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Abstract: In modeling geologic carbon sequestration in a deep inclined aquifer in Wyoming, the impact of geologic, engineering, and
environmental uncertainty factors on parameter importance and prediction uncertainty is evaluated. Given site characterization data, a suite
of geologic model families were built to represent aquifer permeability heterogeneity at increasing complexity. With each family, the same
CO2 experiment was simulated. Over a period of 50 years, 17 million tons of CO2 is injected into the aquifer at an approximate depth of
3,750 m. Postinjection simulation is then carried out for a total simulation time of 2,000 years. Based on the design of the experiment, a
screening sensitivity analysis was first conducted for all families, systematically varying uncertain input parameters. Parameters with first-
order impact on CO2 performance metrics (i.e., trapped gas, dissolved gas, brine leakage, storage ratio) are identified, which vary with time
and modeling choice. When the model is of low complexity, engineering and environmental factors are identified as the most significant;
when the model increases in complexity, geologic factors that influence aquifer heterogeneity become more important. Given the screening
test outcome, a response surface analysis was carried out for each family to create prediction envelopes of the CO2 storage ratio. By the end of
injection, all families predicted similar uncertainty in the storage ratio. After injection ceases, prediction envelopes of the families deviated
gradually from one another as a result of different large-scale heterogeneity experienced by each family because the plume migrated con-
tinuously along dip. For this inclined aquifer, resources should be devoted first to characterize geologic uncertainty factors (i.e., porosity-
permeability transform and facies correlation structure) that influence permeability magnitude and connectivity. The effect of these factors on
CO2 flow, trapping, and storage becomes overwhelmingly important compared with engineering and environmental factors. Under conditions
of low formation temperatures and high formation fluid pressures, representative CO2 plumes corresponding to end member CO2 storage
ratios become gravity-stable. DOI: 10.1061/(ASCE)HZ.2153-5515.0000246. © 2014 American Society of Civil Engineers.
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Introduction

Geological carbon sequestration (GCS) is considered a promising
option to reduce the atmospheric loading of carbon dioxide [Inter-
govenmental Panel on Climate Change (IPCC) 2005]. Wyoming
produces approximately 40% of the nation’s coal, and in 2000
its coal-fired power plants emitted approximately 51 million tons
(Mt) of CO2 into the atmosphere. By 2009, the emission rate has
risen to 54.4 Mt=year and it is projected to increase with new en-
ergy demand (Deng et al. 2012). To sequester CO2 at industrial
scales, deep saline aquifers with large storage capacity are needed
(Bachu 2003). As part of a larger study, this paper investigates the
Nugget Sandstone in western Wyoming (Fig. 1), which lies close to
several power plants. Extending from the near surface towards a
depth of ∼20,000 ft, it is a regional deep saline aquifer with an
average thickness of 600 ft and an average dip angle of ∼16°

(east-west). The site lies northeast of several oil fields with hydro-
carbon production from the same formation (Fig. 1), while multiple
caprocks, including the extensive Hilliard shale, provide a seal for
the reservoirs (Royse 1993; Harstad et al. 1996). Due to hydrocar-
bon production and recent interest in GCS, a variety of subsurface
static characterization data exist for this formation, e.g., wireline
logs, core measurements, and seismic data (Frost 2011; Li et al.
2011b). To predict CO2 storage, a geologic model describing spa-
tial variation of aquifer properties such as porosity (ϕ) and intrinsic
permeability (k) can thus be created, which provides input to a fluid
flow simulator. This study conducts an uncertainty analysis to
understand the importance of various uncertainty sources on pre-
dicting key GCS performance metrics, e.g., residually trapped and
dissolved CO2, brine leakage, and CO2 storage ratio. Both CO2

flow during injection and its long-term migration are of interest
because inclined aquifers can lead to different trapping behaviors
from that observed in aquifers without significant dips (Ide et al.
2007; Hesse et al. 2008; Macminn et al. 2010).

In modeling GCS, uncertainty sources include static or geologic
factors that influence aquifer heterogeneity, and engineering and
environmental factors that influence CO2 trapping and migration.
In a scoping study, factors identified to exert the largest impact on
storage (or other prediction metrics) are the focus for characteriza-
tion. Compared with earlier works addressing parameter uncer-
tainty (Sifuentes et al. 2009; Beni et al. 2011; Liu et al. 2011;
Bandilla et al. 2012), this study emphasizes the uncertainty in
developing a conceptual site model, which is believed to be high
because most deep saline aquifers are data poor. As a result,
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depending on the type, amount, and accessibility of data, geologic
models of different complexity can be built, where aquifer per-
meability is assumed homogeneous or heterogeneous (Stauffer et al.
2009; Han and McPherson 2009; Lu et al. 2009; Li et al. 2011a;
Bandilla et al. 2012; Deng et al. 2012). Will such conceptual un-
certainty, which varies with data support and the modeler’s expe-
rience, skills, and perception of site geology, affect the uncertainty
outcomes? In other words, when a site model is conceptualized at a
different complexity, will this change the key uncertainty factors
and associated prediction uncertainty? To test this idea, this study
built a suite of increasingly complex geologic model families for
the Nugget Sandstone using increasing amount of static site char-
acterization data. For each model family, geologic, engineering,
and environmental uncertainty factors are evaluated to identify
those that significantly impact CO2 predictions. This paper follows
Li and Zhang (2014), which evaluated the same formation in a
neighboring region where the sandstone exhibits a weak incline
with an average formation dip <3° (Royse 1993). At that site,

conceptual uncertainty did not significantly impact CO2 predic-
tions. However, because dipping aquifers can contribute to en-
hanced dissolution (Ide et al. 2007; Kumar et al. 2004) while
affecting the shape and speed of plume migration (Mosthaf 2007),
the previous result may not be applicable here.

Besides conceptual uncertainty in creating a site model, storage
security, i.e., leakage risk of the injected CO2 back to the surface,
is an important concern. At the typical depths considered for GCS
(1–3 km), CO2 is a supercritical fluid (referred to herein as gas)
with a lower density than that of formation brine. Its migration
is driven by buoyancy, where the injected gas rises up and flows
toward the caprock. However, in industrial storage where the CO2

footprint can be significant, finding perfect caprock at large scales
is problematic because a variety of leakage pathways exist in cap-
rocks, e.g., faults and fractures (Konstantinovskaya et al. 2014),
lateral facies changes (Fleury et al. 2010), and leaky wellbores
(Nordbotten et al. 2005). To reduce the leakage risk, deeper injec-
tion (where CO2 is gravity-stable) provides an attractive alternative.

