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ABSTRACT:

When field data are limited, stratigraphic models are used instead of detailed, fully heterogeneous models (FHM) to represent deep
saline aquifers in numerical simulations of CO2 storage. This study evaluates parameter sensitivity and prediction uncertainty of
three stratigraphic models of decreasing complexity (i.e., facies, layered, formation) against that of a FHM. For select simulation
outcomes (i.e., CO2 mass profiles, gas plume shape, brine leakage), parameter sensitivity and associated prediction uncertainty are
compared among the models, with the FHM serving as a reference. The analysis is conducted using the computationally efficient
design of experiment (DoE) and response surface (RS) methodology. Results suggest that when a competent caprock exists
(permeability <1� 10�4 mD), the facies and layered models are capable of capturing the most important sensitivity parameters of
the FHM, that is, residual gas saturation, heterogeneity variance, and salinity. Using the important parameters identified by DoE, RS
modeling then suggests that the same twomodels also capture the ranges of predictions inmobile gas, trapped gas, and brine leakage.
The formation model is less accurate in capturing the sensitivity and prediction ranges of the FHM, although it is accurate in
predicting brine leakage into the overlying formation.

1. INTRODUCTION

Carbon dioxide (CO2) capture and storage (CCS) into deep
saline aquifers is considered a promising option tomitigate global
climate change.1 To assess a storage formation, reservoir simula-
tion is commonly performed using a site geologic model. Due to
technical or economical reasons, data needed to build a detailed
site model are often lacking. As a compromise, stratigraphic
models are built in which facies or depositional zones, or even the
entire aquifer, are assumed homogeneous. Since natural aquifers
exhibit intrinsic permeability (k) heterogeneity at multiple scales,
stratigraphic models are conceptual simplifications created based
on the level of data support. It is important to understand not
only the adequacy of such models in representing natural
systems, but also if an optimal complexity of the stratigraphic
model exists that can lead to a cost-effective strategy in data
collection and reservoir modeling. However, a key difficulty
exists here: in addition to uncertainty in aquifer permeability,
uncertainty in multiple geologic and engineering variables exists.
Determination of an optimal stratigraphic model must be evaluated

within a full parameter space, which is computationally challen-
ging if CO2 storage is modeled at the field (or larger) scales using
traditional simulation techniques.2

In this study, a design of experiment (DoE) and response
surface (RS)methodology is used to conduct a parameter sensitivity
study and prediction uncertainty analysis. The methodology is
computationally efficient, suitable for the uncertainty analysis of
data-poor settings.3,4 To eliminate uncertainty in k pattern and
focus only on parameter uncertainty, a 3D synthetic aquifer is
created to represent a groundtruth model with a fully known
permeability pattern. This fully heterogeneous model (FHM) is
used to gauge the performance of three stratigraphic models of
decreasing complexities: a facies model with eight units, a layered
model with three units, and a formation model with one unit
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(Figure 1). Since aquifers can exhibit different degrees of perme-
ability heterogeneity and preferential CO2 channeling can occur
in highly heterogeneous systems,5 the FHM is scaled to increas-
ing natural log permeability (lnk) variances. Variance of lnk is a
key uncertainty parameter analyzed. At each variance level, the
stratigraphic models are upscaled from the FHM (detail is de-
scribed elsewhere6).

For our set of models (i.e., stratigraphic models are conceptual
equivalents of the FHM), multiple uncertain input parameters are
defined, their selection based on typical uncertainty variables and
their ranges encountered at CCS sites. For a suite of prediction
outcomes, a stratigraphicmodel is considered optimal if it can capture
both parameter sensitivity and prediction uncertainty of the FHM.
Specifically, within the full parameter space, the stratigraphic models
are examined in three aspects: (1) accuracy in predicting CO2 mass
profiles, plume shape, and brine leakage; (2) ability to capture the
most important parameters impacting theoutcomesof theFHM; (3)
ability to capture the prediction envelopes of the FHM.

Worldwide saline aquifers suitable for CCS can be found at a
variety of depths. To explore the effect of depth on model sen-
sitivity and prediction uncertainty, the models are placed at 1, 2, and
3 km, respectively. The upper limit of 1 km is slightly deeper than
the typical depth threshold where CO2 is considered supercritical
(∼800 m). Since geothermal gradient is one of the parameters
varied, this depth ensures that CO2 remains supercritical in the
model. The lower limit is selected based on a cost threshold:7 below 3
km, storage efficiency generally decreases and cost per tonof injection
increases. The uncertainty analysis is repeated at each depth.

In the following sections, the uncertainty analysis is introduced,
followed by results, discussions, and conclusions. Supporting Informa-
tion (SI) is attached, including details of CO2 simulation, parameters
varied in the sensitivity analysis (SA), and gas prediction outcomes.

2. MATERIALS AND METHODS

2.1. Model Creation. Using images of sediment created in a
laboratory flume, a FHM is created (Figure 1A). The model is

2525m long, 2525mwide, and 102.5 m thick, as a host formation
of∼1 km2 by 100 m is required to store CO2 from a single power
plant.8 Using facies analysis, a stratigraphic model is created
containing eight facies units (Figure 1B). Since the flume deposit
emulates a fluvial system with multiple depositional episodes, a
3-Unit layered model is created (Figure 1C). Each layer consists
of several units of the facies model (e.g., layer 1 corresponds to
facies units 1�4, etc). A formation model is also created
(Figure 1D). The 8-, 3-, and 1-Unit models are hosted within a
sedimentary hierarchy, representing conceptual models devel-
oped at decreasing complexity (i.e., heterogeneity resolution)
from the FHM. To ensure that models are comparable, equiva-
lent permeability is computed for each unit of stratigraphic models
using an upscaling technique.6 Under the same fluid driving
forces, all models predict similar flow rates.6 Since CO2 storage
and leakage are both of interest, a 40 m thick (10 vertical cells)
caprock is placed above the aquifer. The caprock is assumed to be
homogeneous. The combined aquifer and caprock is referred to
as a storage model. All models employ the same grid, with 520 251
block cells.
2.2. CO2 Simulation. CO2 is injected using a single vertical

