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Summary A critical issue facing groundwater flow models is the estimation of represen-
tative hydraulic conductivity assigned to the model units. In this study, an experiment-
based, high-resolution hydraulic conductivity map offers a test case to evaluate this
parameter. Various hydrogeological units are distinguished, each is of irregular shape with
distinct heterogeneity pattern created by physical sedimentation. Extending a previous
study which used numerical upscaling to compute equivalent conductivities for these units
(at two upscaling scales) [Zhang, Y., Gable, C.W., Person, M., 2006. Equivalent hydraulic
conductivity of an experimental stratigraphy – implications for basin-scale flow simula-
tions. Water Resources Research 42, W05404. doi:10.1029/2005WR004720], this study
compares them with local statistics and effective conductivities predicted by a stochastic
theory. Results suggest that for a system with moderate lnK variance (4.07) and low topo-
graphic slope (�1�), the arithmetic mean (KA) provides a good estimate for the maximum
principal component (Kmax) of the equivalent conductivity. The minimum principal com-
ponent (Kmin) lies between the harmonic and geometric means: its closeness to the geo-
metric mean is affected by heterogeneity pattern and upscaling scale. Using Kmax

(alternatively, the arithmetic mean), geometric mean, and ln(K) variance, the stochastic
theory predicts a Kmin that is consistent with the up-scaled value. Similarly, knowing Kmin,
Kmax predicted by theory is also consistent with the up-scaled value. For most deposits
(some with variance greater than 1), a low-variance version of the theory is more accurate
than a high-variance version. However, the increase of topographic slope (to �4�)
and total lnK variance (to 16) result in increased deviation of Kmax from KA. High variance
also results in significantly larger anisotropy ratio, possibly due to the dominance of
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preferential flow. Finally, for select units, equivalent conductivity exhibits scale effect.
Field scale representative elementary volume thus does not exist and upscaling the full
unit is necessary to obtain the representative conductivity.

ª 2007 Elsevier B.V. All rights reserved.
Introduction

In field to regional scale groundwater studies, hydrogeolog-
ical framework models are routinely used to evaluate a vari-
ety of geological and environmental processes. In these
models, based on facies mapping, sedimentary deposits
are represented by distinct hydrogeologic units, e.g., sand-
stone, claystone, limestone. A representative saturated
hydraulic conductivity is assigned to each unit to relate
the mean head gradient to the average groundwater flux.
The effect of within-unit stratification is represented by
an anisotropy ratio, often arbitrarily assigned to each unit
and is then subject to model calibration. Ideally, the repre-
sentative conductivity quantifies the effect of underlying
heterogeneity on bulk fluid movement under various flow
conditions. However, in actual modeling, the estimation
of representative conductivities for the model units remains
a difficult task, as information on formation conductivity is
commonly lacking.

If small-scale measurements are available (e.g., grain
size analysis, borehole sampling), direct averages can be
used to construct a representative conductivity: harmonic
(KH), geometric (KG), arithmetic (KA) means. It is well estab-
lished that KA and KH are the representative lateral and ver-
tical conductivities, respectively, for an infinite horizontal
medium containing stratifications of uniform thickness.
For other heterogeneity patterns, [KH,KA] constitutes an
analytic ‘‘Wiener Bounds’’ (Renard and de Marsily, 1997).
However, natural hydrogeologic units are of irregular
shapes, finite in extent, and contain stratifications that
may or may not be spatially continuous. For these deposits,
it is less clear how small-scale measurements relate to the
representative conductivity, nor is the role of within-unit
heterogeneity on such relationships clearly understood. To
understand this, a complete description of heterogeneity
is required, a near impossibility even with exhaustive sam-
pling (Eggleston and Rojstaczer, 1998).

A representative conductivity can also be estimated
using stochastic theories which treat the local conductivity
(K) as a random space function (RSF) (e.g. Matheron, 1967;
Matheron and de Marsily, 1980; Gelhar and Axness, 1983;
Dagan, 1993). An effective conductivity is estimated based
on the geostatistic parameters of natural log conductivity
– ln(K). The effective conductivity is considered an intrinsic
property of the RSF, thus independent of the boundary con-
dition. However, theories often require a ‘‘large’’ system
scale many times the ln(K) correlation; perturbation-based
approaches may be sensitive to ln(K) variance. To test the
theories for effective conductivity, numerous studies have
been carried out, using field experiments (e.g. Sudicky,
1986; Hess et al., 1992), laboratory studies (e.g. Barth
et al., 2001; Danquigny et al., 2004; Fernandez-Garcia
et al., 2005), and numerical analyses (e.g. Ababou et al.,
1989; Dykaar and Kitanidis, 1992; Sanchez-Vila et al.,
1995; Naff et al., 1998; Paleologos et al., 2000; Jankovic
et al., 2003). However, field experiments suffer parameter
uncertainties due to data paucity or sampling biases; in-
sights obtained from laboratory or numerical analyses are
limited to artificially packed or synthetic data that satisfy
specific statistical assumptions, e.g., stationarity, (multi-
Gaussian) log-normality, exponential covariance. Natural
deposits may not satisfy these assumptions, e.g., within-
unit stratifications often exhibit long range correlation. It
is not clear whether theories should work for such deposits.