Fig. 1. Study site showing the location of wells that perforate the Nugget Sandstone [American Petroleum Institute (API) number is indicated at each
well location]; hollow crosses indicate core location from the stratigraphically equivalent Weber Sandstone Fox et al. (1975); some data used in this
paper are located outside the map area
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When injection horizon is deep, CO2 under high pressure can have
a density exceeding that of the brine (Firoozabadi and Cheng 2010)
and the injected gas may sink to the aquifer bottom instead of rising
upwards. Deeper injection also gives rise to a higher storage capac-
ity because more CO2 mass can be stored per unit pore volume
(Bachu 2003). To date, deeper injection has not been investigated
extensively in GCS field and simulation studies (Michael et al.
2010), although limited evidence suggests its viability. For exam-
ple, in western Wyoming, acid gas disposal into the Madison
Limestone has been ongoing since 2005 without reporting leakage.
The injection depth is at 5,334 m (Huang et al. 2011), greatly ex-
ceeding the depths considered for GCS. At that site, when CO2

injection into the Nugget Sandstone was simulated at a depth of
4,200 m (Li and Zhang 2014), gravity-stable flow was observed.
Whether such condition can develop in the same (although in-
clined) formation and the associated storage security are of interest.
Besides depth, other factors can also influence CO2 density,
e.g., increasing reservoir temperature may reduce density, offset-
ting the effect of increased depth (pressure). Near the injector, low-
permeability facies can create flow barriers, regardless of the
migration direction. All these factors are uncertain at the study site.

Using a computationally efficient uncertainty analysis, this
study evaluates both the impact of model complexity on CO2 pre-
dictions and the competing processes and effects that can contribute
to CO2 migration and leakage. The uncertainty analysis is based on
the design of experiment (DoE) and response surface (RS) method,
which can be used to efficiently explore parameter and prediction
space in a simulation study (Yeten et al. 2005; Montgomery 2008).
Subsequently, a study overview is presented, followed by a list of
uncertainty sources identified at the study site and the analysis
method. For four model families with increased complexity, param-
eter sensitivity and prediction uncertainty are compared. Plume
footprints are analyzed to evaluate conditions for gravity-stable
flow. Insights obtained are discussed and summarized.

Uncertainty Analysis

Overview

For the Nugget Sandstone at the study site, four families of geo-
logic models are built representing alternative conceptual models
created with increasing data. For each family, key geologic and
engineering and environmental uncertainty factors are identified,
followed by an RS analysis to assess prediction uncertainty in mod-
eling the CO2 storage. Results are compared among the families,
yielding insights into the effect of model complexity on parameter
importance and prediction uncertainty. Because CO2 flow can be
dominated by viscous force during injection and gravity force after
injection ceases, important factors influencing an outcome can
change with time. Results of the uncertainty analysis are evaluated
over multiple time scales. This study consists of three main steps:
1. Four model families with increasing complexity are created,

which range from a deterministic homogeneous model to a
hierarchical stochastic model conditioned to hard and soft
data.

2. For each family, a screening sensitivity analysis (SA) is carried
out to identify key input factors that impact selected CO2 pre-
diction outcomes. These parameters are considered important
factors that need to be better characterized. For a given out-
come, parameter importance is compared among the families
and over time.

3. For each family, based on the key factors identified previously,
an RS analysis is conducted to assess uncertainty in predicting

CO2 storage. This step consists of (1) generating an RS design
with the key factors, (2) verifying an RS model within the
parameter bounds of the RS design, and (3) creating prediction
envelopes of CO2 storage using Monte Carlo sampling with
the RS model. The storage uncertainty is also compared
among the families and over time.

In Step 2, the outcomes of interest are (1) brine leakage from
model’s open boundaries, (2) residual gas saturation (i.e., supercriti-
cal CO2 trapped in pore space due to capillarity), (3) dissolved CO2

molar fraction in brine, and (4) storage ratio ðSRÞ ¼ ðmass of
dissolved CO2 þmass of residual CO2Þ=ðmass of injected CO2Þ.
Compared with residual and dissolved CO2, the remaining super-
critical CO2 (i.e., mobile gas) continues to migrate under buoy-
ancy, posing a leakage risk. Each outcome is examined at multiple
simulation output times, including end of injection and end of
simulation.

In the uncertainty analysis, input parameters can be fixed (those
that typically vary little at a storage site) or variable (the so-called
factors). The latter group includes geologic factors (GFs) and en-
gineering and environmental factors (EEFs). Geologic factors are
those whose variations control aquifer permeability distribution and
are thus related to static model uncertainty. EEFs include reservoir
dynamic properties and environmental condition such as relative
permeability model (RPM), residual gas saturation (RGS), temper-
ature gradient (TG), vertical to lateral permeability (VHR) (kV=kH),
and brine salinity (SAL). These factors and their uncertainties are
considered independent of aquifer heterogeneity and the geologic
factors contributing to it, and are thus included in the uncertainty
analysis for each model family. In the following, sources of each
uncertainty and their variations are presented.

Sources of Uncertainty: Engineering and
Environmental

CO2 storage can be affected by residual trapping due to gas-phase
relative permeability hysteresis (Li et al. 2011a, b; Liu and Zhang
2011). Because relative permeability is not available for the Nugget
Sandstone, laboratory measurements on different sandstone cores
were used (Bennion and Bachu 2006b; Benson 2006). Capillary
pressure, measured on the same cores, was also obtained. In the
uncertainty analysis, two RPMs are chosen based on their end
points: þ1 (Cardium Sandstone); −1 (Berea Sandstone) (Fig. 2).
In the Cardium Sandstone, due to its high endpoint relative per-
meability, CO2 can flow at nearly three times the speed of the Berea
Sandstone. Because postinjection storage is often dominated by im-
bibition, i.e., water invading pores initially filled with CO2, for a
given RPM, magnitude of residual gas saturation (which controls
the amount of capillary trapping) is also varied. RGS is assumed
independent of RPM because CO2-brine relative permeability can
vary with temperature, pressure, and pore-scale characteristics
(Bennion and Bachu 2006a) and suffers considerable uncertainty
for an aquifer with large variations in these characteristics.