well at the model center, perforated in the aquifer only. In the SA,
the total injected CO2 is fixed (538 063 t), whereas the injection
rate is varied as an uncertain input variable (0.45�0.90 kg/s).
Thus, injection duration varies from 20�40 years, corresponding
to the changing injection rate. A 500-year postinjection monitor-
ing period is simulated. All models are given a laterally open
boundary. An external aquifer is placed above the caprock to provide
a receptacle to receive CO2 and brine that has leaked through the
caprock (details of the simulations can be found in the SI).
To simplify the simulation and sensitivity analysis, this study

employs several assumptions. First, fluid rock reactions are not
considered, which can be assumed negligible for an aquifer with
quartz-dominated mineralogy.1 Nonisothermal effects are ignored,
as are drying-out, salting-out, and coupled flow and geomecha-
nical feedbacks. Viscous fingering due to CO2 dissolution in
brine, which typically requires a cm-scale grid size, is not
modeled. Capillary pressure (Pc) is assumed negligible, thus a
single fluid pressure is computed. In field-scale modeling, Pc can
be neglected when there exist strong viscous or gravity forces.2

However, we acknowledge the potentially important role capil-
lary entry pressure plays in deterring CO2 breakthrough into the
caprock. This effect will be considered in future work.
2.3. Sensitivity Analysis and Response Surface Modeling.

Sensitivity analysis (SA) for each model is conducted using DoE.9

Unlike the conventional analysis whereby parameters are varied
one at a time while keeping all others fixed, DoE varies subsets of
the parameters simultaneously according to a design table. Results
are compiled and examined with multivariate analysis of variance
(MANOVA) to identify parameters that have statistically sig-
nificant effects on a prediction outcome. Though a variety of
designs are available (same design can be used for multiple out-
comes), a two-level Plackett-Burman (PB) design is used which
is the most effective when parameters varied in the SA (or factors)
are orthogonal, that is, uncorrelated. Compared to other designs
(e.g., fractional factorial), the PB design is parsimonious in
selecting a parameter subset for simulations, providing large
savings in program execution time when the problem size is large
and the physics to be solved complex. However, the PB design
can only identify main effects as well as any confound interac-
tions with themain effects. It is themost useful as a screening tool
that can quickly identify significant uncertainty factors. In reservoir

Figure 1. Aquifer models of this study: (A) fully heterogeneous model
(permeability is shown in mD when the system lnk variance is 7.0);
(B) facies model with 8 units (unit ID is shown); (C) layeredmodel with
3 units; (D) formation model with 1 unit. All models employ a uniform
grid, with 101 � 101 � 41 block cells. To all models, a homogeneous
caprock is added (not shown).
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simulation, PB is used in scoping studies to guide early data
collection.10

The RS method consists of fitting a polynomial function to
each outcome of the DoE analysis.11 The function is based on the
factors previously identified as important to the outcome. Prior
to RS modeling, three values for each factor are necessary in the
DoE analysis, that is,�/0/þ values. Such values can correspond
to key probabilities of a factor, but it is not a requirement. The RS
model is considered a predictive model of the relationship
between input factors and simulation outcomes (responses).
Using RS, a range of predictions can be made by varying these
factors within their respective ranges. The factor values can be
continuous, as opposed to (discrete) end-point and midpoint
values specified in the design. Since prediction using RS is fast, it
is used in reservoir analysis as a proxy model to analyze pre-
diction uncertainty.3 For example, if a minimum or maximum
response exists within the factor region, this can be identified
from the RS model using optimization techniques. Monte Carlo
analysis can also be run on the RS (by randomly drawing factors),
leading to a probability density function of the outcome. Such
analyses are orders of magnitude faster than one using reservoir
simulations. In this study, the DoE and RS analysis is perform-
ed with JMP 8.0, a package developed by Statistical Analysis
Software, Inc.
2.3.1. Input Parameters. A SA is conducted for all models

using DoE. For each model, seven input parameters are varied:
(1) vertical gradient of background aquifer flow (AquG), (2)
geothermal gradient (TG), (3) level of aquifer heterogeneity
(i.e., variance of lnk, VAR), (4) maximum residual gas saturation
(SGR), (5) salinity of formation water (SAL), (6) injection rate
(q), and (7) caprock permeability (krock). The parameters and
their ranges are summarized for the FHM in Table 1. For the
stratigraphic models, the same parameters are varied, though
VAR now represents the variance of the FHM (aquifer zone
only), from which units of the stratigraphic models are homoge-
nized. Justification for choosing the parameters and their ranges is
provided in the SI.
2.3.2. Model Outcomes. Five outcomes are evaluated for CO2

modeling: (1) mobile gas-phase CO2 (mobile gas), (2) trapped
gas-phase CO2 (trapped gas), (3) dissolved aqueous-phase CO2

(dissolved gas), (4) brine displaced from the storage model into
the overlying aquifer, and (5) gas-phase leakage into the same
aquifer. Since CO2modeling contains two periods (injection and
monitoring) and during each period, viscous force, gravity, and
heterogeneity can exert different influence on flow, sensitivity of
model outcomes to parameters is expected to change with time.
Each outcome is exported at six different times: at the end of
injection and at 100, 200, 300, 400, and 500 years postinjection.
2.3.3. DoE and RSModeling. For the seven factors varied in the

SA, a PB design table is shown (Table 2). A center run is added
where all factors assuming their median (“0”) values. This run is

optional for identifying important factors, but is necessary for
identifying parameter nonlinearity and providing center-valued
responses for RS modeling. After simulating all runs in Table 2,
model outcomes at the select output times are compiled. For
each outcome (at each time), parameter importance is deter-
mined by its main effect on the outcome at a specified statistical
confidence level. Using MANOVA, a list of the most important
to the least important parameters can be identified. The FHM
follows this design exactly. For the stratigraphic models, VAR is
not a direct input factor. Instead, the level of VAR determines a
set of equivalent permeabilities that has been computed by
homogenizing the FHM.6 For all models, at all depths (1, 2,
and 3 km), 4 � 13 � 3 = 156 simulations are conducted.
Prediction uncertainty of all models is evaluated following

these steps: (1) RS models are first developed for the FHM for
multiple outcomes, and at multiple times. These models are verified
against the simulation results; (2) for the same outcomes, RS
models are developed and verified for the stratigraphic models.
(3) using RSs, at each output time, minimum and maximum
responses of an outcome are generated. A time-dependent pre-
diction envelope is created. (4) for the same outcome, prediction
envelopes are compared among the models. (5) above analysis is
repeated at different depths, following a DoE analysis conducted
using CO2 simulation results at that depth.