In the last two decades, it is increasingly recognized that
sedimentary structures dominate conductivity heterogene-
ity (e.g. Fogg, 1990; Anderson, 1997; Webb and Davis,
1998; Pickup and Hern, 2002). By combining geologic infor-
mation with analysis on small-scale heterogeneity, multi-
scale conductivity has been explicitly modeled (e.g. Jussel
et al., 1994b; Webb and Anderson, 1996; Scheibe and Yabu-
saki, 1998; Bersezio et al., 1999). Various assumptions con-
cerning heterogeneity are made, resulting in large
uncertainties in the predicted conductivity, e.g., when fa-
cies units are modeled, within-unit conductivity is assumed
uniform (Scheibe and Freyberg, 1995; Weissmann et al.,
2002). Other studies use geostatistic simulations to gener-
ate within-unit heterogeneity, assuming diverse correlation
functions (Jussel et al., 1994a; Bierkens, 1996; Lu et al.,
2002; Zhou et al., 2003).

In this study, the recognition that multi-scale conduc-
tivity heterogeneity exists on the one hand, and the prac-
tical need to construct groundwater flow simulators which
rely on hydrogeologic units and representative conductivity
on the other, motivates an analysis based on a two-dimen-
sional fully heterogeneous hydraulic conductivity map, cre-
ated by scaling up an experimental stratigraphy (Fig. 1a).
This stratigraphy is obtained from high-resolution imaging
of deposits generated in a fluvial experiment where multi-
ple sedimentary facies formed in response to a variety of
depositional processes (e.g. Paola, 2000). By assuming
appropriate length scales, each image pixel is scaled up
to the dimensions of a representative elementary volume
(REV). Based on pixel gray scale and two end-member con-
ductivities (one for pure sand, one for pure clay), a scalar,
local-scale conductivity is obtained via log-linear interpola-
tion and defined for each REV. The ln(K) variance of the
map is 4.07, reflecting the range of an unconsolidated allu-
vial fan. Since the conductivity map corresponds to physi-
cal stratigraphy, it exhibits multi-scale variability and may
not satisfy any statistical assumptions. In light of the
framework model approach, the map is divided into 14
depositional units (Fig. 1b), and alternatively, a global
aquifer and aquitard (Fig. 1c). The aquitard consists of
the clay-rich units of 1, 7, 13, 14; the aquifer is the
sand-rich units combined.

This study is an extension of earlier studies in which de-
tails on this map can be found. For select subregions,



Figure 1 (a) Basin-scale lnK map (in m/yr); (b) a 14-unit model with the unit ID: 1–14; (c) a 2-unit model.
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Zhang et al. (2005) calculated experimental ln(K) vario-
grams along the principal statistical axis. Using numerical
simulations, Zhang et al. (2006) computed equivalent or
up-scaled conductivities for these units (Fig. 1b and c).
These conductivities were found consistent with the pre-
dictions of a low-variance stochastic theory. However,
the theory was not used in direct predictions. Though a
high-variance version exists, its applicability was not as-
sessed. In this study, the equivalent conductivities are
compared to direct averages of within-unit conductivity,
and, to an effective conductivity predicted explicitly by
theory. Both a low- and high-variance version of the theory
are tested. A sensitivity analysis is further conducted by
alternatively increasing the topographic slope (via chang-
ing domain aspect ratio) and the total system variance
(to 16.0). Results are again compared to direct averages
and theory predictions. We explore the conditions of
obtaining representative conductivity using statistical mo-
ments and theories, without resorting to high-resolution
simulations.

Finally, conductivity ‘‘scale effect’’ is a well-known
phenomenon whereby measured values change (often in-
crease) with data support (Neuman, 1990, 1994; Doll and
Schneider, 1995; Sanchez-Vila et al., 1996; Rovey, 1998;
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Butler and Healey, 1998; Schulze-Makuch et al., 1999;
Zlotnik et al., 2000; Hyun et al., 2002; Martinez-Landa
and Carrera, 2005). Various explanations are proposed,
e.g., deviation from log-normality, fractal porous media,
non-stationarity, and measurement artifacts. Due to diffi-
culties in determining the support volume, the exact
mechanism behind the scale effect is not clear. However,
a related concept of field scale REV (FSREV) is developed:
representative conductivity of a formation is assigned a
value at which smaller scale conductivity reaches a pla-
teau. This FSREV is assumed to correspond to a statistical
homogeneity which is then assumed to repeat in the for-
mation of interest, eliminating the need for exhaustive
sampling. Such an assumption underlies most of the large
scale flow models. However, the existence of FSREV is
never tested. In this study, the scale effect is evaluated
by numerically upscaling various subregions and comparing
the equivalent conductivities with both local averages and
the equivalent conductivity of the full unit. We inspect (1)
whether scale effect exists and what may be responsible;
(2) can a FSREV be found, thus eliminating the need for
full-unit upscaling?

