single hydrofacies, the residual
equations remain the same, i.e., equation (10) and (11). At
element boundaries coinciding with a hydrofacies interface,

Figure 3. Schematics of a domainwith two hydrofacies sep-
arated by interface x. Domain is discretized with n elements
and a set of collocation points (solid circles at element bound-
aries internal to a hydrofacies; triangles at the interface).
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the head residual equation is multiplied by conductivity of
one of the hydrofacies:

d pj � ɛ
� �

Rh pj
� � ¼ d pj � ɛ

� �
K kð Þ~h

kð Þ
xj; yj
� �� K kð Þ~h

lð Þ
xj; yj
� �� �

¼ 0; j ¼ 1;…;m; ð19Þ

where k and l are elements adjacent to pj on a hydrofacies
interface (K(k) and K(l)). m is the number of collocation
points on the interface. Knowing ng, equation (18) is sub-
stituted into equation (19):

d pj � ɛ
� �

Rh pj
� � ¼ d pj � ɛ

� �
K kð Þ~h

kð Þ
xj; yj
� �� nkK

lð Þ~h
lð Þ
xj; yj
� �� �

¼ 0; j ¼ 1;…;m: ð20Þ

[24] At the hydrofacies interface x, continuity of the nor-
mal flux is then enforced. The normal flux can be expressed
as: qn(xj) = qx(xj)cos(aj(xj)) + qy(xj)sin(aj(xj)), where aj(xj)
is the angle of the normal vector to the interface with respect
to x evaluated at xj. Thus, at a collocation point pj on x, the
normal flux residual equation is

d pj � ɛ
� �

Rqn pj
� � ¼ d pj � ɛ

� �
~q kð Þ
n xj; yj
� �� ~q lð Þ

n xj; yj
� �� �

¼ 0; j ¼ 1;…;m: ð21Þ

[25] The residual equations for the observed heads are
written similarly as in equation (13), with the exception that
heads lying in different hydrofacies have different conduc-
tivities, thus the K is substituted according to the prior
information equation (18):

d pt � ɛð Þ K~h
kð Þ

xt; ytð Þ � Kht xt; ytð Þ
� �

¼ 0
kð Þ ∈ K kð Þ → K ¼ K kð Þ

kð Þ ∉ K kð Þ → K ¼ ngK kð Þ ; t ¼ 1;…;N :

(
ð22Þ

Finally, the same flow rate equations, i.e., equation (15), are
incorporated.

[26] A system of equations is formed from (10), (11),
(20)–(22) and (15). The size of A is (r x s). r is the number of
equations, including the continuity equations at element
boundaries (3mb) and interfaces (2mi), the observed head
equations (N), and g flow rate equations (r = 3mb + 2mi +
N + g), where mb and mi is the total number of collocation
points on element boundaries and hydrofacies interfaces,
respectively. s is number of unknowns (s = 5n + 1). x is the
solution vector of size s, x ∈ {Ka00

(1), Ka10
(1), Ka11

(1), Ka20
(1),

Ka21
(1),…, Ka00

(n), Ka10
(n), Ka11

(n), Ka20
(n), Ka21

(n), K(1)}. Only one
hydrofacies K is solved; conductivities of the other hydro-
facies are obtained from equation (18). b is of size r, con-
sisting of all zeros except nonzero flow rates. The system is
solved with equation (17).

5. Simulation Examples

[27] Four simulation cases are designed to test the direct
method and the proposed algorithms. The observed data are
obtained from solving an appropriate BVP using the finite
difference method (FDM) and Gaussian Elimination. The
first three simulation cases use a problem configuration
shown in Figure 4; the associated FDM solves the flow
equation on a rectangular grid with 20 � 20 cells. Random
errors are imposed on the simulated observed heads, hj ¼
hj
FDM 1þ ɛ