3. RESULTS AND DISCUSSION

Results of this study follow five themes: (1) DoE results of the
FHM are analyzed first, providing insights into parameter
sensitivity for a model with fully resolved permeability. (2)
DoE results of all models are compared to evaluate parameter
sensitivity in response to changing conceptual models (Table 3).
For select simulation runs, gas profiles, plume shape, and CO2/
brine leakage are compared. (3) RS results of all models are
compared to identify an appropriate stratigraphic model that can
capture the prediction envelopes of the FHM. (4) All results
above pertain to a system depth of 2 km—the center value of
depth. The analysis is repeated at 1 and 3 km depths to evaluate
its effect on parameter sensitivity and prediction uncertainty. (5)
Time scale of simulation is reduced to emulate pilot-scale
scenarios. For most runs, gas-phase leakage through the caprock

Table 1. Input Parameters and Their Ranges Varied in the SA
for the FHM.�1, 0,þ1, Indicate Low, Mid, And High Values
Assigned to Each Parameter, Respectively. All Parameters Are
Independent of One Another

AquG (m/m) TG (oC/m) VAR SGR SAL ppm q kg/s krock mD

�1 �0.03 0.025 0.1 0.06 10 000 0.45 10�8

0 0.00 0.040 1.0 0.30 135 000 0.68 10�6

1 0.03 0.050 7.0 0.42 260 000 0.90 10�4

Table 2. PB Design with Seven Factors. An Optional Central
Run (Run 7) Is Added. Corresponding Parameter Values for
�1/0/1 Are Shown in Table 1

run

AquG

(m/m)

TG

(oC/m) VAR SGR

SAL

(ppm)

q

(kg/s)

krock

(mD)

1 �1 �1 �1 1 �1 �1 1

2 �1 �1 1 �1 �1 1 �1

3 �1 �1 1 �1 1 1 1

4 �1 1 �1 �1 1 �1 1

5 �1 1 �1 1 1 1 �1

6 �1 1 1 1 �1 �1 �1

7 0 0 0 0 0 0 0

8 1 �1 �1 �1 1 �1 �1

9 1 �1 �1 1 �1 1 1

10 1 �1 1 1 1 �1 �1

11 1 1 �1 �1 �1 1 �1

12 1 1 1 �1 �1 �1 1

13 1 1 1 1 1 1 1
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is negligible, thus statistical tests on parameter importance to this
outcome cannot be conducted.
3.1. Parameter Sensitivity of the FHM. For outcomes of the

FHM, statistically important factors are identified at the 90%
confidence level (Table 3). In predicting trapped gas, SGR, VAR,
and SAL are the 3 most important factors over the entire simulation
time. Their main effects are positive, indicating that increasing the
value of each will lead to more residual gas trapping.
During monitoring, higher SGR leads to more trapping, as

expected, since gravity override is significant, resulting in upward
plume migration. At the trailing plume, gas saturation (Sg) de-
creases (water imbibes), leading to residual trapping. During in-
jection, however, SGR is also identified as important, suggesting
that Sg is locally decreasing. This is confirmed by inspecting Sg
over time. This could be due to a combination of gravity flow,
dissolution, and injector pressure response to boundary condi-
tion. For example, when VAR = 7.0, gas plume sought out a high-
k pathway in the aquifer and rose toward the caprock. At the end
of injection, a small pool appeared beneath the caprock, and
along the pathway, Sg can decrease locally when gravity out-
competes viscous drive. The injector pressure is also inspected:
after reaching an initially higher value, pressure pulse reaches the
boundary, injector pressure is adjusted slightly downward, which
may cause Sg to decrease. Though the magnitude of this trapping is
small, the amount trapped is controlled by SGR.
Increasing VAR results in more trapped gas: higher VAR leads

to more lateral plume spreading, more brine contacts the gas,
thus more trapping during imbibition. VAR shifts from being the
second most important factor during the first 200 years, to being
the third most important at longer time scales. VAR is important
during injection and early monitoring, when gas flow and
trapping is most active and thus more sensitive to heterogeneity.
In later times,moremobile gas hasmigrated to the top of the aquifer,
sampling less heterogeneity as the plume rises. Simultaneously,

much of the gas in the lower aquifer becomes immobilized, thus
heterogeneity of the exerts little impact on trapping there.
In predicting trapped gas, increasing SAL inhibits dissolution,

leading to more gas available for migration, thus increased amount
of residual gas trapping. However, due to less dissolution, the
overall trapping (dissolved plus residual) may decrease.
In predicting dissolved gas, SAL is the most important factor

exerting a negative effect over all times, as expected. VAR is the
next most important, though its effect is positive. Larger VAR
contributes to more lateral plume spreading, more brine is con-
tacted by gas, and thus more dissolution.
In predicting mobile gas, VAR is the only important factor

during injection; after injection, SGR is more important, fol-
lowed by VAR. Both factors exert negative effects: when VAR is
high, gas plume is dispersed, thus contacting more brine, result-
ing in enhanced residual trapping and dissolution. This leads to
less mobile gas. When SGR is high, more gas is trapped, and thus
less mobile gas. SGR is not important during injection, probably
because imbibition is mildly active then, while VAR affects both
trapping and dissolution. To quickly immobilize the plume in the
aquifer, high variance and high residual gas saturation appear ideal.
In predicting gas-phase leakage, DoE analysis cannot be con-