End member temperature gradients are inferred from available
temperature logs in study area (Fig. 3). Given the depth range of
interest (∼2,100 m above sea level to 3,600 m below sea level),
these gradients generate either a cool (−1 end member) or a warm
(þ1 end member) model, which affects CO2 density, gravity seg-
regation, and migration. To determine the range of kV=kH , core
measurements from the Nugget Sandstone and its equivalent for-
mations are collected (Fig. 1 shows a subset of core locations).
From these measurements, significant variation of kV=kH is ob-
served (Fig. 4). Because both open and sealed fractures can occur
in sandstones (Lindquist 1983; Laubach et al. 2010), end member
kV=kH are fitted: 2.0 (þ1) and 0.02 (−1). In a geologic sense, the
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þ1 case can represent high-angle open fractures, while the −1 case
can correspond to matrix anisotropy, cores with sealed fractures, or
other mechanisms (Lewis and Couples 1993; Laubach 2003;
Morad et al. 2010). Finally, SAL is varied based on observed sal-
inities of Nugget formation brines in study area (Li et al. 2011b).
Higher salinity results in less CO2 dissolution.

Sources of Uncertainty: Geologic Modeling

To build the geologic models, a variety of field and laboratory char-
acterization data are collected, screened for accuracy, and analyzed,
including wireline logs, core porosity and permeability, cross sec-
tions, and isopach maps. Using subsets of these data, a suite of in-
creasingly complex model families are built: homogeneous model
(FAM1), stationary geostatistical facies (FAM2a) and petrophysical
(FAM2b) models, stationary facies with subfacies petrophysical
variability (FAM3), and nonstationary facies (with subfacies
variability) conditioned to hard and soft data (FAM4). The model
building procedure, including an upscaling step to convert data at
well-log resolutions to simulation grid cells, is described in Li et al.
(2011b) and Yang (2012), thus only an overview is presented here.

In building the models, the first step is to create a structure
model conditioned to well logs (i.e., FAM1). For example, surfaces
such as Nugget top and Nugget bottom were created from correlat-
ing well logs containing information about formation contacts.
Within the structure model, facies (i.e., FAM2a) or petrophysical
properties (i.e., FAM2b) can be populated using geostatistical
techniques, which ensure that model properties are conditioned
to relevant well data. After a facies model is created, petrophysical
properties can be assumed homogeneous within each facies
(i.e., FAM2a) or heterogeneous (i.e., FAM3). And if geologic in-
sights exist suggesting the existence of a trend (e.g., certain facies
becomes replaced by another facies), the previous model, which
distributes the facies in equal probability spatially, can be condi-
tioned to soft data such as a facies probability cube, which de-
scribes such a trend (i.e., FAM4). The model families were built
with Petrel 2009 (Schlumberger 2009b), and all models were
checked for consistency against data.

To facilitate model comparison, the families share the same
external geometry (Lx≃7,004 m, Ly≃9,023 m, Lz≃183 m; x ex-
tends east-west and y extends north-south), simulation grid
(Nx ¼ 126, Ny ¼ 162, Nz ¼ 15, for a total of 306,180 cells),
CO2 injection design (e.g., well location, injection rate and dura-
tion, bottomhole pressure constraints), and boundary conditions.

(a) (b)

Fig. 2. Relative permeability end members; kgr and kwr are relative permeability of supercritical CO2 and brine, respectively; imbibition curve of the
Berea Sandstone is modified to allow residual trapping under the þ1 end member of RGS: (a) Berea Sandstone; (b) Cardium Sandstone

Fig. 3. Temperature-depth measurements from well logs at and near
the study site, obtained from relatively shallow depths; end member
TG are inferred from the measurements

Fig. 4. Vertical and horizontal permeability measurements from
Nugget Sandstone cores; end member VHR (kv=kH) are fitted to the
data
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They vary only in how porosity and permeability are represented.
For each family, the choice and the number of geologic factors de-
pend on the level of designed complexity (Fig. 5). For FAM1
(structural model), because porosity and permeability are assumed
homogeneous, the only factors varied are the EEFs. This concep-
tualization, though unrealistic, provides a baseline for comparing
with the complex models in the uncertainty analysis. Subsequently,
geologic factors of the families are described.

For FAM2a, four discrete facies were first categorized from an-
alyzing well logs (Yang 2012). A facies model was created using
sequential indicator simulation, which conditions the modeled fa-
cies to well data. Within each facies, ϕ and k are assumed homo-
geneous. In addition to the EEFs, two factors controling facies
distribution are varied: lateral facies correlation range (FCR) and
azimuth (FCA). The range of uncertainty for FCR is determined
from those observed for Navajo Sandstone, a Nugget Sandstone
equivalent (Hansen 2007). The range of FCA is determined from
that modeled for the Nugget Sandstone in Moxa Arch (Li et al.
2011b). Detail of facies modeling, including how facies ϕ and k
are determined, can be found in Yang (2012).

FAM2b is a geostatistical petrophysical model without the
explicit modeling of facies. In addition to the EEFs, two factors
that control ϕ population, i.e., lateral ϕ correlation range (PCR)
and azimuth (PCA), are varied. Uncertainty range of PCR is deter-
mined by uncertainty in fitting a ϕ variogram model to the exper-
imental variograms using all porosities regardless of facies
association. Uncertainty range of PCA follows that of the facies
azimuth modeled for FAM2a. Given the variogram parameters,
ϕ is populated using sequential Gaussian simulation conditioned
to well porosities. Horizontal permeability (kH) is then populated

from porosity using a log-linear transform (PPT) (Nelson 1994). To
minimize bias in fitting a single transform to data with a large
scatter, PPT is varied as a geologic factor. From the modeled
kH , vertical permeability (kV ) is determined with VHR.

In FAM3, four facies are modeled (the same as FAM2a) before
petrophysical properties are modeled within each facies. Facies cor-
relation ranges and azimuths are varied according to their ranges
discussed previously. For each facies, ϕ correlation range is varied
based on variogram analysis of well log porosities associated with
this facies (Yang 2012), while ϕ azimuth adopts the same range as
FAM2b. Moreover, the four facies are split into two groups based
on their mean porosities. For each group, a set of end member PPT
is developed by fitting log-linear transform to core ϕ and k data
associated with this group.