100m
� �

; j ¼ 1;…;N ; where ɛ is percent measure-
ment error and m∈ (�1,1), drawn from a truncated Gaussian

distribution by taking f xð Þ ¼ ae�
x�bð Þ2
2c2 with parameters a = 1,

b = 0, c = 1/e, and cutout values (�∞, � 1] ∪ [1, ∞). The
one flow rate measurement is assumed error free in this
study for all test cases.
[28] The test cases are (a) homogeneous isotropic aquifer;

determination of a single K, (b) heterogeneous and stratified
aquifers; determination of an equivalent K, (c) heteroge-
neous locally isotropic aquifer; determination of hydrofacies
K values, and (d) hypothetical example with irregular aqui-
fer geometry. Results of each case are reconstructed fields of
hydraulic head, fluxes, streamlines, and the estimated con-
ductivity values. A percent relative error in the reconstructed

head is defined as: ɛ %ð Þ ¼ hFDM � hrecð Þ
hFDM

� 100%, where hFDM
are noise-free (true) nodal heads computed for the BVP and
hrec is the recovered head (equation (8)) at the same location.
Average �ɛ and maximum relative errors �ɛ max are also
computed. In this study, error in the prior model is not
considered, though error-based weighting on the prior
information equation can be considered in the future. In the
following test cases, dimensions for all relevant quantities
implicitly assume a consistent set of units (K in m/d, q in
m/d, Q in m2/d), thus the units are not labeled.

5.1. Homogeneous Isotropic Aquifer

5.1.1. 25 + 1 Observations Without Errors
[29] In this example, true K(x, y) = 1. Heads are observed

at 25 points on a dense 5 � 5 network distributed uniformly
in the problem domain. The flow rate measurement (Qy) is
along the right boundary. The direct method uses a coarse
grid with 10 � 10 square elements, 4 times coarsening
compared to the FDM approximation. Conductivity com-
puted from the direct method is K = 0.78, with |ɛmax| = 2%
and �ɛ ¼ 0:38%. The grid resolution is then increased to
30 � 30 square elements, yielding K = 0.91 and �ɛ ¼ 0:2%.
In both cases, the direct matrix is well conditioned, leading to

Figure 4. A 2-D flow model used by most of the test
examples: no flow on the left, right, and bottom boundaries
and heads specified on the top boundary (linearly interpo-
lated between the values). To provide the observation data,
the domain is discretized into 20 � 20 FDM block cells.
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Figure 5. Streamlines from (a) the FDM and (b) the direct method (25 + 1 observed data, 30 � 30 ele-
ments). (c) Reconstructed head BCs shown for 10 � 10 (dashed line) and 30 � 30 (dotted line) elements
grid. “True BC” is that used by the FDM.
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a stable inversion of the K. In the 30 � 30 case, streamlines
are computed from the reconstructed flow field (Figure 5b),
which can be used to infer the no-flow condition along the
model sides and bottom. Along the model top, the recon-
structed head function yields the specified BCs with excellent
accuracy (Figure 5c.).
5.1.2. 15 + 1 Observations Without Errors
[30] This example tests the direct method when there are

fewer observed data. Heads are measured at locations
x = 0.05, 0.47, 0.9, with 5 observation points placed uni-
formly along each profile. Flow rate Qy is measured along
the right boundary. With a 10 � 10 discretization, we find:
K = 0.75, �ɛ ¼ 0:54%, |ɛmax| = 5.6%. The discretization is
then refined (Figure 6). Conductivity converges toward the
correct value asymptotically (Figure 6), e.g., K = 0.5 for a
2 � 2 grid; K = 0.96 for a 30 � 30 grid. The average head
error (�ɛ) also diminishes with grid refinement.
5.1.3. 15 + 1 Observations With Data Errors
[31] The previous example is repeated but the observed

data are subject to measurement errors which are created
with a Gaussian random number generator. According to
Hill and Tiedeman [2007], errors assigned to one kind of
observation data may have equal variance, thus it is common
to set the observed head weights to 1. In this example, a
standard deviation (std) is set at 9.5 to model the head error
(absolute measurement error ��1% of the total head vari-
ation). A 10 � 10 grid results in K = 0.73, �ɛ ¼ 0:76%,
and |ɛmax| = 7.3%. For a 30 � 30 grid, given the same
measurement errors, K = 0.98, and the reconstructed head
errors are accordingly smaller.
[32] To test the stability of the method, higher head errors

are then imposed: std = 102 (absolute measurement error
��10% of the total head variation). For the given boundary
conditions of the test problem, the FDM simulated heads in
the bottom half of the domain vary between 1800 and 1930
(Dh = 130), while locally, head measurement errors can
reach up to �200. Using the direct method the reconstructed
streamlines in this region change directions (up to 180�),
creating vortexes and singularities. Such a situation would
not normally be solvable with many inverse methods, but

the direct method still gave a stable inverted K of 0.24
(10� 10 grid), less than 1 order of deviation from the true K.