ducted since gas leakage through caprock is zero in most runs.
Within the parameter space, the high krock (10�4 mD) is com-
petent in deterring gasmigration. The largest CO2 leakage occurs
in Run 4. The amount of the gas leaked is extremely small, but it is
of interest to examine the causes. Run 4 has the most favorable
combination of all parameters that contribute to leakage: an up-
ward aquiferflow, highTG(more buoyant gas), lowVAR(less lateral
spreading, more upward migration), small SGR (less trapping,
more mobile gas for migration), high SAL (less dissolution lead-
ing to more gas thus more mobile gas), low q (reduced viscous
driving force, less lateral spreading), and high krock.
In predicting brine leakage, krock is the most important factor

at all times, while AquG is additionally important duringmonitoring.

Table 3. Results of SA at 2 km Depth. Parameters Important to an Outcome Are Listed from the Most Important to the Least
Important at a 90% Confidence Level. “Brine Leakage” Is Brine That Has Leaked through the Caprock into the Overlying Aquifer

outcomes models end of injection monitoring period (years after injection ends)

100 200 300 400 500

trapped gas FHM SGR/VAR/SAL SGR/VAR/SAL SGR/VAR/SAL SGR/SAL/VAR SGR/SAL/VAR SGR/SAL/VAR
8-UNIT SGR SGR/VAR/SAL SGR/VAR/SAL SGR/VAR/SAL SGR/VAR/SAL SGR/VAR/SAL
3-UNIT SGR/VAR SGR/VAR/SAL SGR/VAR/SAL SGR/VAR/SAL SGR/VAR/SAL SGR/VAR/SAL
1-UNIT SAL/SGR/q/TG SGR/SAL SGR/SAL SGR/SAL SGR/SAL SGR/SAL

dissolved gas FHM SAL/VAR/TG SAL/VAR/SGR SAL/VAR/SGR SAL/VAR/SGR SAL/VAR/SGR SAL/VAR/SGR
8-UNIT SAL/TG/VAR/q SAL/VAR SAL/VAR SAL/VAR/TG/

SGR
SAL/VAR/SGR/TG SAL/VAR/SGR/

TG
3-UNIT SAL/TG/VAR/q SAL/VAR/TG SAL/VAR/TG/

SGR
SAL/VAR/TG/

SGR
SAL/VAR/TG/SGR SAL/VAR/TG/

SGR
1-UNIT SAL SAL/TG/SGR SAL/TG/SGR SAL/SGR/TG SAL/SGR/TG/VAR SAL/SGR/TG

mobile gas FHM VAR SGR/VAR SGR/VAR SGR/VAR SGR/VAR SGR/VAR
8-UNIT VAR/SAL SGR/VAR/TG/

AquG/SAL/q
SGR/VAR/TG/

SAL/AquG
SGR/VAR/SAL SGR/VAR SGR/VAR/SAL

3-UNIT SAL/VAR/SGR SGR/VAR/TG/
AquG/SAL

SGR/VAR/
TG/AquG

SGR/VAR/TG SGR/VAR SGR/VAR

1-UNIT SAL/SGR/q SGR/VAR SGR/VAR SGR/VAR SGR/VAR SGR

brine leakage FHM krock krock/AquG krock/AquG krock/AquG krock/AquG krock/AquG
8-UNIT krock krock/AquG krock/AquG krock/AquG krock/AquG krock/AquG
3-UNIT krock krock/AquG krock/AquG krock/AquG krock/AquG krock/AquG
1-UNIT krock krock/AquG krock/AquG krock/AquG krock/AquG krock/AquG
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Brine leakage is driven by pressure buildup in the aquifer, re-
flected by a higher rate during injection but lower rate during
monitoring. After injection ceases, pressure at the injector dis-
sipates. The strength and direction of the background flow become
important. Thus, if short-term leakage is of concern, caprock per-
meability must be evaluated: a competent caprock for containing
gas here is not competent in deterring brine migration. If long-
term leakage is of interest, aquifer flow should be evaluated, though
this formof leakage could be natural. SinceCO2 dissolves into brine,
factors that contribute to brine leakage will also contribute to the
leakage of dissolved CO2 into the overlying formations.
3.2. Parameter Sensitivity of All Models. SA results of all

models are compared (Table 3), with several observations: (1) in
predicting brine leakage, sensitivity of the stratigraphic models is
identical to that of the FHM. Due to k homogenization, these
models predict similar fluid pressure as that of the FHM. Within
the parameter space evaluated, formation model can be adequate
in assessing brine leakage of a heterogeneous system. (2) when
predicting trapped gas, SA results of the facies and layered
models are close to those of the FHM. (3) when predicting dis-
solved gas, all stratigraphic models are sensitive to the same, most
important, factor of the FHM (i.e., SAL), though they fail to
consistently capture the secondary or tertiary factors. (4) when
predicting mobile gas, SGR and VAR are the twomost frequently
occurring factors for all models.
Since VAR is consistently identified as an important parameter

impacting gas predictions, three runs with low (Run 1), inter-
mediate (Run 7), and high (Run 6) VAR are compared among
the models, in terms of gas profile and plume shape predictions
(see SI). Results suggest that, in gas predictions, both hetero-
geneity variance and heterogeneity resolution are important in
controlling the accuracy of the stratigraphic models: when
variance is fixed, higher resolution leads to greater accuracy;
when resolution is fixed, higher variance leads to greater inaccu-
racy. However, brine leakage predicted by these models is almost
identical, proving that accuracy in brine prediction is not affected
by either heterogeneity variance or its resolution.
3.3. Response Surface Modeling. Within the parameter