In FAM4, in addition to the EEFs and geologic factors of FAM3,
facies modeling is constrained by a three-dimensional facies prob-
ability cube created from interpolating and extrapolating facies data
at well locations. In the study area, two Nugget Sandstone vertical
stratigraphic sequences with characteristic ϕ and k are often iden-
tified: good-quality upper sand and poor-quality lower deposits
(Tillman 1989; Lindquist 1988). These sequences are indeed ob-
served in well logs at the study site (Yang 2012) as well as in nearby
Moxa Arch (Li et al. 2011b). A facies probability cube was thus
created to honor this trend (how a probability cube can be created
from well data to condition facies modeling is described elsewhere
(Ma 2009; Ma et al. 2009). Moreover, because Nugget Sandstone
cores were collected from various reservoir depths, porosity is ob-
served to decrease with depth due to compaction and cement
overgrowth (Houseknecht 1987; Ajdukiewicz and Lander 2010).
During porosity modeling, a depth trend is additionally imposed.
Therefore, soft data conditioning is accomplished by imposing
facies probability cube and porosity-depth trend.

Dynamic Modeling

CO2 injection is modeled with GASWAT of Eclipse 300
(Schlumberger 2009), a multiphase compositional simulator. With
GASWAT, temperature of the reservoir can vary with depth, which
affects phase densities, viscosities, and solubilities. For the two
phases (supercritical CO2-rich phase and H2O-rich aqueous
phase), three components, CO2, H2O, and NaCl, are modeled. Gas-
aqueous equilibrium is modeled through an equation of state, and
solubility correction is made to reflect the effect of salinity on CO2

solubility. Initial reservoir pressure is set hydrostatic, with a refer-
ence pressure of 37.3 MPa at 3,658-m depth. Aquifer temperature
is assigned according to TG, which is varied in the uncertainty
analysis. Model boundaries are represented by a Carter-Tracy ex-
ternal aquifer of large radius and thickness, which ensures an open
boundary that allows formation brine, and later CO2, to flow out
(Eclipse 300 records brine leakage from the model into the external
aquifer). Model is thus considered part of a larger semi-infinite
system, consistent with site understanding. Simulations were con-
ducted setting the western boundary to no flow, which did not sig-
nificantly impact CO2 predictions. Flow is generally not influenced
by boundary conditions if boundaries lie far from the center of
disturbance (Carrera and Neuman 1986). CO2STORE, another
Eclipse 300module, is not used due to its temperature and pressure
limits, which this model exceed due to the greater injection depth.
Also, the equation of state in CO2STORE cannot account for the
variation of reservoir temperature with depth.

For all model families, a single injector injects CO2 for 50 years.
It fully perforates the formation at 3,658–3,840 m, comparable to
the injection depth of Li and Zhang (2014) (4,236 m). To prevent
hydraulically fracturing the formation, an injector bottomhole

Fig. 5. Uncertainty factors and their ranges for each family in the
screening (Plackett–Burman) design; −1 = minimum,þ1 = maximum;
numbers indicate family identification; EEFs are shared by all families;
geologic factors are also listed; facies and ϕ correlation range and azi-
muth are of the lateral direction; azimuth is defined as the direction of
maximum correlation projected onto the horizontal plane
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pressure (BHP) constraint is set at 1.8 times hydrostatic pressure
(Li et al. 2011b). With this constraint, a fixed mass injection rate
of 1=3 Mt=year is achieved from numerical experimentation,
which reveals that the injection rate is largely constrained by the
lower end member of PPT. For the given boundary conditions
and the permeability range varied, a rate higher than 1=3 Mt=year
can cause the injector BHP of some models (with lower mean
permeabilities) to exceed the constraint, which prompts Eclipse
to reduce the rate. This would create an issue as different amounts
of CO2 would be injected by the model families, making their
comparison difficult.

As a result of the open boundaries and the relatively low injec-
tion rate, pressure buildup in the model is modest and is not evalu-
ated. A constant rate is thus maintained by all models, leading to the
same injected CO2 (17 Mt over 50 years). To achieve a higher rate,
multiple injectors are needed and the associated pressure buildup
can be controlled by brine production (Li et al. 2011a). Because
the long-term fate of CO2 is of interest, a postinjection phase is
modeled for 1,950 years, for a total simulation time of 2,000 years.
Sufficient time thus allows CO2 to migrate from the injector, and
the effect of large-scale permeability heterogeneity on migration
and trapping can be evaluated. All simulations are checked for
accuracy and convergence before results are analyzed. For each
family, parameters important to predicting brine leakage, trapped
gas, dissolved gas, and CO2 storage ratio are identified, while un-
certainty in CO2 storage is assessed by the RS models. The analysis
is carried out at selected output times including 2041, 2061 (end of
injection), 2310, 2810, 3210, 3610, and 4010 (end of simulation)
(Year 2011 is the start of simulation).

Uncertainty Analysis

Because Li and Zhang (2014) provides a recent review of the DoE
and RS method, only an overview is presented here. A screening
SA is conducted first by varying a subset of the uncertain input
factors simultaneously according to a design table (Montgomery
2008). The factors varied can be continuous or categorical, the lat-
ter typically reflecting modeling choices. Results of the SA are ex-
amined with multivariate analysis of variance (MANOVA), which
identifies and ranks the factors that exert statistically significant
effects on a simulation outcome. Though a variety of designs
are available (the same design can be used for analyzing multiple
outcomes), a two-level Plackett–Burman (PB) design, a useful
screening tool to help identify the most significant uncertainty fac-
tors with the fewest number of simulation runs (Milliken et al.
2007), is adopted here. After the screening analysis, RS modeling
consists of fitting an analytical function to a simulation outcome
(Myers and Montgomery 1995). This function is generated by run-
ning simulations according to an RS design using factors identified
by the screening design as the most important for predicting that
outcome at a user-specified significance. A central composite de-
sign is used here, which requires three values for each factor,
i.e., −=0=þ (low/median/high). These values can correspond to
key probabilities, although it is not a requirement. To obtain the
RS model, a quadratic polynomial function, which is found accu-
rate and robust in analyzing different reservoir problems (Peng and
Gupta 2004; Yeten et al. 2005), is fitted to the simulation outcome
via multilinear regression. Although alternative designs and fitting
methods are available, the best design and fit are problem depen-
dent. In general, researchers rely on verification to test the
robustness of a chosen design in replicating simulated values at
non-RS-design points. In this paper, the RS models are verified
at PB design points, which lie on parameter space boundary.
According to Peng and Gupta (2004), such “extreme test runs”

