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Abstract This research successfully extends a deterministic, physically-based in-
verse theory that is capable of simultaneous parameter and boundary condition
estimation to uncertainty quantification in inverting steady-state groundwater flow
in a two-dimensional aquifer with facies heterogeneity. Using facies and dynamic
flow measurements sampled at wells as observations, a stochastic subsurface data
integration technique is proposed: (1) Sequential Indicator Simulation integrates
facies data by characterizing its geostatistical parameters (experimental directional
variograms and sample facies proportions) to generate correlated facies models;
(2) for each facies model, hydraulic conductivities and flow field (including the
unknown boundary conditions) are estimated via a direct inversion method; (3)
uncertainty in inversion, including both uncertainties of the estimated hydraulic
conductivities and the flow field, is evaluated by assessing the inversion outcome
for all facies models. To test the proposed integration technique, a reference for-
ward model provides both facies characterization and dynamic measurements at
increasing sampling densities (i.e., data quantity) and measurement errors (i.e.,
data quality). Via smoothing and grid coarsening, alternative hydraulic conduc-
tivity parameterization is also tested in inversion. Uncertainty in the estimated
conductivities and boundary conditions is then quantified against the reference
model to evaluate the quality of inversion. Results suggest that for the ranges of
tested variation in data quantity, quality, and inverse conductivity parameteriza-
tion, (1) data quantity has the strongest impact on both inversion accuracy and
precision; (2) data quality influences inversion accuracy; (3) inverse parameteri-
zation has the weakest influence on inversion as long as the overall facies pattern
is captured (i.e., sufficient data quantity). A balance can thus be achieved be-
tween parameterization, computational efficiency, and inversion performance. For
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the heterogeneity pattern investigated herein, by defining an acceptable margin of
uncertainty for either conductivity or flow field estimation, optimal well spacing
in relation to the characteristic length of heterogeneity can be determined under
unknown boundary conditions. Finally, inversion domain should be closely defined
by the measurement locations in order to minimize extrapolation errors.

Keywords Hydrogeological Modeling · Uncertainty quantification · Physically-
based inversion · Boundary conditions

1 Introduction

Parameterizing hydraulic conductivities (Ks) of an aquifer model is a challenging
topic in many subsurface investigations. Groundwater modeling often suffers from
significant uncertainty in depicting both the K values and its spatial distribution
in the subsurface, as extensive drilling and sampling to collect hydrogeological
data is impractical. However, both aquifer management and subsurface contam-
inant cleanup operations require the development of accurate and appropriately
parameterized groundwater models. Decision-making further requires scientifically
informed assessment of the uncertainty in the model predictions, which often arises
from the uncertainty in inferring subsurface hydraulic conductivities and the as-
sociated flow field. In natural aquifers, conductivity distribution is heterogeneous
at multiple scales and its direct measurement often suffers from the well-known
“scale effect”, i.e., Ks measured by different instruments change with the sup-
port volumes being tested [1][2][3]. On the other hand, by developing a numerical
aquifer model, Ks of the model can be calibrated using inverse theory based on
measurements of the hydrogeological state variables (e.g., hydraulic heads, flow
rates). In particular, inverse methods have been developed to not only facilitate
parameter estimation, but also to quantify the associated estimation uncertainty,
which can lead to an assessment of the prediction uncertainty when models are
used for decision-making.

Generally, inverse methods in hydrogeology can be categorized into indirect
and direct methods. With the indirect inversion method, an objective function,
typically defined as a mismatch between the measurement data and the corre-
sponding model simulated values, is minimized [4]. During inversion, parameters
are updated iteratively by running a forward model that provides a link between
the parameters and the data. The updated parameters then lead to an updated
forward model, with which the objective function is reevaluated. This process is
repeated until a user-defined fitting criterion is reached. The indirect method is
found flexible and efficient in calibrating many subsurface models, although a num-
ber of issues have been identified in its applications. Among them, ill-posedness
is a well-known problem, which is manifested by instability (sensitivity of the es-
timated parameters to small changes in the observation data and their errors),
nonuniqueness (more than one set of parameters can calibrate the model, with
results depending on the starting points in the parameter space), and failure to
converge to a reasonable solution. Because a forward model is needed to optimize
the objective function, boundary conditions (BC) of the model are either assumed
known, or are calibrated as part of the inversion process. However, BC of aquifers
are often unknown or uncertain. As demonstrated by [5], different combinations
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of parameters and BC can lead to the same objective function values, thus results
of indirect inversion may become non-unique. (In transient problems, both aquifer
initial and BC are unknown – this topic is addressed elsewhere [6] and is not
evaluated in this work.) For aquifer parameter estimation, direct inversion meth-
ods have also been explored owing to their mathematical straightforwardness and
computational efficiency. However, direct methods suffer from issues such as high
sensitivity to observation errors at streamline locations [7][8][9], stringent error
bounds on measurements [10], reduced accuracy with increasing problem dimen-
sions [11], etc. As reviewed in [12], these methods also simulate the forward model
requiring the specification of BC, they therefore can suffer from instability and
non-uniqueness in inversion and are not commonly used in groundwater model
calibration.