space, a prediction envelope can be created for each outcome using

RSs. For each model, time-dependent prediction envelopes are
created for the monitoring phase. The outcomes are: mobile gas
(Figure 2), trapped gas (Figure 3), and brine leakage (Figure 4).
The amount of dissolved gas depends on the other gas forms; its
results are not presented. The envelopes are created by running a
RS model to identify the minimum and maximum values of an
outcome. However, when brine leakage is close to zero, extra-
polation of RS predicts meaningless (negative) values. Only max-
imum leakage is determined. Results suggest that in predicting
both mobile and trapped gas (thus dissolved gas), the facies and
layered models are adequate for capturing the prediction envel-
opes of the FHM. The formation model suffers large errors in
predicting minimummobile gas andmaximum trapped gas. Note
that in comparing the prediction envelopes, factor combination
that gives rise to a maximum mobile gas will likely correspond to
a minimum trapped and dissolved gas, vice versa. In predicting
maximum brine leakage, all models give nearly identical results,
as expected.
Above results suggest that if an appropriate stratigraphic model is

used, prediction envelopes generated using RSs of this model can
potentially capture the prediction envelopes of the FHM gener-
ated with full-field simulations. This statement is approximately
true, since prediction envelopes of the FHM were not generated
using numerous reservoir simulations, but were instead gener-
ated by the RSs of the FHM. These RSs involve interpolation in
the parameter space at unsampled parameter values. If the RS
model is very accurate, minimum or maximum on the RS are ex-
pected to be similar to the true minimum ormaximum. However,
the PB design, though efficient (fewer runs), is of lower resolu-
tion. In the DoE and RSmethodology, higher resolution schemes
exist which use more simulations to gain greater accuracy in RS
modeling. These designs will be evaluated in future work.
3.4. Effect of Depth. The above SA and RS results were

examined at 2 km depth. The analysis is repeated at 1 and 3 km
depths (see SI). Both parameter sensitivity and prediction
uncertainty of the FHM and the ability of the stratigraphic
models to capture them are similar to those identified at 2 km,
suggesting that the above observations can be extended to
other depths.

Figure 2. Prediction envelopes of the mobile gas predicted by all models. The amount of mobile gas is expressed in terms of percentage of the total
injected gas.
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3.5. Effect of the Amount of Gas Injected. Previous simula-
tions use small, pilot-scale injection rates. To fill the storage model
and evaluate the effect of k heterogeneity on predictions, a long
simulation time is used. To make the model time scale compar-
able to those of pilot tests, SA is repeated at the 2 km depth with a
shortened injection (2�4 months) and monitoring (2 years)
duration. Injection rate is first doubled from previous ones to
0.9�1.8 kg/s, and then quadrupled (1.8�3.6 kg/s), though both
are still within the range of pilot-scale tests.12 Since the injection
time is much shorter, even though the rate has increased, much
less amount of gas is injected (1.6�3.3% of the previous
amount). Comparing the new SA results with those of Table 3,
new effects have risen in gas prediction: (1) at the end of injection,
SAL becomes the most important factor impacting all gas forms
and VAR has vanished. (2) postinjection, the most important
factors remain identical with those of Table 3, though VAR has
largely disappeared as an important factor influencingmobile and
dissolved gas (its importance to trapped gas remains unchanged).

For brine leakage, the sensitivity characteristics are nearly identical
except TG and q become additionally important. Clearly, certain
sensitivity is affected by the amount of gas injected in relation to
reservoir pore volume. When this amount is small, much of the
aquifer heterogeneity is not sampled, and VAR becomes less im-
portant to some predictions.
In summary, parameter sensitivity and prediction uncertainty

of three stratigraphic models of decreasing complexity are eval-
uated against those of a FHM. Results suggest that, for the
parameter space considered, facies and layered models are
capable of capturing the most important sensitivity parameters
of the FHM. The same two models also capture the ranges of
predictions in mobile gas, trapped gas, dissolved gas, and brine
leakage. The formation model is less accurate in capturing the
sensitivity and prediction ranges of the FHM, but is accurate in
predicting brine leakage. Thus, optimal model complexity should
be selected based on the prediction metric of interest. In
predicting gas flow and storage, the layered model appears optimal;

Figure 4. Maximum cumulative brine leakage predicted by all models.

Figure 3. Prediction envelopes of the trapped gas predicted by all models.
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in predicting brine leakage (related to fluid pressure), the for-
mation model appears optimal. Furthermore, for the models and
parameters considered, permeability variance, gas relative per-
meability hysteresis, and salinity consistently impact one or more
prediction outcomes, suggesting that they should be routinely
evaluated in site assessments. In particular, when heterogeneity is
of low variance, simple stratigraphic models can accurately predict
plume shape and CO2 mass fractions; when variance increases,
models with higher heterogeneity resolution are needed. How-
ever, the importance of variance can diminish when the amount
of gas injected is small. These observations are expected to
be applicable to the full range of depths encountered in CCS
operations.
Our results, however, are specific to the ranges of the para-

meters varied. For example, if an end-member valuemuch greater
than 10�4 mD is assigned to krock, its importance to predicting
gas-phase leakage will likely change. At a typical storage site,
information usually exists concerning caprock and its perme-
ability. krock range here reflects a degree of prior knowledge.
Since the DoE and RS methodology is applicable to field
modeling, parameters and their ranges should be tailored to
site-specific condition incorporating prior knowledge before
uncertainty analysis is performed. Furthermore, results of this
study are obtained using a screening design which sacrifices re-
solution for efficiency. Future work will investigate high resolu-
tion designs which can enhance the accuracy of RS modeling.
Finally, a fixed aquifer geometry is evaluated with no dipping
beds. Though variance of heterogeneity is varied for the FHM, its
pattern is fixed. Future work will evaluate aquifers with different
dip, geometry, and internal heterogeneity (e.g., weak versus
strong connectivity in permeability). Capillary pressure effects
will be modeled, as well as other potentially important variables
and processes (e.g., vertical versus horizontal wells, lateral aquifer
flow). Future work will also assess injection rates commensurate
with those used in commercial-scale operations.
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4 SUPPLEMENTAL