In this study, heterogeneity and the associated statistics
are fully known, eliminating parameter uncertainties
encountered in field studies. Compared to laboratory analy-
ses, the various units analyzed may or may not satisfy theory
assumptions. Compared to numerical simulations which em-
ploy a stochastic framework to evaluate effective conduc-
tivity and uncertainties (i.e., many realizations of the
detailed heterogeneity are created, theory prediction is
compared to an ensemble average), this study employs a
deterministic view, i.e., comparing theory predictions with
one set of equivalent conductivities. (Alternatively, if the
conductivity map is posed as one realization of a RSF, the
comparison is made assuming ergodicity.) As theory is con-
tinuously being tested and refined, the next logical step is
to evaluate its applicability for realistic heterogeneities.
The deposit of this study presents such a test case to eval-
uate theory.

In the reminder of the text, the upscaling method is
briefly described along with the formulations of the stochas-
tic theory. Results pertaining to Fig. 1a (basin scale, moder-
ate variance) are presented, followed by a sensitivity
analysis. The implications for parameter estimation using
theory are discussed. A section on conductivity scale effect
is then presented. We end with indicating directions for fu-
ture research.
Mathematical formulations

Conductivity upscaling

Upscaling for the irregular hydrogeologic units is conducted
using global flow simulations. The conductivity map is dis-
cretized down to the scale of each pixel. A high density fi-
nite element grid is created with 424,217 nodes and
845,208 elements. A series of steady state, incompressible
flow experiments is conducted in the heterogenous model
by varying the boundary condition along the domain periph-
ery. For each unit, an equivalent conductivity is obtained by
incorporating results from all experiments:
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where h i represents spatial averaging; qx, qz are compo-
nents of the Darcy flux; Kxx, Kxz, Kzz are components of
the equivalent conductivity (symmetry is imposed, i.e.,
Kxz = Kzx); h is hydraulic head; m is the number of flow
experiments (m P 2). In this study, m = 4. The relevant
boundary conditions are: (1) vertical mean flow: top and
bottom boundaries are specified head; no flow for the sides;
(2) lateral mean flow: top and bottom are no flow; specified
head for the sides; (3) topography-driven flow: specified
head for the top boundary; no flow for all others; (4) same
as (3) except a set of fluid source/sink is imposed with a rate
of 10,000 m/yr. The equivalent conductivities are obtained
via least square solution. More details on the upscaling
method including grid generation can be found in Zhang
et al. (2006).

Stochastic theory

Many theories have been developed to estimate effective
conductivity for which a well-known result for anisotropic
media is evaluated (Zhang, 2002, p. 143, (3.155)):

Kef
ii ¼ KG 1þ r2

f 0:5� Fið Þ
h i

Fi ¼
1

r2
f

Z
k2i
k2

SfðkÞdk
ð2Þ

where Kef
ii are components of an effective conductivity

along the principal statistical axes; r2
f is lnK variance;

k = (k1, . . . ,kd)
T is the wave number vector; d is the number

of space dimensions; Sf is the spectral density of ln(K), de-
fined as the Fourier transform of the ln(K) covariance func-
tion. Eq. (2) results from first-order approximation and is
valid for stationary media with small r2

f . Based on the Lan-
dau-Lifshitz conjecture (which treats the two terms within
the brackets as part of a series expansion of an exponential
function), Eq. (2) is generalized to higher variance (r2

f >1)
(Gelhar and Axness, 1983):

Kef
ii ¼ KG exp½r2

f ð0:5� FiÞ� ð3Þ

For two-dimensional problems, simple relations of Fi are
obtained:
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F1 ¼
e

1þ e
; F2 ¼

1

1þ e
ð4Þ

where e = k2/k1 (0 < e 6 1) is statistical anisotropy ratio, k2
and k1 are ln(K) integral scales along the minor and major
statistical axes, respectively. Note that a three-dimensional
version of the theory was tested in a laboratory aquifer (Fer-
nandez-Garcia et al., 2005). Results from both tank experi-
ments and Monte Carlo simulations suggest that for the
prescribed heterogeneity (stationary with exponential
anisotropic covariance), Eq. (2) is more accurate than Eq.
(3), even for deposits with r2

f >1. Specifically, Eq. (3) over-
estimates the maximum principal component of the effec-
tive conductivity.
Results

For the 16 hydrogeologic units (14 depositional units; aqui-
fer; aquitard), the equivalent conductivities are diagonally
dominant full tensors: Kmax � Kxx, Kmin � Kzz (Kmax, Kmin are
the principal components), reflecting the near horizontal
stratigraphic dip (Table 1). In this section, both principal
components are compared to local statistics and theory pre-
dictions. A sensitivity analysis is conducted by changing the
domain aspect ratio and total variance. To evaluate scale ef-
fect, conductivity is computed for increasing data support.