5.2. Equivalent K

[33] A heterogeneous aquifer can be represented by an
equivalent homogenous medium. A well-known analytic
solution for layered (equal-thickness) hydrofacies gives an
equivalent K as harmonic mean for flow perpendicular to
layering and arithmetic mean for flow parallel to layering.
Although we do not provide a rigorous proof, the following
examples demonstrate that the direct method (section 4.1)
leads to the estimation of an equivalent K.
5.2.1. Random ln(K) Map
[34] For a Gaussian distribution of ln(K) without spatial

correlation, the analytic equivalent K is the arithmetic mean.
A 10 � 10 ln(K) field is created, each K is represented by
4 cells in a 20 � 20 FDM grid. The same BCs are used to
drive the flow (Figure 4). Observation errors are assumed
zero. A Gaussian ln(K) field is generated with a mean of
1 and a std of 0.1 (arithmetic mean and std of K are 2.7 and
0.3, respectively). First, dense data are used, i.e., 25 observed
heads and one flow rate. With a 10 � 10 grid, the estimated
K = 2.0; with a 30 � 30 grid, K = 2.4, approaching the
arithmetic mean (2.7). Then, fewer data are used, i.e., 15
heads and one flow rate, which yields: K = 2.0 (10� 10 grid)
and 2.6 (30 � 30 grid). Clearly, this particular estimation is
insensitive to the amount of the observed data.
[35] The Gaussian ln(K) field is then scaled to a higher

variance (mean K = 3.2 and std = 1.0), while such errors are
extreme, the method still estimates a reasonable value:
K = 1.9 (10 � 10 grid) and K = 2.2 (30 � 30 grid). The
convergence to the mean value is slower compared to when
ln(K) variance is low. This behavior is similar to that
observed for the homogeneous isotropic case with nonzero
observed head errors. In a certain sense, ln(K) variance may
be viewed as a source of error for the observed heads. Note,
that in the FDM solution itself, discretization error, inter-
block conductivity weighting scheme, and the solution
method also introduce errors to the FDM and thus also to the
direct method. While refinement in FDM and better solution
technique may lead to more accurate results and thus better
estimation of K in the direct method, this topic is not
investigated in this study.
5.2.2. Flow Parallel to Stratification
[36] When flow is parallel to hydrofacies stratification and

zones are of equal thickness, the analytic equivalent K is the
arithmetic mean (Figure 7a). In this problem a uniform flow
is driven by constant heads (1000 at the top and 100 at the
bottom), while the sides are no flow. For this BCs and 3
known K values (K1 = 1, K2 = 10 and K3 = 100; arithmetic
mean is 37.0), 18 heads are sampled from the FDM solution
at: x = 0.05, 0.47, 0.9 (6 observations uniformly placed
across each profile). A flow rate Qy is sampled along a
horizontal line at y = 0.5 crossing all zones. Random error is
added to all the observed heads with std = 13 (measurement
error up to �3% of the total head variation). For this prob-
lem with linearly varying heads, results converge immedi-
ately to K = 39.6 for a grid as small as 2 � 2. The method is
also stable at larger errors, such as std = 40 (error up to
�10%). In this case, K obtained with a 30 � 30 grid is 34.0.

Figure 6. Convergence of K and �ɛ with increased level of
discretization based on 15 + 1 observations. True conduc-
tivity is K = 1.
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5.2.3. Flow Perpendicular to Stratification
[37] When flow is perpendicular to stratification and

zones are of equal thickness (Figure 7b), the analytic
equivalent K is the harmonic mean. The same BCs as in the
previous example are used. The same 18 heads are sampled
from the FDM solution. A flow rate Qx is sampled at x = 0.5,
crossing all zones. The analytic equivalent K of this model is
the harmonic mean 3Xm

j¼1

1

K jð Þ

¼ 2:7. Compared to the previous

example, convergence of the direct method is slower, which
is likely due to the more complex head profile. Given the
same random error (std = 13 or �3% of the total variation),
we find K = 1.6 (10 � 10) and 1.8 (30 � 30). When the error
is increased (std = 40 or �10% error), K = 1.6 (10 � 10) and
1.77 (30� 30). Although the errors are higher, the method is
stable and the estimated K values appear to approach the
harmonic mean with grid refinement.