can exaggerate RS errors, although this decision can lead to signifi-
cant computational savings. After the verification, the RS model is
considered a proxy for reservoir simulation, i.e., a statistically based
predictive model between important input factors and simulation
outcome (response). With the RS model, a Monte Carlo simulation
(MCS) is carried out by randomly drawing the factors according to
their respective probability density functions (PDFs), which leads
to a PDF of the outcome. This analysis is orders of magnitude faster
than one based on full-physics simulations. In the MCS, however,
factor PDFs must be drawn from the same ranges in which the RS
model is verified. At this study site, information on exact parameter
PDFs is lacking. A Gaussian distribution is assumed for most
factors, i.e., [−1, þ1] parameter ranges correspond to a 99% prob-
ability. An exception is the relative permeability model for which
equal probability (i.e., a uniform distribution) is assigned to the
end members. The DoE and RS analysis is performed with JMP
9.0 of Statistical Analysis Software.

In this paper, geologic factors and EEFs are varied according to
experimental designs (Fig. 5), which directly influence the building
of the site model. Because the number of geologic factors increases
with model complexity, the number of simulations required by the
designs increases accordingly. For all families, model building is
first dictated by the PB design, which specifies a number of sim-
ulation runs: 13 (FAM1, FAM2a, FAM2b) and 21 (FAM3 and
FAM4). For FAM4, soft data conditioning is incorporated into
the model building procedure, but not into the PB design, which
is identical to that of FAM3. The effect of data conditioning is
evaluated by comparing the uncertainty outcomes of FAM3 (no
conditioning) with FAM4. The PB design for generating the
FAM4 models is shown in Table 1 [designs of the other families
can be found in Yang (2012)]. For each family, after the screening
analysis identifies a list of important factors, an RS design is gen-
erated using these factors to develop a proxy model for CO2 stor-
age. The RS designs are typically of higher resolutions and more
simulations are needed (see “Results”). In these simulations, as
long as geologic factors are identified as important, additional static
models incorporating variations of such factors must be built.
Despite the computational efficiency of the uncertainty method,

Table 1. PB Design for FAM4

Run FCA FCR PCA PCR PPT VHR SAL RGS RPM TG

1 1 1 1 −1 1 −1 1 −1 −1 −1
2 1 1 1 1 −1 1 −1 1 −1 −1
3 1 −1 1 −1 1 −1 −1 −1 −1 1
4 −1 −1 −1 −1 1 1 −1 −1 1 −1
5 0 0 0 0 0 0 0 0 0 0
6 −1 −1 1 −1 −1 1 1 1 1 −1
7 −1 −1 1 1 1 1 −1 1 −1 1
8 1 −1 −1 −1 −1 1 1 −1 −1 1
9 −1 −1 −1 1 1 −1 −1 1 −1 −1
10 1 1 −1 −1 1 −1 −1 1 1 1
11 −1 1 −1 −1 1 1 1 1 −1 1
12 −1 1 1 −1 −1 1 −1 −1 1 1
13 1 1 −1 1 −1 1 −1 −1 −1 −1
14 −1 1 −1 1 −1 −1 −1 −1 1 1
15 1 −1 −1 1 1 1 1 −1 1 −1
16 −1 −1 1 1 −1 −1 1 −1 −1 1
17 −1 1 1 1 1 −1 1 −1 1 −1
18 −1 1 −1 −1 −1 −1 1 1 −1 −1
19 1 −1 1 −1 −1 −1 −1 1 1 −1
20 1 −1 −1 1 −1 −1 1 1 1 1
21 1 1 1 1 1 1 1 1 1 1

Note: −1=0=1 indicate different values assigned to an uncertain input
factor.
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a large effort is devoted to building the static models and con-
ducting CO2 simulations with these models.

A realization of kH for each model family is shown (Fig. 6),
corresponding to the center run of the respective PB design, i.e., all
factors assume median values. Given the varying support data
and modeling choices, different permeability heterogeneities are
created. For example, FAM2a exhibits facies variation, while
within-facies permeability is homogeneous. Permeability of
FAM2a, FAM2b, and FAM3 are statistically homogeneous without
significant trends. Compared with FAM3, where mean permeabil-
ity does not vary areally or with depth, good-quality layers with
higher permeabilities are observed in the upper model region of
FAM4 because of facies conditioning. Also, due to the porosity-
depth trend, kH of FAM4 decreases with depth, an effect absent
in the other families. Fig. 6, however, only illustrates the difference
in mean heterogeneity representation by the families. Additional
variability exists among the models of each family because geo-
logic factors are varied according to experimental designs.

Results

Results are presented in four subsections: (1) screening test out-
comes, (2) RS modeling and verification, (3) Monte Carlo simu-
lation assessing CO2 storage uncertainty, and (4) representative
plume footprints for each family selected from RS model runs
corresponding to end member SRs. Fig. 5 contains meanings of
the acronyms representing the uncertainty factors.

Screening Tests

Screening test results of all families are examined at end of injec-
tion (EOI) and end of simulation (EOS) (Table 2). At a given output
time and for a given outcome, t-ratio of each family is used to de-
termine and rank the effect of each uncertainty factor on influenc-
ing the outcome. As a key statistic of MANOVA, t-ratio is defined
as ratio of variance of the response caused by a given factor to that
due to all experiments (Montgomery 2008). When the outcome is
CO2 storage ratio at EOS, a t-ratio-based ranking is shown in Fig. 7

for FAM4. The same analysis was conducted for all other outcomes
and for all families.