Equivalent conductivity versus direct averages

For each unit, the mean and variance of ln(K) and the local
statistics – KH, KG, KA – are computed (Fig. 2a and b). Kmax

and Kmin are compared to the Wiener Bounds (Fig. 2c). The
anisotropy ratio (Kmax/Kmin) is also plotted (Fig. 2d). Results
indicate:

(1) Mean conductivity of the various units appears
bimodal, reflecting the global division of sand-rich
and clay-rich units. ln(K) variance ranges from
Table 1 Equivalent hydraulic conductivity (m/yr), its principal c

Unit ID Depo. Environ. E[ln(K)] Var[ln(K)] Kxx

1 Deepwater 2.10 0.73 17.1
2 Shoreline 4.73 1.48 188.9
3 Shoreline 5.34 1.15 294.3
4 Fluvial 5.68 0.31 330.5
5 Fluvial 5.98 0.91 554.5
6 Turbidite 6.26 1.85 871.0
7 Deepwater 2.07 0.83 19.1
8 Shoreline 6.00 1.25 583.7
9 Shoreline 5.44 1.13 321.9

10 Fluvial 6.29 0.37 591.6
11 Fluvial/floodplain 4.53 1.10 140.4
12 Fluvial/floodplain 5.68 0.62 388.4
13 Deepwater 1.32 0.41 5.5
14 Deepwater 2.02 0.59 11.6
– Aquitard 1.76 0.77 13.2
– Aquifer 5.29 1.54 324.6

The mean and variance of ln(K) are also listed, along with the deposit
0.31 (unit 4) to 1.85 (unit 6), comparable to many
natural aquifers (Hoeksema and Kitanidis, 1985;
Anderson, 1997).

(2) For all units, the principal components lie within the
Wiener Bounds (derived for infinite media), suggesting
that an effective conductivity has emerged, its value
determined only by local averages. This is consistent
with the earlier observation that the equivalent con-
ductivity is not sensitive to boundary condition (Zhang
et al., 2006). This is because the upscaling domain
(i.e., a hydrogeologic unit) is generally large com-
pared to lnK integral scales (Renard and de Marsily,
1997). Note that such will not be the case when the
domain is small, as often in block upscaling (Bierkens
and Weerts, 1994). However, the goal of this study is
not to evaluate the traditional upscaling issues, i.e.,
developing coarse-grid solutions for fine-grid prob-
lems and estimating the relevant coarse-grid parame-
ters. Rather, our goal is to find representative
conductivities for groundwater flow models. The
lithofacies-based upscaling approach ensures that
the comparison between equivalent conductivity with
theory prediction of an effective conductivity is
appropriate.

(3) Kmin lies between the harmonic and geometric means:
KG is a good estimate for the weakly stratified or
nearly homogenous deposits (units 4, 10, 1, 7, 13,
14); KH is a good estimate for the more stratified
deposits (unit 6). For the further up-scaled aquifer
and aquitard, Kmin � KG: these units behave as weakly
stratified, reflecting their partial continuity at the
regional scale. Clearly, both heterogeneity and scale
impact the upscaling characteristics.

(4) The anisotropy ratio is positively correlated to deposit
variability (Fig. 3b and d): higher anisotropy is
observed for higher variance. An exception is the
aquifer unit which exhibits statistical heterogeneity
(i.e., multiple depositional environments).
omponents (Kmax,Kmin), and the anisotropy ratio (Kmax/Kmin)

Kzz Kxz Kmax Kmin Kmax/Kmin

8 7.01 �0.25 17.18 7.01 2.45
6 61.36 �9.73 189.70 60.62 3.13
5 104.04 �6.90 294.60 103.79 2.84
3 256.31 1.82 330.58 256.27 1.29
6 224.41 �6.38 554.68 224.28 2.47
0 151.54 10.21 871.14 151.40 5.75
6 7.17 0.53 19.18 7.15 2.68
6 211.36 28.33 585.91 209.21 2.80
5 120.82 �5.15 322.08 120.69 2.67
2 536.97 3.92 591.90 536.69 1.10
1 69.51 1.16 140.43 69.49 2.02
4 213.41 0.08 388.44 213.41 1.82
3 3.69 0.01 5.53 3.69 1.50
6 6.49 0.15 11.66 6.48 1.80
8 5.41 �0.03 13.28 5.41 2.46
1 198.49 2.09 324.65 198.46 1.64

ional environment of each unit.



a b

c d

Figure 2 Statistics of the 14 depositional units and the aquifer and aquitard: (a) mean ln(K), (b) ln(K) variance, (c) equivalent
conductivity principal components (Kmax,Kmin) plotted against direct averages: [KH,KA] defines a gray line with KG indicated as a
cross-bar. The anisotropy ratio (Kmax/Kmin) (d). In (a), (b), (d), data from similar depositional environment are connected by lines.

70 Y. Zhang et al.
(5) The equivalent conductivity is not additive, e.g., the
principal components of the aquifer and aquitard
deviate from those obtained by direct averaging the
constituent units, using either arithmetic mean or
weighted (by area) arithmetic mean.