[38] In the above cases, the domain is represented by a
single K. To satisfy the governing equation and continuity of
the head and flux across the problem domain, the set of
equations formulated by the direct method naturally leads to
an equivalent K value. The examples are of simple config-
uration where equivalent K can be obtained analytically,
and we anticipate that the results should be applicable to
more general settings. Since all these cases do not involve
pumping tests, the direct method may serve as a fast and
robust tool for evaluating large-scale formation equivalent
conductivity without aquifer stimulation.

5.3. Heterogeneous Isotropic Aquifer

[39] The algorithm of section 4.2 is tested by examining 2
unit square models, each with 2 hydrofacies (Figure 8). Prior
information with respect to K is specified by equation (18).
The same BCs as in Figure 4 are used.

Figure 8. A unit square domain with (a) two vertical zones
and (b) two horizontal zones. In both models, BC is described
by Figure 4.

Figure 7. Three hydrofacies zones: (a) parallel stratifica-
tion and (b) perpendicular stratification. The true K values
for the zones are shown.
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[40] The horizontally zoned model is tested with 15
observations of heads (x = 0.05, 0.47, 0.9 with 5 heads
uniformly placed across each profile) and one flow rate Qy at
x = 1 (Figure 8a). The observation data are sampled from a
FDM solution with K1 = 2 � 103 and K2 = 1. Errors are
randomly sampled with a std = 9.8 (head error ��1% of
total head variation). Prior information gives ng = 2000. A
10 � 10 grid results in K1 = 1.51 � 103 and K2 = 0.75 with
�ɛ ¼ 0:34%and |ɛmax| = 5.4%. In a 30� 30 grid, K1 = 1.86�
103 and K2 = 0.93 with �ɛ ¼ 0:14% and |ɛmax| = 4%.
[41] The vertically zoned model is tested with 24 head

observations (x = 0.05, 0.36, 0.68, 0.9) and one flow rate Qy

at x = 1 (Figure 8b). The true conductivities are K1 = 2 � 103

and K2 = 1. Observations errors are the same as in the pre-
vious example. The same prior model is used, yielding K1 =
1.66 � 103 and K2 = 0.83 (10 � 10), and K1 = 2.2 � 103 and
K2 = 1.1 (30 � 30). In both of these zoned models, the
correct BCs are recovered; the accuracy in its reconstruction
increases with increasing number of elements.

5.4. A Hypothetical Example With Irregular
Aquifer Geometry

[42] A hypothetical example with irregular aquifer geom-
etry containing 4 zones is analyzed (Figure 9a), which is a
modification of an example from Heidari and Ranjithan
[1998]. The model consists of a no flow boundary (solid
line) and a specified head boundary (dashed line; specified
heads shown). Four zones are shown with K1 = 150, K2 =
100, K3 = 50 and K4 = 5. For the given BC, the FDM solution
is shown in Figure 9b. To estimate the conductivities and
BCs with the direct method, 6 cases are analyzed: the first
three utilize 40 observations of hydraulic head and one flow

rate, with data error of 0%, 0.5% and 1% (i.e., observed and
true heads deviate by 0,�1 and�2); the other three utilize 12
observations of hydraulic head and one flow rate with the
same increasing data errors. For the error of 0.5%, the
reconstruction results, given dense versus sparse observation
data, are shown in Figure 10. Overall, the heads are recon-
structed reasonably well, the denser observation data giving
rise to greater accuracy. The worst results occur near the
northeastern corner of the model (Figure 10b), which is
believed to be due to a combination of sparse data and the
corner location. To evaluate how well the boundary condi-
tion is recovered, we plotted hydraulic heads along the entire
model boundary for all models and at all error levels. When
the data are dense, BC recovery is quite good, with a devia-
tion from true BCs generally increasing with the magnitude
of the data error (Figure 11); when the data are sparse, BC
errors are greater in comparison, and also increase with the
magnitude of the data error (Figure 12). Finally, estimated
hydraulic conductivities for the 6 cases are shown in Table 1.
Without data error, dense and sparse observations yield very
accurate K values. Given the same observation data, accuracy
in K estimation degrades with increasing magnitude of the
data error, as expected. Overall, K recovery is excellent.