Results of each family are first examined at different times.
For FAM4, over the entire simulation time, PPT, FCR, FCA,
and VHR are the four most important factors impacting brine
leakage, suggesting that this outcome is controlled by aquifer per-
meability that determines fluid pressure evolution, which in turn
controls leakage. In predicting residual gas, results at EOI are dif-
ferent from those at EOS: (1) RPM and TG are the most important

Fig. 6.Realization of kH for each family; arrow points north: (a) FAM1; (b) FAM2a; (c) FAM2b; (d) FAM3; (e) FAM4; (f) first layer of FAM3; (g) last
layer of FAM3; (h) first layer of FAM4; (i) last layer of FAM4

Table 2. Significant Factors Identified by the PB Design for Each Family
That Impact Different Outcomes: Brine Leakage, Residual Gas, Dissolved
Gas, and CO2 SR

Simulation outcomes End of injection End of simulation

Brine leakage
FAM1 RPM/SAL RPM/SAL
FAM2a FCR FCR
FAM2b PPT/PCA PPT
FAM3 PPT PPT
FAM4 PPT/FCR/FCA/VHR PPT/FCR/FCA/VHR

Trapped (residual) gas
FAM1 TG SAL/RPM/RGS
FAM2a RPM RGS/SAL/RPM
FAM2b RPM/PPT/RGS PPT/SAL/PCA/RGS
FAM3 RPM/PPT PPT/RGS
FAM4 RPM/PPT/RGS/TG PPT/SAL/FCR/RGS

Dissolved gas
FAM1 SAL/RPM/TG SAL/RPM/VHR
FAM2a SAL SAL
FAM2b PPT/SAL/TG/RPM/PCA PPT/SAL
FAM3 PPT/SAL PPT/PCA
FAM4 PPT/SAL/FCR PPT/FCR/SAL

SR
FAM1 TG SAL
FAM2a RPM VHR
FAM2b PPT/TG PPT/RGS
FAM3 PPT/RPM PPT/RPM
FAM4 PPT/RPM/RGS PPT/FCR/RGS

Note: Significance level = 90%.
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factors during injection, but become unimportant by EOS; (2) dur-
ing postinjection, PPT and FCR exert a dominant effect, which can
be explained by their influence on formation mean k and its con-
nectivity. Higher mean k and greater lateral continuity of high-k
facies can contribute to more lateral plume spreading and more
brine is in contact with gas, which leads to more residual trapping
during imbibition. Because supercritical CO2 migrates continu-
ously along the inclined aquifer, the same two factors are consis-
tently important over time. In predicting dissolved gas, PPT and
FCR are also the most important: more lateral spreading causes
more gas to contact brine and more dissolution.

Comparing brine leakage among the families, the important
factor(s) remain the same over time (before and after injection),
which suggests that sensitivity for predicting leakage is not strongly
affected by time. In predicting residual gas, results differ among
families to some degree: for FAM2, FAM3, and FAM4, RPM is
important by the EOI, but becomes unimportant by the EOS;
for FAM1, TG is important during injection, but is not after injec-
tion ceases. In predicting dissolved gas, factors that influence
plume spreading become more important with increasing time:
in FAM3 and FAM4, by the EOS, PCA and FCR become more
important than SAL.

Results are compared across the families at the same time. As
model complexity increases, for the same outcome geologic factors
that determine aquifer k (i.e., mean value and connectivity) become
increasingly important, especially by the end of simulation. For
FAM1 and 2a, at any output time, the important factors are mostly
EEFs, as expected. When FAM2b, 3, and 4 are examined, PPT is
dominantly important for predicting all outcomes at all times.
When complexity is built into the model reflecting increasing site
knowledge, geologic factors exert a dominant effect on predictions,
while EEFs become less important. For the simple families, RPM
and RGS are identified as key factors. However, as model complex-
ity increases these give way to PPT and FCR.

RS Modeling of Storage Ratio

For a given family, after PB design identifies a list of important
factors, an RS design is generated based on these factors to develop
a proxy model for predicting CO2 storage. Factors included in the
RS design are the union of all important factors for predicting the
SR at both times. For example, if PPT is not important with regards
to predicting residual gas but is important with regards to predicting
dissolved gas, it is included in the design because both forms of
CO2 contribute to the SR. Moreover, if PPT is not important at
EOI but becomes important at EOS, it is included as well. For
FAM1, the important factors for predicting residual and dissolved
gases over both time scales are TG, SAL, RPM, VHR, and RGS
(Table 2), which yield 44 simulations based on the central-
composite design (Yang 2012). Compared with the PB design,
more simulations are needed because RS designs are generally
of higher resolution. For the other families, the number of RS sim-
ulation runs are 44 (FAM2a), 46 (FAM2b), 44 (FAM3), and
80 (FAM4).

For the storage ratio, an RS model is fitted to the simulated stor-
age ratio at each output time: 2041, 2061 (EOI), 2310, 2810, 3210,
3610, and 4010 (EOS). For example, 44 SRs are exported from
FAM1’s RS design runs at year 2041, with which one RS model
is created. For the entire simulation time, seven storage ratio RS
models are created for this family. These models are verified by
comparing the RS-model-predicted SR to the simulated SR at
PB design points, which yields small errors (Table 3), i.e., means
of the RS errors are close to 0.0, standard deviations are gener-
ally small, and error distributions are frequently symmetric
around the means (see Fig. 8 for FAM4). Also, had the verifica-
tion points been selected internal to the parameter space, the RS
error is expected to be smaller (Peng and Gupta 2004). The RS
models are considered adequate proxy models for the Monte
Carlo analysis.

Fig. 7. Example screening analysis result for FAM4 at 90% significance (bold lines); outcome is CO2 storage ratio at the end of simulation; sta-
tistically significant factors include ϕ -kH transform, facies correlation range, and residual gas saturation; negative t-ratio means varying the value of a
factor from −1 to þ1 reduces the storage ratio

Table 3. Summary Statistics of the RS Errors at PB Design Points

Family identification
RS error at the EOM [minimum, mean,

maximum, standard deviation]
RS error at the EOM [minimum, mean,

maximum, standard deviation]

FAM1 ½−2.1 × 10−1; 1.0 × 10−4; 2.1 × 10−1; 1.3 × 10−1� ½−3.5 × 10−2; 1.0 × 10−2; 5.0 × 10−2; 2.0 × 10−2�
FAM2a ½−5.5 × 10−1;−4.0 × 10−2; 1.6 × 10−1; 1.6 × 10−1� ½−8.2 × 10−2; 1.0 × 10−3; 1.1 × 10−1; 4.0 × 10−2�
FAM2b ½−5.4 × 10−1;−4.0 × 10−2; 3.0 × 10−2; 1.5 × 10−1� ½−1.6 × 10−1;−9.0 × 10−3; 8.8 × 10−2; 6 × 10−2�
FAM3 ½−1.2 × 10−1;−9.6 × 10−3; 5.0 × 10−2; 4.0 × 10−2� ½−3.6 × 10−1;−4.0 × 10−2; 1.7 × 10−1; 1.5 × 10−1�
FAM4 ½−5.2 × 10−1;−4.0 × 10−2; 4.0 × 10−2; 1.2 × 10−1� ½−1.9 × 10−1;−2.0 × 10−2; 7.0 × 10−2; 6.0 × 10−2�
Note: Error = RS-model-predicted storage ratio − simulated storage ratio at PB design point.
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Monte Carlo Analysis