Besides [KH,KA], more restrictive bounds are available.
For example, for a lognormal distribution, Dagan (1989) ob-
tained bounds for the effective conductivity principal com-
ponents: expð�r2

f=2Þ 6 Kmin=KG 6 Kmax=KG 6 expðr2
f=2Þ.

Various units in Fig. 2 are reorganized by depositional envi-
ronment for which the equivalent conductivity components
are plotted against these bounds (Fig. 3). Compared to the
sand-rich units (principal components fall within or near
the bounds), the clay-rich units has Kmax/KG significantly
above it. These units are non-Gaussian: their lnK distribu-
tions are characterized with large skewness and kurtosis.
Though unit 12 contains growth ‘‘faults’’, its principal com-
ponents fall neatly at the bounds. Its univariate statistics
fall close to a normal distribution.

Finally, Kmax falls close to KA for all units and at both
upscaling scales (Fig. 4). A best-fit line gives: KA = 1.01K-

max + 3.03, R2 = 0.998 (not shown). This result is particularly
interesting since it is observed for the stratified (units 2, 3,
6, 8, 9, 11, 12), non-stratified (units 4, 1, 7, 13, 14), weakly
stratified (unit 10), and the non-stationary aquifer. In lab
experiments conducted on artificially packed sands (Dan-
quigny et al., 2004), a lateral equivalent conductivity was
found equal to the arithmetic mean when the deposits were
packed with emulated channels; it was between the geo-
metric and arithmetic means when the deposits were ran-
dom but of exponential covariance. Thus, if the
experimental stratigraphy is considered a plausible repre-
sentation of natural heterogeneity, the idealized structure



Figure 3 Equivalent conductivity principal components nor-
malized by KG, compared to Dagan (1989)’s bounds (vertical
gray line). Units created in similar depositional environment are
grouped.

a

b

Figure 4 Kmax of the equivalent conductivity against KA for all
16 units, in linear (a) and log–log space (b).
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(upon which most theories are based) may be rare in nature,
especially in fluvial systems. However, theories may still
prove robust for certain deposits and under certain condi-
tions (next).

Equivalent conductivity versus theory prediction

For the ln(K) map (Fig. 1a), a previous geostatistical analysis
indicates that the principal statistical axes are aligned close
to the global coordinate axes (Zhang et al., 2005). For all
units, the equivalent conductivity is diagonally dominant.
Thus, comparison can be made between K11 and Kmax, K22
and Kmin. For each unit, Kmax and Kmin can be estimated with
Eq. (2) or (3) using KG, r2

f , and e. To ensure that additional
uncertainties are not introduced during variogram model-
ing, we estimate one component assuming the other is
known. For example, given Kmax obtained from upscaling,
an apparent e can be determined for i = 1. For i = 2, theory
is used to compute an effective minimum component: Kef

min,
which is compared to the equivalent Kmin. A relative predic-
tion error is defined: Err ð%Þ ¼ ðKef

min � KminÞ=Kmin � 100%.
Using Eq. (2), Kef

min is estimated and compared to the
equivalent Kmin (Fig. 5a). For all units, positive correlation
is apparent (the non-stationary aquifer is an exception). De-
spite moderate variance, the largest relative error occurs
for the clay-rich units (Fig. 6a). For the rest of the sand-rich
units, the error magnitude (jErrj) increases with increasing
variance (not shown), as expected. Using Eq. (3), Kef

min is also
estimated (Fig. 5b). Though positive correlation with the
equivalent Kmin still exists, larger scatter is observed. The
error characteristics are also different: with Eq. (2), Err
ranges from �160% to 20%; with Eq. (3), Err ranges from
�60% to 120% (Fig. 6a). Eq. (3) thus estimates higher value
of Kef

min than Eq. (2).
However, does Eq. (3) consistently overestimate Kmin rel-

ative to Eq. (2)? The Err cross-plot suggests (Fig. 6a): (1) for
unit 4 ðr2

f ¼ 0:31Þ, both equations are very accurate in pre-
dicting Kmin; (2) for unit 10 ðr2
f ¼ 0:37Þ, both equations

introduce the same deviations; (3) for all other units
ðr2

f > 0:37Þ, Eq. (3) estimates higher value of Kef
min than Eq.

(2). Note that for statistically isotropic media, a cutoff var-
iance of 4 is found for the exponential conjecture (Neuman
and Di Federico, 2003). For anisotropic media, it is specu-
lated that such cutoff should exist at smaller variance. It
is the case in Kmin estimation: 0.37 is an apparent cutoff,
i.e., only when variance is significantly greater does Eq.
(3) deviate from (estimate higher values than) Eq. (2). For
units 5, 8, 9, 3, 6, however, both equations overestimate
the equivalent conductivity (see shaded region). These units
generally have the highest variances (Fig. 2b).