6. Element Shape, Collocation Points,
and Error Weighting

[43] Since the Trefftz method is insensitive to mesh dis-
tortion [Jirousek and Zielinski, 1997], there is no special
requirement in the direct method for the element shape and
the aspect ratio. Unlike the FEM or FDM, the direct for-
mulations are not based on nodes/vortexes, thus the elements

Figure 9. (a) A hypothetical model with four hydrofacies zones. (b) The FDM solution of the hydraulic
head for the given conductivities and boundary conditions of Figure 9a.

IRSA AND ZHANG: A NEW DIRECT METHOD FOR PARAMETER ESTIMATION W09526W09526

11 of 15



do not need to meet at the nodes. Though square elements
are used here, previous applications of the method in geo-
physical inversion yielded excellent results with other ele-
ment shapes [Irsa, 2011].
[44] For a regular 2-D domain with uniform rectangular

elements, the number of collocation points is m ¼
ijc1

c2 2ij � i � j½ �. i is the number of cells across x; j is the number

of cells across y; c1 is the number of unknown coefficients in
each element; c2 is the number of continuity equations. Here,
with 5 unknowns in each element and 3 continuity
equations, m ≈ 1. Should one solve a forward BVP problem
with the direct method, m = 1 is sufficient to provide a
unique solution. For the inverse problems, however, one
collocation point cannot guarantee a stable solution, thus
m ≥ 2. In all the above examples, we set m = 2 and the

Figure 10. Reconstructed hydraulic heads given (a) 40 and
(b) 12 head observations. Locations of head data are shown
by dots. A 0.5% error is imposed on each observed head,
corresponding to head variation of �1. Both models use
the same single flow rate measurement.

Figure 11. Reconstructed heads along the model boundary
(A→F; see Figure 10) for the case with 40 observed heads
(head locations shown in Figure 10a).

Figure 12. Reconstructed heads along the model boundary
(A→F; see Figure 10) for the case with 12 observed heads
(head locations shown in Figure 10b).
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weighting function on the continuity equations at the col-
location points are reduced to 0.5 to account for the fact that
r ≅ 2s (coefficients defined in equation (16)).
[45] Higher number of collocation points (m ≫ 1), how-

ever, serves as a smoothing parameter which is only pref-
erable if observations are known to contain extremely high
errors, such as in an example presented in 5.1.3 where the
solution leads to a flow pattern with singularities. Higher m
puts more emphasis on the smoothness/continuity of the
solution; the observed data are accordingly given lower
weights reflecting their high errors. Thus, increasing m is
encouraged only if the observation errors are extremely high.
In this case, the convergence of the direct method with grid
refinement should also be tested. This can be illustrated for a
given problem with a true K of 1, where the estimated K
does not converge toward 1.0 with increasing number of
collocation points (Figure 13). This is true for when the
observations contain either no error or very high errors.
[46] The direct method uses head and flux approximation

functions that satisfy the governing equation, thus inclusion
of the weighting functions, d(pj � ɛ), is not necessary. The
least squares solution method automatically finds an opti-
mal solution whether the approximation functions are
weighted or not. Should the measurement error be known
for each observed datum, a user-specified variance can be
used. Here a Gaussian noise is assumed, though other dis-
tributions can be used. The error variance is the basis upon
which weights are assigned to the observed data in the direct
formulations. Here the errors are assumed to be uncorrelated,
corresponding to the diagonal weight matrix of Hill and
Tiedeman [2007], though future work may explore corre-
lated errors. For a discussion of how weights can be

determined for different hydrogeological data, see Hill and
Tiedeman [2007].