For each family, RS models created at seven output times are used
to assess storage ratio uncertainty. Five hundred thousand Monte
Carlo simulations are run, randomly sampling the input factors
(i.e., axes of the RS model) according to their PDFs. Each random
drawing of a vector of the input factors gives rise to one RS-
predicted storage ratio. After 500,000 simulations, which took less
than 2 min on a PC workstation, a cumulative distribution function
(CDF) of the SR can be created (Fig. 9 for FAM4; solid line). It
would take hundreds of years if this analysis were conducted with
the reservoir simulator, assuming that one simulation can be com-
pleted overnight. Clearly, here lies the chief strength of the DoE and
RS method because the same analysis with full-physics simulations
is impractical.

From the CDFs of the storage ratio (one at each output time), a
prediction envelope can be created and further compared among the
families (Fig. 10). Given the uncertainty in parameters and model-
ing choices, the SR exhibits a considerable spread: at EOI, it ranges
from 0.18 to 0.38; at EOS, 0.71 to 0.99. At a given output time,
uncertainty in SR for FAM2b, FAM3, and FAM4 are larger than
those of FAM1 and FAM2a, likely because the former models
contain more uncertainty factors contributing to greater prediction
uncertainty. Uncertainty in SR also changes with time. By EOI,
prediction envelopes of all families are more or less similar: where

plume migration is limited, heterogeneities near the injector are not
significantly different among the families, thus similar SR uncer-
tainty. After injection ceases, prediction envelope of each family
deviates gradually from one another, reflecting different (evolving)
large-scale heterogeneity experienced by each family because
plume migrates continuously along dip. Clearly, uncertainty in pre-
dicting CO2 storage is affected by conceptual model, the number of
factors evaluated, and time. When comparing mean and range of
the SR, prediction envelope of FAM3 is the closest to FAM4, while
all other families estimate higher means (the simpler the model, the
greater the mean). In this case, increasing reservoir heterogeneity
leads to less storage, likely due to reduced sweep efficiency (Deng
et al. 2012).

Because RS models contain errors, they are imperfect represen-
tations of the true but unknown prediction space. For a given
problem, RS errors depend on the RS design and fitting method.

(a)

(b)

Fig. 8. Verification of the RS models for FAM4: (a) EOI; (b) EOS

(a)

(b)

Fig. 9. CDF of the storage ratio for FAM4: (a) EOI; (b) EOS; MC with
RS is generated with 500,000 MC simulations using the RS model
(exhaustive CDF); RS design is CDF constructed using results from
the 80 RS runs for this model family
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In general, error decreases with increasing resolution of the design
(not tested here), but more simulation runs are needed. The MC-
predicted storage ratio CDFs are therefore approximations whose
precisions may change with available computing resources.

Plume Footprint

From the RS design runs, a nonexhaustive CDF of the storage ratio
is constructed, e.g., Fig. 9 (dashed line). Compared with the ex-
haustive CDF, the nonexhaustive CDF is less smooth because
parameters sampled by these runs are discontinuous. However,
the nonexhaustive CDF has largely captured the range of the ex-
haustive CDF, suggesting that representative outcomes other than
SR may be identified from these runs. One outcome of interest is
the footprint of supercritical CO2 (both residual and mobile gas),
which is defined here as the model layer with the largest plume.
When SR is at its highest (i.e., greatest dissolution and residual
trapping), CO2 footprint tends to be more laterally extensive,
and vice versa (Sifuentes et al. 2009; Liu and Zhang 2011). There-
fore, representative plume footprints are identified by visualizing
the RS design runs corresponding to minimal, median, and maxi-
mum SRs in the nonexhaustive CDF (Fig. 11 at the EOI; Fig. 12 at
the EOS).

For FAM1 and 2a, at both EOI and EOS, representative plumes
at minimal, median, and maximum SRs are not as drastically differ-
ent from one another as those of FAM2b, 3, and 4, consistent with
the observation that for the former families, their SR uncertainty
ranges are comparatively small. For FAM2b, 3, and 4, however,
the differences are much more pronounced: gas plume correspond-
ing to minimum SR stays close to the injector and does not travel
far, resulting in minimum dissolution and residual trapping, while
that corresponding to maximum SR migrates far from the injector,
which explains why PPT is always dominantly important for these
families. PPT determines the average reservoir permeability, and
the higher this permeability, the faster the CO2 can migrate, thus
more gas dissolution and trapping occur per unit time. For FAM4,
at its maximum SR (∼1), little residual and mobile gas remains by
EOS [Fig. 12(o)]. When the corresponding parameters are exam-
ined, mean permeability is high and salinity is low. Gas plume
spreads widely and quickly and is mostly dissolved by EOS.

Discussion

Uncertainty in modeling CO2 storage is commonly evaluated with a
fixed conceptual model varying only EEFs. Within such a frame-
work, factors such as relative permeability are often identified as
important. In this study, GCS in an inclined aquifer is of interest,
and uncertainty in building the site model (i.e., k heterogeneity)
dominates CO2 predictions over that due to the variation of EEFs.
Because k can vary over several orders of magnitude in a single
aquifer, uncertain geologic factors influencing its magnitude, ori-
entation, and connectivity can induce large changes in the per-
meable pathways through which CO2 migrates. For example,
permeability magnitude influences the speed of gas migration, res-
ervoir fluid pressure, and brine leakage. For families in which
heterogeneity is explicitly modeled, porosity-permeability trans-
form and facies correlation structure are found to significantly
influence storage: the former factor influences permeability mag-
nitude, the latter permeability connectivity. These effects are mag-
nified in an inclined aquifer, where a runaway plume can
occur: as CO2 migrates continuously along dip, different large-
scale heterogeneities (as represented by different model families)
are continuously experienced by the plume, which influences its
trapping and storage. On the other hand, parameters such as
RPM and RGS vary only within 1 or 2 orders, and compared with
conceptual uncertainty in modeling heterogeneity, they exert far
less influence on CO2 predictions. The previous results are further
compared with Li and Zhang (2014), where the same formation in a
neighboring region was evaluated. There, because of the lack of
significant dip, CO2 was observed to aggregate near the injector
and conceptual uncertainty was found to be much less important.
And, for a similar time scale evaluated, relative permeability was
identified as the most significant factor. Thus, the notion that
relative permeability exerts a dominant control on CO2 storage
is likely true when aquifer dip angle is small. To determine whether
the previous insights can apply to other sites, different storage
systems need to be examined, e.g., porous versus fractured rocks,
nonreactive versus reactive systems, shallow versus deep injection,
and sluggish versus strong background flow. In evaluating these
systems, factors specific to each site need to be selected. Again,
DoE and RS method provides a promising approach for these
analyses.