In practice, upscaling based on fully known heterogene-
ity is rarely possible, but sampling programs may estimate
a mean conductivity. Since Kmax � KA, the above analysis
is repeated by replacing Kmax with KA. Prior observations ex-
actly hold, e.g., using Eq. (3), the best-fit line to Fig. 5b is
only slightly different: y = 0.94x + 20.78, R2 = 0.85. In this
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Figure 5 (a) Given Kmax, K
ef
min estimated with Eq. (2) compared to the equivalent Kmin. A best-fit line is shown with the fitting

coefficient. Dashed line is perfect correlation. (b) Kef
min estimated with Eq. (3) compared to the equivalent Kmin. K

ef
max estimated with

both equations are shown in (c) and (d), respectively, against the equivalent Kmax. All conductivities are in m/yr.
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case, local statistics – KA, KG, r2
f – can be used to estimate

a representative conductivity, without conducting flow sim-
ulations. This is a significant observation considering the
field practice of using an arbitrary anisotropy ratio to obtain
a vertical conductivity before model calibration. It points to
the potential of using theory to predict conductivity for
realistic heterogeneities, rather than for synthetic data spe-
cifically designed to satisfy theory assumptions. However, in
this study, exact local statistics can be obtained from the
fully known heterogeneity. Successful application of such
an approach to field situations will depend on obtaining rep-
resentative statistics given limited sampling.

Finally, given Kmin, K
ef
max can also be estimated using both

equations. Again, Eq. (2) is more accurate than Eq. (3)
(Fig. 5c and d). For the high-variance units, Eq. (3) predicts
higher values than Eq. (2) (Fig. 6b). (As in Kmin prediction,
for the low-variance units, both equations are equally accu-
rate.) These observations apply to units with r2

f > 1, consis-
tent with the findings of Fernandez-Garcia et al. (2005).
Compared to the equivalent conductivity, Eq. (3) can signif-
icantly overestimate both principal components for the
high-variance deposits. In this case, the higher-order terms
introduced by the exponential conjecture become impor-
tant. Note that a perturbation analysis based on second-or-
der approximation (up to r4

f ) indicates that effective
conductivity may depend on the shape of the correlation
function (Indelman and Abramovich, 1994). Future work
may evaluate this formulation, again by comparing theory
predictions to the equivalent conductivities.
Sensitivity analysis

Aspect ratio (field scale)
The image is rescaled to 100 m long and on average 8 m
thick. Compared to the previous length-to-depth ratio of
50, the new ratio is 12.5. The average topographic slope is
4%, large compared to most site-specific systems (Belitz
and Bredehoeft, 1990). Additional experiments are con-
ducted in the heterogeneous model using two global bound-
ary conditions: specified head for the top and bottom
boundaries and no flow for the sides; a lateral head gradient
with no flow for the top/bottom boundaries. Because of the
greater bedding angle, on average, Kxx is 6.5% smaller than
those of the basin scale, Kzz is 5.4% larger, and the magni-
tude of Kxz is 4.4 times larger, as expected. For most units,
however, the equivalent conductivity is still diagonally dom-
inant. The principal components and the anisotropy ratio
are also computed. When comparing Kmax with KA (Fig. 7a
and b), larger scatters are observed compared to Fig. 4. A
best-fit line gives: KA = 1.04Kmax + 5.12, R2 = 0.99 (not
shown). With the exception of unit 5, Kmax is 0.7–15.4%
smaller than KA for the sand-rich units and 4.0–28.0% smal-
ler than KA for the clay-rich units. Kmax of unit 5 is higher
than KA by 6.4%, falling outside the Wiener Bounds. When
comparing the anisotropy ratio with that of the basin-scale
problem, with the exception of unit 5, a 0.8–27.9% reduc-
tion is observed (Fig. 7c), consistent with the new domain
aspect ratio. Moreover, comparing the principal compo-
nents with theory predictions indicates similar error ranges
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Figure 6 The relative error cross-plot using the stochastic
theory: (a) Kmin estimation given Kmax. The effective Kef

min is
predicted by both equations; its values compared to the single,
equivalent Kmin. For each equation, a relative error is com-
puted. (b) Kmax estimation given Kmin.

Representative hydraulic conductivity of hydrogeologic units: Insights from an experimental stratigraphy 73
and characteristic distributions as those of the basin scale
(not shown). Such insensitivity suggests that for the new
geometry, theory is again applicable, i.e., for the low-vari-
ance sand-rich deposits.

High variance
In the previous analyses (basin scale versus field scale),
the system ln(K) variance is fixed. Though such variance
equals that of an alluvial fan (Zhang et al., 2005), the var-
iance of the individual hydrogeologic units is generally
modest (<2) (Fig. 2b). This reflects the end-member con-
ductivities selected based on sand/clay mixtures. How-
ever, for more consolidated rocks, the total variance is
expected to be larger. For the same basin geometry, addi-
tional simulations are conducted (using the same boundary
conditions as above) based on a total variance of 16. This
value reflects the upper limit of variability for sedimentary
rocks (Gelhar, 1993). The variance increase is accom-
plished by rescaling the elemental lnK while keeping the
same arithmetic mean (Fig. 8). Compared to the previous
analyses (dashed line), the end-member conductivities
now reflect those of shale (0.02 m/yr) and unconsolidated
sand (6 · 104 m/yr).