4.1 Numerical Simulation of CO2 Injection

CO2 injection is simulated with GASWAT (2009), a multiphase compositional simulator applica-

ble to modeling CO2 flow in deep saline aquifers (13). Two phases are considered: a CO2-rich

supercritical phase (or “gas” phase) and a H2O-rich liquid phase. CO2 density is computed based

on a cubic equation of state tuned to experimental measurements, while liquid density is corrected

for total dissolved solids (salinity). Between the two phases, two components (CO2, H2O) are

modeled; each component can exist in both phases. The simulator first solves the pressure and

molar density of each component. The mole fractions of the components in the phases are then

computed through a flash process, where mutual solubilities of CO2 and H2O are calculated to

match experimental data. A modified Peng-Robinson Equation of State is used to calculate gas

solubility in the aqueous phase when water salinity is high.

A constant reservoir temperature is specified, based on model depth, geothermal gradient, and

a fixed surface temperature. GASWAT does not solve the heat balance equation, thus the reservoir

temperature is not perturbed by CO2 flow (temperature is used to compute the in-situ fluid prop-

erties). The storage model is saturated with brine prior to CO2 injection. Water is assumed to be

the wetting phase, CO2 the non-wetting phase. Rock compressibility is assigned using a typical

value for sandstones. Relative permeability functions are based on experimental measurements

(see 5.2 for details). To model flow reversal in a grid cell before the maximum gas saturation is

reached, the Carlson method is used for scanning curve interpolation between the bounding relative

permeability curves (14).

The storage model is assumed to be part of a larger regional flow system, thus open boundary

(constant-head) is assigned to the model sides, which allows both gas and brine to migrate laterally

out of the aquifer. This boundary condition also prevents pressure buildup in the model. The
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injector bottomhole pressure (BHP) is checked against a fracture pressure, which is evaluated at

the model depth as 1.6 × hydrostatic pressure (the piezometric head of the aquifer is assumed to

be at the land surface). In all simulations of the SA, by setting the fracture pressure as the BHP

constraint for the injector, the fracture pressure is never exceeded.

4.2 Input Variables

The SA for each storage model varies a select set of input parameters, while keeping others con-

stant. The constant parameters are those that either do not vary (e.g., gravitational constant), or

their variations are typically small at a storage site (e.g., porosity, rock/fluid compressibility). The

parameters that are varied in the SA are those that can exhibit large uncertainties at a storage site.

All model parameters are listed in Table 1, including their values used by simulations or ranges

varied in the SA. For the parameters varied in the SA, detailed justifications are provided below.

Table 1: Model parameters and their values. Parameters varied in the SA are labeled as “variable”.

Parameter Symbol Value Unit Note
porosity (caprock) φ 0.01 fixed
porosity (aquifer) φ 0.15 fixed
irreducible water saturation Swi 0.42 fixed
gas endpoint relative permeability kend

rg 0.26 fixed
water endpoint relative permeability kend

rw 1.0 fixed
drainage connate water saturation Sd

w 0.06 fixed
critical gas saturation Scr

g 0.06 fixed
temperature (land surface) T 15 oC fixed
hydrostatic pressure gradient ∇P 0.10 bar/m fixed
rock compressibility β 1.4×10−5 1/bar fixed
depth of the top of the grid D 1000–3000 m variable
residual gas saturation Sr

g or SGR 0.06–0.42 variable
salinity SAL 10,000–260,000 ppm variable
injection rate q 0.45–0.90 kg/s variable
regional (vertical) hydraulic gradient AquG -0.03–0.03 m/m variable
caprock permeability krock 10−8–10−4 mD variable
geothermal gradient TG 0.025-0.050 oC/m variable
aquifer lnk variance VAR 0.1–7.0 mD2 variable

(1) Gradient of the background aquifer flow (AquG). In sedimentary basins, background flow

can exist when the storage aquifer is part of a larger groundwater system. A vertical background
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flow can potentially impact storage security: downward moving groundwater may deter upward

migration of the injected CO2; upward moving groundwater may enhance upward gas flow and

residual gas trapping during imbibition. Two end-member conditions are assumed by assigning a

+/-3% hydraulic head gradient to AquG across the vertical extent of the model. The value of AquG

affects the initial condition in CO2 simulation. When AquG is non-zero, upward or downward

flow of groundwater is simulated first in the storage system until steady-state is reached at the

specified gradient. The pressure of this dynamic flow field then provides the initial condition for

CO2 simulation. In the pre-simulation, when AquG is 3% (upward flow), two external aquifers

are linked to the top and bottom of the storage model, each equilibrated with a different hydraulic

potential. The potential difference then drives flow. When AquG is -3% (downward flow), a single

external aquifer is linked to the top of the storage model, while the bottom of the model is no-flow.

When AquG is at the mid value of 0.0, there is no vertical background flow (same potential is

assigned to the external aquifers). In this case, since the lateral groundwater gradient is always 0.0,

the initial condition for CO2 simulation is hydrostatic. During CO2 simulation, the same external

aquifers used to establish the initial condition are linked to the storage model, driving background

flow (or no flow) concurrent with the CO2 operation.

(2) Geothermal gradient (TG). Temperature in the storage model can affect density of the in-

jected CO2. Colder basins are considered more favorable than warmer basins, since cooler temper-

ature reduces CO2 buoyancy and more CO2 mass can be stored per unit pore volume in the aquifer

(15). Temperature of a storage system depends on factors such as geothermal gradient, depth, and

surface temperature. In the present study, a fixed surface temperature is assumed. A geothermal

gradient is chosen to vary between 25 and 50 oC/km (15).