Fig. 10. Prediction envelope of the RS-model-predicted storage ratio over time; for each family, prediction envelope (at a given time) is defined by
[P10, P90] of the storage ratio CDF; between output times, the envelopes are created from linear interpolation
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In site assessment, besides CO2 storage, leakage is also an im-
portant concern. In Li and Zhang (2014), gravity-stable flow was
simulated under conditions of cool formation temperatures and
high formation fluid pressures, suggesting that deep injection
may lead to reduced leakage risk. In this paper where CO2 is in-
jected at a similar depth, gas plume is also observed to migrate

downdip under similar temperature and pressure conditions. In both
studies, mixture densities predicted by GASWAT were inspected.
Under suitable conditions, the supercritical CO2-rich phase (con-
taining a small amount of H2O) was found to have higher mixture
densities than the H2O-rich brine phase (with a small amount of
CO2). In Lu et al. (2009), when a different equation of state is

(a) (f) (k)

(b) (g) (l)

(c) (h) (m)

(d) (i) (n)

(e) (j) (o)

Fig. 11. Gas saturation (mobile+residual supercritical CO2) predicted by each family at end of injection: minimum SR for (a) FAM1; (b) FAM2a;
(c) FAM2b; (d) FAM3; (e) FAM4; median SR for (f) FAM1; (g) FAM2a; (h) FAM2b; (i) FAM3; (j) FAM4; maximum SR for (k) FAM1; (l) FAM2a;
(m) FAM2b; (n) FAM3; (o) FAM4; arrow points north
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implemented, CO2 dissolution can cause brine to become less
dense. In Firoozabadi and Cheng (2010), under sufficiently high
pressure, “CO2 density can be higher than water density.”However,
mixture density calculation is subject to uncertainty. If GASWAT’s
prediction of mixture densities is adequate for the range of temper-
ature and pressure conditions encountered in the authors’ studies,

gravity-stable migration then becomes possible. Future work will
evaluate alternative equations of state that will be constrained by
experiments with conditions applicable to these deep systems.
Moreover, while downdip flows are observed, a few simulations
predict updip migration when a higher TG is assigned, e.g., median
SR in FAM4 (Fig. 12). Reduced uncertainty in aquifer temperature

(a) (f) (k)

(b) (g) (l)

(c) (h) (m)

(d) (i) (n)

(e) (j) (o)

Fig. 12. Gas saturation (mobile+residual supercritical CO2) predicted by each family at end of simulation: minimum SR for (a) FAM1; (b) FAM2a;
(c) FAM2b; (d) FAM3; (e) FAM4; median SR for (f) FAM1; (g) FAM2a; (h) FAM2b; (i) FAM3; (j) FAM4; maximum SR for (k) FAM1; (l) FAM2a;
(m) FAM2b; (n) FAM3; (o) FAM4; arrow points north
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is also needed to evaluate whether gravity-stable migration is a
likely scenario.

Conclusion

In modeling CO2 storage in a deep inclined aquifer, the impact
of geologic, engineering, and environmental uncertainty factors
on parameter importance and prediction uncertainty is evaluated.
By building and simulating four increasingly complex geologic
model families, the effect of permeability representation is inves-
tigated. Over 50 years, 17 Mt of CO2 is injected at a depth of ap-
proximately 3,750 m. Postinjection modeling extends the total
simulation time to 2,000 years. Using design of experiment, a
screening sensitivity analysis is first conducted for all model fam-
ilies, systematically varying uncertain input parameters. Parameters
that have first-order impact on CO2 predictions (i.e., trapped gas,
dissolved gas, brine leakage, storage ratio) are identified. A re-
sponse surface analysis then generates accurate proxy models
for predicting CO2 storage, with which uncertainty in the storage
ratio is quantified. A set of insights are summarized as follows:
• For the inclined aquifer, conceptual uncertainty and the asso-

ciated geologic factors can dominate the prediction of CO2 sto-
rage. When model is of low complexity, the most important
parameters influencing various predictions are engineering
and environmental factors. When model increases in complex-
ity, geologic factors become more important. For a given model
family, the important parameters can change with time.

• Uncertainty in the predicted CO2 storage varies with time. The
storage ratio is 0.18–0.38 at the end of injection and 0.71–0.99
at the end of simulation. Over longer times, this uncertainty de-
viates gradually among the model families, reflecting different
large-scale heterogeneity as experienced by each family because
plume migrates continuously along dip.

• Gravity-stable flow in deep (≥3,750 m) formations is possible
under conditions of low formation temperatures and high forma-
tion fluid pressures. Greater injection depth, though more ex-
pensive, offers greater storage security and enhanced storage
capacity.

• Uncertainty analysis can be conducted efficiently with the DoE
and RS method. It took only minutes to obtain the storage ratio
CDF using Monte Carlo simulations with the RS model.

• Formation dip can significantly impact uncertainty outcomes.
Because the family incorporating all available hard and soft data
is considered the most realistic, resources should be devoted first
to characterize geologic factors such as porosity-permeability
transform and facies correlation structure. For aquifers with gen-
tle incline, relative permeability model appears more important
(Li and Zhang 2014).
This study can serve as an analog for deep aquifers in basins

where connections to the shallow subsurface exist. The method
of evaluating multiple conceptual models can be applied to other
data-poor settings where key characterization targets need to be
identified. If CO2 injection is carried out in the future, RS-based
history matching (Amudo et al. 2008) can be performed to reduce
current conceptual uncertainty, leading to more accurate models.
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