Results indicate that both principal components fall
within the Wiener Bounds (Fig. 9a): Kmax is 0.3–49.0% smal-
ler than KA for the sand-rich units and 7.0–93.5% smaller
than KA for the clay-rich units. Kmin again falls between
the harmonic and geometric means. The overall bimodal
characteristics are similar to those of the low-variance sys-
tem, but important differences exist. In particular, the
anisotropy ratio (Kmax/Kmin) has significantly increased
(Fig. 9b). Since high variance accentuates the effect of
preferential flow, high-K deposits will dominate the global
flux within a unit. Qualitatively, this is consistent with the
results obtained using a network percolation model when
equivalent permeability is evaluated for channel sand
embedded in clay matrix, at low to moderate tortuosity
(Ronayne and Gorelick, 2006). For comparison, the anisot-
ropy ratio of the field scale problem is also plotted. Clearly,
compared to the domain aspect ratio, variance exerts a
dominant control on Kmax/Kmin.

Comparing the principal components with theory predic-
tions reveals large relative errors, reaching up to 8000% for
deposits with high-variance or non-Gaussian characteristics
(not shown). It is considerably smaller for deposits of rela-
tively low variance (e.g., 0.1–28.2% for units 4 and 10,
respectively). In general, however, theory is no longer
appropriate for direct prediction, i.e., assuming one or
the other component is known. Interestingly, comparing
the anisotropy ratio with that predicted by the high-vari-
ance theory (Eq. (3)) again reveals positive correlation be-
tween variance and anisotropy ratio (Fig. 9c). Notice the
similarity with the earlier comparison for the low-variance
system using the low-variance theory (Fig. 7c). Clearly, such
correlation is independent of domain aspect ratio, variance
scaling, and theory assumptions.
Scale effect

Conductivity scale effect is an important issue in deciding
whether a hydrogeologic unit can be partially sampled via
a representative region. In this study, for select units exhib-
iting diverse heterogeneities (i.e., the basin-scale problem
in Fig. 1), equivalent conductivity is computed for subre-
gions of increasing area (data support) and its value com-
pared to that of the full unit. The upscaling is conducted
using a local approach by imposing periodic boundary condi-
tion (Durlofsky, 1991). A five-point block-centered finite dif-
ference code is developed and validated by solving for
problems with known analytic solutions (Zhang, 2005). For
the subregions, 37 high-resolution grids are built where each
pixel is again represented by a numerical grid cell (the num-
ber of cells ranges from 625 to 39,431). Since the flow ma-
trix is non-symmetric, a general iterative matrix solver
(DGMRES) is used with a diagonal scaling pre-conditioner,
following the solution procedure of Durlofsky (1991). For
each subregion, local statistics (KH,KG,KA) are also com-
puted. The aim of the analysis, however, is not to evaluate
whether the equivalent conductivity converges to effective
conductivity (which requires random trials at different
locations and estimating an ensemble average). Rather,
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Figure 7 (a) Field scale Kmax plotted against KA, in linear (a) and log–log space (b). (c) Anisotropy ratio versus variance. Both
basin-scale and field-scale results are shown. The low-variance theory prediction is plotted for different e (dashed lines).
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the support is increasing from a fixed location to evaluate
the effect of increasing aquifer volume such as encountered
in field tests with different measuring devices.

Results suggest that the equivalent conductivity can in-
crease, decrease, or fluctuate with support (Fig. 10). Such
variation is controlled by the change in mean conductivity
(i.e., the polynomial function fitted to KG). Compared to
the underlying heterogeneity, stratified deposits generally
observe: Kmax � KA, Kmin � KH at all supports; non-stratified
deposits are clustered around KG, as expected. Though
asymptotic behavior is observed for unit 12, most do not
exhibit such behavior: there are often irregular shifts in
mean conductivity, likely due to global non-stationarity
as a result of changing sediment transport mode. For
example, in unit 7, little scale effect is apparent until
the full unit scale. This is because mean conductivity does
not vary until the full unit which incorporates more aquifer
materials. Since non-stationarity persists at all length
scales (i.e., changing mean K with support), for the units
analyzed, a representative conductivity is only reached
at the full unit scale (FSREV thus does not exist). Clearly,
unless evidence points to extreme homogeneity (Schulze-
Makuch and Cherkauer, 1998; Schulze-Makuch et al.,
1999), upscaling based on subsampling will not likely be
representative.