(3) Strength of aquifer heterogeneity (VAR). Though past research has investigated the in-

fluence of heterogeneity on CO2 flow (16, 17), the present study explores questions such as: is

geological heterogeneity favorable to CO2 storage? Can simple models be used to make predic-

tions, ignoring underlying heterogeneity? And, is the adequacy of the simple models affected by

the strength of heterogeneity? VAR is aquifer lnk variance of the FHM, which is scaled to 3 values
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in the SA: 0.1, 1.0, and 7.0, representing a weakly to strongly heterogeneous system (18). During

this scaling, the mean lnk of the aquifer remains fixed, thus only the spread of the heterogeneity is

affected. As a result, three sets of permeability data are created for the FHM, based on which three

sets of equivalent permeabilities are computed for the units of the stratigraphic models.

(4) Gas phase relative permeability hysteresis (SGR). The importance of residual gas trapping

due to non-wetting phase relative permeability hysteresis is widely recognized, though uncertainty

exists in the magnitude of this hysteresis for the CO2/brine system. In this study, a uniform set of

relative permeability functions is assigned to the aquifer, though residual gas saturation is varied

between 0.06 to 0.42, representing zero to large gas phase relative permeability hysteresis (Fig-

ure 1). These functions are constructed using experimental data for the Viking Sandstone (19). For

the caprock, a separate set of non-hysteretic relative permeability functions is used based on those

measured for the low-permeability Calmar Formation in the Alberta Basin (20).

(5) Salinity (SAL). Salinity affects CO2 dissolution in brine (21) as well as brine density. Salin-

ity is varied from 10,000 to 260,000 ppm. 10,000 ppm is the lower limit at which a deep aquifer

qualifies for CO2 storage; 260,000 ppm is the upper limit of applicability for the solubility module

of GASWAT.

(6) Injection rate (q). Injection rate can affect the lateral extent of the injected CO2. Increasing

rate increases the viscous driving force which enhances lateral spreading, thus more trapping and

dissolution. Higher rate can also create higher local pressure gradient near the injector, which leads

to higher maximum gas saturation before flow reversal. Following the scanning curve that is closer

to the bounding imbibition curve, the higher gas saturation will lead to more residual trapping

during imbibition. The injection rate is varied between 0.45 and 0.9 kg/s, the later being the largest

rate at which convergence issues will not occur in all the simulation runs, while satisfying the

BHP constraint. Note that when higher rates were initially attempted, some DoE runs could not

converge after a long simulation time (e.g., 3 weeks). The injection rate used here reflects a pilot-

scale scenario, which is not fully realistic considering that commercial-scale injection rate can be

higher. Future work will consider larger rates after the simulator issues and constraints are first
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Figure 1: Relative permeability functions for the aquifer (a) and the caprock (b). In the SA, the
residual gas saturation (SGR) in the aquifer is varied, i.e., the 3 bounding imbibition curves in (a),
one coinciding with the drainage curve when SGR is 0.06 (Table 1). In this case, SGR = Scr

g (critical
gas saturation) and gas phase relative permeability is non-hysteretic.
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overcome.

(7) Caprock permeability (krock). Caprock permeability can influence not only gas and brine

migration but also the evolution of reservoir fluid pressure, particularly if the formation is com-

partmentalized (not considered here) (22). A set of preliminary simulations was conducted first to

identify a maximum krock of 1x10−4 mD without leading to significant gas-phase leakage. In these

simulations, all other parameters assumed their center values, thus the maximum krock found is not

necessarily applicable to all parameter combinations. krock is assumed to vary between 1x10−4

and 1x10−8 mD, based on values observed for shale and clay-rich rocks.

4.3 Results at 1 km & 3 km Depths

The SA is repeated for all models, with the system depth adjusted to 1 and 3 km, respectively.

Important parameters to the same set of prediction outcomes are compiled (Table 2, Table 3).

Compared to the results at 2 km (Table 3), the most significant difference occurs at 3 km, during

early monitoring: TG becomes important to predicting brine leakage (positive effect), dissolved

gas (positive effect), and mobile gas (negative effect). This suggests that within the parameter

space, the importance of geothermal gradient to predictions is affected by changing depth, though

such effects are mostly secondary.

Table 2: Results of SA at 1 km depth.

Outcomes Models End of Injection Monitoring Period (Years After Injection Ends)
100 200 300 400 500

Trapped Gas

FHM SGR SGR/VAR/SAL SGR/VAR/SAL SGR/SAL/VAR SGR/SAL/VAR SGR/SAL/VAR
8UNIT VAR/SGR SGR/VAR/SAL/AquG SGR/VAR/SAL SGR/VAR/SAL SGR/VAR/SAL SGR/VAR/SAL
3UNIT SAL/TG/VAR/q SAL/VAR/TG SAL/VAR/TG/SGR SAL/VAR/TG/SGR SAL/VAR/TG/SGR SAL/VAR/TG/SGR
1UNIT SGR/SAL/q SGR SGR SGR/SAL SGR/SAL SGR/SAL/VAR

Dissolved Gas

FHM SAL/VAR/TG SAL/VAR SAL/VAR/SGR SAL/VAR/SGR SAL/VAR/SGR SAL/VAR/SGR
8UNIT SAL/TG/VAR/q SAL/VAR/TG SAL/VAR/TG/SGR SAL/VAR/TG/SGR SAL/VAR/TG/SGR SAL/VAR/SGR/TG
3UNIT SAL/TG/VAR/q SAL/VAR/SGR/TG SAL/VAR/SGR/TG SAL/VAR/SGR/TG SAL/VAR/SGR/TG SAL/SGR/VAR
1UNIT SAL/TG SAL/SGR/TG/VAR SAL/SGR/TG/VAR SAL/SGR/TG/VAR SAL SAL/SGR/TG

Mobile Gas

FHM VAR SGR/VAR SGR/VAR SGR/VAR SGR/VAR/SAL SGR/VAR/SAL
8UNIT VAR/SAL/TG/SGR SGR/VAR/AquG/SAL/TG SGR/VAR/SAL SGR/VAR/SAL SGR/VAR/SAL SGR/VAR/SAL
3UNIT VAR/SAL SGR/VAR/AquG/SAL/TG SGR/VAR/SAL/AquG/TG SGR/VAR/SAL SGR/VAR/SAL SGR/VAR/SAL
1UNIT SAL/q/SGR/AquG SGR/VAR SGR SGR SGR SGR/VAR

Brine Leakage

FHM krock krock/AquG/TG krock/AquG krock/AquG krock/AquG krock/AquG
8-UNIT krock krock/AquG/TG krock/AquG krock/AquG krock/AquG krock/AquG
3-UNIT krock krock/AquG/TG krock/AquG krock/AquG krock/AquG krock/AquG
1-UNIT krock krock/AquG/TG krock/AquG krock/AquG krock/AquG krock/AquG
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Table 3: Results of SA at 3 km depth.