7. Discussion

[47] A chief strength of the new direct method is that it
does not require prior knowledge of the BCs. Also, the model
domain does not have to conform to physical boundaries,
which are often uncertain or unknown. For example, the
model domain can extend into regions where the aquifer does
not exist. This will not create unrealistic outcomes; rather, the
solution in this area will be an extrapolation of the direct
solution constrained by the observed data where they exist,
while satisfying the governing equations. Given other phys-
ical constraints, the actual boundary conditions can be
inferred [Irsa, 2011]. On the other hand, the nature of the
BCs can be inferred if the observed data are sufficiently
dense and accurate (e.g., Figure 5b). Though an locally iso-
tropic aquifer is analyzed here, the method can be extended to
locally anisotropic systems with arbitrary conductivity prin-
cipal orientations via coordinate transform techniques [Fitts,
2010].
[48] The new method, due to its low demand on data and

robustness in the presence of measurement errors, can be
developed into an efficient prototyping tool as part of a field
reconnaissance study, before conducting pumping tests and
collecting additional data to build detailed models. The
inferred BCs can help delineate BVP domains, whereas the
conductivity estimates can provide prior information for
solving indirect inverse problems using regularized inver-
sion. Although we have shown 2-D results here, extension of
the method to 3-D is straightforward using 3-D harmonic
approximating functions and 3-D elements with collocation
points on its sides [Irsa and Galybin, 2010].
[49] Due to its efficiency and flexibility, we envision

future extension of this technique to the simultaneous iden-
tification of parameter structure, value, state variables, and
boundary conditions, up to three dimensions. To incorporate
hydrogeological site static data, a variety of geostatistically
based iterative schemes (e.g., gradual deformation, sequen-
tial self-calibration, soft data integration) can be adapted,
where the direct method will replace the “inversion filter”
which is typically based on indirect inverse method. Parsi-
mony in parameter structure can be explored using techni-
ques such as data-driven zonation [Eppstein and Dougherty,
1996] and penalized objective function/model ranking sta-
tistics [Poeter and Anderson, 2005]. Though the current
method does not incorporate uncertainty measures, uncer-
tainty of the estimated parameters (and possibly boundary
conditions) is strongly influenced by material zonation and
the prior information equations. By setting additional criteria
(e.g., objective function), iterative schemes can be devel-
oped to identify alternatively viable parameters, structures,
and model boundary conditions. Experimentally, the direct
method can be verified in sand tanks, comparing its merits
for parameter and BCs estimation against those based on
pumping tests and other aquifer characterization techniques.

8. Conclusion

[50] We propose a new direct inverse method for param-
eter and boundary condition estimation for steady state
groundwater flow problems. Its key strength lies in its

Table 1. Conductivity Estimated for Different Observation
Densities and at Different Levels of Head Measurement Errorsa

Head
Measurement

Error

40 Observed Heads 12 Observed Heads

K1 K2 K3 K4 K1 K2 K3 K4

0% (0) 150 100 50 5 150.22 100.14 50.07 5.01
0.5% (�1) 153.24 102.16 51.08 5.11 159.11 106.07 53.04 5.30
1% (�2) 141.10 94.07 47.03 4.70 161.91 107.94 53.97 5.40

aThe true conductivities used in the FDM are K1 = 150, K2 = 100, K3 =
50, and K4 = 5.

Figure 13. Estimated K versus number of collocation points.
Here the problem presented in Figure 4 (sections 5.1.2
and 5.1.3) is solved. Data are 15 heads and 1 flow rate.
The true K = 1. Std is the standard deviation of the head
measurement error.
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computational efficiency, as there is no need to fit an objec-
tive function, nor repeated forward simulations of a BVP.We
employ a discretization scheme using Trefftz-based approx-
imations and a collocation technique to enforce the global
flow solution. The noisy observation data are directly incor-
porated into the solution matrix, which is solved in a one-step
procedure. The output is zoned hydrofacies hydraulic con-
ductivity and analytical expressions of heads and fluxes
which can be back substituted to determine the model
boundary conditions. Two methods are proposed, one for a
homogeneous isotropic aquifer, which can also be used for
estimating an equivalent conductivity. The second method is
for heterogeneous aquifers where hydrofacies zonation is
known in advance, together with prior information on
hydraulic conductivity. The direct methods are tested using
different data distributions, sampling density, and measure-
ment error variances (up to �10% of the total variation).
Different hydrofacies patterns and heterogeneity variances
are tested for both regular and irregular problem domains. All
the examples tested were free from instability and conduc-
tivity converges with further refining of the grid toward the
true or expected values. Under natural flow (i.e., no pump-
ing), the direct method yields an equivalent conductivity of
the aquifer, suggesting that the method can be used as an
inexpensive characterization tool with which both aquifer
parameters and aquifer boundary conditions can be inferred.
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