It is of interest to note that the experimental stratigra-
phy, though created under simplified conditions, displays
non-stationary features nevertheless. In nature, other com-
plexities can also come into play, e.g., sediment compac-
tion and diagenesis. Though the above insights are
obtained for a two-dimensional system, similar depositional
variability is expected to exist in three dimensions. It is not
surprising that scale effect is prevalent in natural heteroge-
neous deposits. Geological insights on sediment source,
transport regime, and post-depositional processes will be
useful in identifying trends. For example, in regional aqui-



Figure 8 Cumulative distribution of the full map: small
variance (dashed) versus large variance (bold).
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fers in intermountain or alluvial basins, sediment grain size
typically decreases from uplifted source areas toward basin
interior. In such deposits, as field tests incorporate ever lar-
ger aquifer volumes, the mean conductivity changes, so
does the equivalent conductivity.
a

c

Figure 9 (a) Equivalent conductivity principal components plotte
Anisotropy ratio cross-plot: basin scale versus field scale; low-varian
system against theory prediction for different e (dashed lines).
Conclusions and future work

In constructing groundwater flow models, limited knowl-
edge on the subsurface environment results in large uncer-
tainties in the representative conductivities assigned to the
model units. Due to scale effect, conductivities measured in
the field are often not representative of the full unit; those
obtained from model calibration are non-unique, which im-
pacts our confidence in model predictions. In this study, a
high-resolution heterogeneous hydraulic conductivity map
offers a unique opportunity to evaluate our ability to esti-
mate this parameter. Various hydrogeological units are dis-
tinguished, each is of irregular shape with distinct
heterogeneity pattern corresponding to physical sedimenta-
tion. Extending a previous study which used numerical
upscaling to compute equivalent conductivities, this study
compares them with local statistics and effective conduc-
tivities predicted by a stochastic theory. Additional upscal-
ing is also conducted to evaluate scale effect.

Results suggest that in a system with moderate variance
and low topographic slope, the arithmetic mean (KA) is a
good estimate for the maximum principal component (Kmax)
of the equivalent conductivity. The minimum principal com-
ponent (Kmin) lies between the harmonic and geometric
means: its closeness to the geometric mean is affected by
heterogeneity pattern and upscaling scale. Using Kmax
b

d against the Wiener Bounds (KG is indicated as a cross-bar). (b)
ce versus high variance. (c) Anisotropy ratio of the high-variance



Figure 10 Equivalent conductivity principal components against data support for select units and their subregions. At each
support, the local statistics are also plotted: [KH,KA] a gray line; KG a cross-bar. A polynomial function is fitted to KG.
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(alternatively, the arithmetic mean), geometric mean, and
ln(K) variance, the stochastic theory predicts a Kmin that is
consistent with the up-scaled value, pointing to the poten-
tial of using theory to predict the anisotropy ratio. Similarly,
knowing Kmin, Kmax predicted by theory is also consistent
with the up-scaled value. For most deposits (some with var-
iance greater than 1), a low-variance version of the theory is
more accurate than a high-variance version, consistent with
the findings of Fernandez-Garcia et al. (2005). Specifically,
for deposits with high variance, the high-variance theory
can significantly overestimate both principal components.
(For low-variance deposits, both versions are equally accu-
rate.) However, the increase of topographic slope and total
variance results in increased deviation of Kmax from KA. High
variance also results in significantly larger anisotropy ratio,
possibly due to the dominance of preferential flow. Finally,
for select units, equivalent conductivity exhibits scale ef-
fect which is controlled by global non-stationarity in mean
local conductivity. Thus, field scale representative elemen-
tary volume does not exist and upscaling the full unit (based
on either numerical or analytical approaches) is necessary
to obtain a representative conductivity.

The above insights are strictly for two dimensions, though
an upscaling analysis conducted on three-dimensional depos-
its (interconnected channel facies embedded in low-K
deposits) also indicates a maximum equivalent conductivity
equal to the arithmetic mean (Fogg et al., 2000). Note that
our Kmin lies between the harmonic and geometric means
while the vertical and along-strike effective values of Fogg
et al. (2000) are larger than the geometric mean. This is
likely due to the connectivity effect in the third dimension
which acts to elevate the effective values. By comparing
the two studies, however, dimensionality appears to have
little impact on the characteristics of the maximum principal
component. Moreover, compared to many studies that at-
tempt to find a block equivalent conductivity, the upscaling
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domain of this study (i.e., a hydrogeologic unit) is lithofacies
based. Each unit is typically much larger than the within-unit
heterogeneity, thus the generally good match to theory pre-
dictions. However, such insights cannot be extended to
block upscaling unless the same criterion is met. As correctly
pointed out by the reviewer, our results may be specific to
the heterogeneity we investigated. However, the methodol-
ogy we developed is easily applicable to the study of other
heterogeneities as well as three-dimensional data sets.
Thus, our insights may ultimately be tested by conducting
additional numerical, laboratory and field studies.

In future work, three-dimensional systems will be evalu-
ated, as new deposits are created from processes operating
at even smaller scales, e.g., point bar formation. Three-
dimensional theories will be tested. Along with numerical
upscaling, additional insights on scale effect may be gained.
In the new experiments, different grain sizes and materials
are used. Upscaling on these heterogeneities, whether it
provides similar insights to those of this study, will be of sig-
nificant interest. The link between sediment transport, het-
erogeneity formation, and upscaling characteristics will be
evaluated. Finally, forward numerical and analytic ap-
proaches are used in this study to estimate the representa-
tive conductivities. Based on flow simulations in the
heterogeneous model, future work may evaluate alterna-
tive, inverse methods for conductivity estimation.
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