Outcomes Models End of Injection Monitoring Period (Years After Injection Ends)
100 200 300 400 500

Trapped Gas

FHM SGR/VAR SGR/SAL/VAR SGR/SAL/VAR SGR/SAL/VAR SGR/SAL/VAR SGR/SAL/VAR
8UNIT SGR SGR/SAL/VAR SGR/VAR/SAL SGR/VAR/SAL SGR/SAL/VAR SGR/SAL/VAR
3UNIT SGR SGR/SAL SGR/SAL/VAR SGR/SAL/VAR SGR/SAL/VAR SGR/SAL/VAR
1UNIT SGR/SAL SGR/SAL SGR/SAL SGR/SAL SGR/SAL SGR/SAL

Dissolved Gas

FHM SAL/TG/VAR SAL/VAR/TG/SGR SAL/VAR/SGR/TG SAL/VAR/SGR/TG SAL/VAR/SGR/TG SAL/VAR/SGR/TG/krock
8UNIT SAL/TG/VAR/q SAL/TG/VAR SAL/VAR/TG SAL/VAR/TG SAL/VAR/TG SALVAR/TG/SGR
3UNIT SAL/TG/VAR/q SAL/TG/VAR SAL/TG/VAR SAL/TG/VAR SAL/VAR/TG/SGR SAL/VAR/TG/SGR
1UNIT SAL/TG SAL/TG/SGR SAL/TG/SGR SAL/TG/SGR/VAR SAL/TG/SGR/VAR SAL/TG/SGR/VAR

Mobile Gas

FHM VAR SGR/VAR/TG/krock SGR/VAR/TG SGR/VAR SGR/VAR SGR/VAR
8UNIT SAL/VAR/TG SGR/VAR/TG/AquG SGR/VAR/TG SGR/VAR/TG SGR/VAR/TG/SAL SGR/VAR/SAL
3UNIT SAL SGR/VAR/TG/AquG SGR/VAR/TG SGR/VAR/TG SGR/VAR SGR/VAR
1UNIT SAL/SGR/q SGR/TG SGR/TG/q/VAR SGR/TG SGR SGR

Brine Leakage

FHM krock krock krock/AquG/TG krock/AquG/TG krock/AquG/TG krock/AquG
8-UNIT krock krock/AquG/TG krock/AquG/TG krock/AquG/TG krock/AquG krock/AquG
3-UNIT krock krock/AquG/TG krock/AquG/TG krock/AquG krock/AquG krock/AquG
1-UNIT krock krock/AquG/TG krock/AquG/TG krock/AquG krock/AquG krock/AquG

4.4 Gas Profile and Plume Shape Predictions

Since VAR is consistently identified as an important parameter impacting gas predictions, three

runs with low (Run 1), intermediate (Run 7), and high (Run 6) VAR are presented. The model

depth is 2 km. In each run, performance of the stratigraphic models is compared with that of the

FHM.

Gas profiles are compared first (Figure 2): (1) in all runs, the 8-Unit model is the most accurate,

followed by the 3-Unit and 1-Unit models. (2) when variance is low, prediction errors of the

stratigraphic models are smaller, vice versa.

Gas plumes simulated by the same models are visualized next (Figure 3). Here, only the

plumes simulated by the low-variance Run 1 and high-variance Run 6 are shown. For the Run 1

simulations, all models predict very similar plume shapes, at both time scales (end of injection,

end of monitoring). This suggests that when the system variance is low, an optimal stratigraphic

model for predicting the plume shape is the 1-unit model.

When variance is higher, the FHM predicts a plume that is more laterally spread out. During

injection, a sub plume develops in this model through a high permeability pathway, as discussed

in the article. At the end of injection, a small amount of gas has reached and pooled beneath the

caprock. During the monitoring phase, this gas cap expands slowly, while the overall plume shape

does not change significantly. In contrast to Run 1, plume shapes predicted by the stratigraphic
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0.0E+00

2.0E+06

4.0E+06

6.0E+06

8.0E+06

1.0E+07

1.2E+07

0 100 200 300 400 500

C
O

2
A

m
o

u
t

(
k

g
-
m

o
l
e

)

Years 

(c) Run 6, large VAR

Figure 2: Trapped (orange), mobile (green), and dissolved (blue) CO2 over time, at low (a), interme-
diate (b), and large (c) aquifer lnk variances. All model predictions are shown: FHM (solid), 8-Unit
(dotted), 3-Unit (dashed), and 1-Unit (dash-dot).
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Figure 3: Gas plume visualization at the end of injection and monitoring. Sg includes both mobile
and trapped gas. Depth = 2km. Run 1 is of low variance; Run 6 is of high variance. First row: FHM;
Second row: 8-unit model; Third row: 3-unit model; Fourth row: 1-unit model. Box indicates model
boundary including the caprock unit.
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models deviate significantly from those of the FHM, in particular, the sub plume is not predicted

by these models. The 1-unit model is the worst predictor which gives the classic plume shapes of a

homogeneous formation. Comparing the 8-unit and 3-unit models, however, their predictions only

differ slightly, consistent with their mass profile results (Figure 2). When the system variance is

higher, an optimal stratigraphic model for predicting the plume shape is the 3-unit model.

This material is available free of charge via the Internet at http://pubs.acs.org/.
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