Recently, based on the Stress Trajectories Element Method developed for solv-
ing certain geophysical and fluid mechanics problems [13], a new direct method
was proposed for steady-state aquifer inversion that allows the simultaneous esti-
mation of aquifer conductivities, sources/sinks (e.g., areal recharge, pumping and
injection), and state variables (e.g., hydraulic head and Darcy flux) [5][14][15][16].
Because the state variables are solutions of the inversion, the unknown aquifer
boundary conditions can thus be estimated. The direct method honors the physics
of flow using continuity principles, while it directly incorporates noisy observed
data at the measurement locations in a single step, without using forward simula-
tions and iterative parameter updates to optimize any objective function. Because
it does not simulate the forward model, the direct method is computationally ef-
ficient, and it utilizes an “inversion grid” with highly flexible discretization and
parameterization. However, previous works have several limitations that restrict
the method to solving simple problems with small grid sizes. First of all, con-
ductivity distribution and patterns were assumed to be known when formulating
the inversion equations. In real aquifers, K distributions are typically unknown
or highly uncertain. On the other hand, aquifer characterization can provide in-
formation on K distribution at borehole locations. Secondly, inversion equations
have so far been developed and tested for small problems: the maximum size of the
inversion grid tested is 16× 16 (two-dimensional problems) or 14× 14× 14 (three-
dimensional problems), which limits the inversion to resolving only coarse hetero-
geneity features in the K model. Conductivity in natural aquifers often exhibits
irregular spatial variation, which will require the development of refined inversion
grid with more grid cells. Thirdly, because the K patterns were deterministic and
assumed fully known, inversion outcomes, including both the estimated K values
and the flow field, were deterministic. Uncertainty in inversion thus could not be
quantified.

To demonstrate a wider applicability of the new direct method, the above issues
need to be addressed by: (1) incorporating direct or indirect information about
aquifer heterogeneity, e.g., facies observations at borehole locations; (2) inverting
larger grid sizes to better resolve detailed heterogeneities; (3) accounting for un-
certainty in inversion, including both the uncertainty of the estimated parameters
and the flow field. For steady-state aquifer flows, this research aims to address the
above issues by developing and testing a stochastic subsurface integration tech-
nique that combines geostatistics (i.e., static data integration) with direct inversion
(i.e., dynamic data integration) into a single estimation and uncertainty analysis
framework. The previous inversion will thus be extended to include aquifer prob-
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lems with realistic K heterogeneity, while the associated estimation uncertainty,
including the uncertainty in the inferred flow field, can be quantified. To evaluate
the applicability of the integration technique to field conditions with limited and
noisy observations, this research first investigates the impact of data quantity (i.e.,
number of sampling wells) and quality (i.e., magnitude of measurement errors) on
the accuracy and stability of inversion, with results leading to a set of sampling
strategies that can render the proposed integration more cost-effective. In par-
ticular, by defining an acceptable margin of uncertainty in either K or flow field
estimation, optimal well spacing in relation to the characteristic length of het-
erogeneity can be recommended. Here, the term “optimal” means sufficient static
and dynamic measurements can be obtained from fewest wells (or largest well
spacing) that can still provide constrains to inversion, resulting in an acceptable
level of estimation uncertainty. Moreover, because inverse K parameterization is
flexible and, as demonstrated by previous upscaling studies [17], high-resolution
K heterogeneity is not indispensable for predicting bulk flow in aquifers, this re-
search will parameterize the inversion grid with heterogeneity at varying degrees
of smoothness. In particular, by coarsening the inversion gird, balance between
computational efficiency and estimation accuracy/uncertainty is explored.

In the remainder of this article, the stochastic integration technique is in-
troduced first, followed by description of a synthetic forward model that will be
used as a reference model. The sampling design is discussed, which will provide
inversion with facies and hydrogeological data borehole locations. Static data in-
tegration via geostatistical simulation is explained briefly, before dynamic data
integration via the direct method is introduced. Because larger inverse problems
are solved, matrix conditioning techniques are adopted to improve the computa-
tional efficiency of inversion. The results are presented in which the effects of data
quality, quantity, and inverse parameterization on inversion accuracy and uncer-
tainty are evaluated. Finally, implications of these results for field implementation
of the proposed integration technique is discussed and future research indicated.

2 Method

In this work, a stochastic integration technique is proposed, consisting of 3 steps:
(1) Sequential Indicator Simulation (SIS) integrates the facies data (i.e., experi-
mental directional variograms and sample facies proportions computed from bore-
hole measurements) to generate random models of correlated facies; (2) for each
facies model, hydraulic conductivities and flow field (including the unknown BC)
are estimated via direct inversion; (3) uncertainty in inversion including uncertain-
ties of the estimated Ks and the flow field is evaluated by assessing the outcomes
for all facies models. Because a forward model is used as a reference model to
test the quality of inversion (i.e., estimation accuracy and precision), below, the
forward model is described first.

2.1 Forward (Reference) Model

To test and verify the proposed integration technique, a reference forward model,
representing a two-dimensional synthetic aquifer transect, was created with known
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Fig. 1 The reference model flow field containing two facies (dark gray: silty sand withK1; light
gray: clean sand with K2). Given the specified BC and facies Ks, hydraulic head distribution
is also shown. Four boundary segments are labeled: a-b denotes the inflow boundary, and c-d
denotes the outflow boundary.

facies patterns and K values (Fig. 1). The groundwater flow equation of the for-
ward model, representing a confined aquifer without sources/sinks, can be written
as:

∇ · (q) = 0
q = −K(x, z)∇h (x, z) ∈ Ω (1)

where Ω is the spatial domain (assumed to be the same for the forward model and
for inversion), x and z represent the horizontal and vertical axes in a Cartesian
coordinate, ∇ is the gradient operator, h is hydraulic head, q is Darcy flux, and
K(x, z) denotes locally isotropic hydraulic conductivity which is parameterized as
facies in this work. Note that though prior research has addressed inversion with
source/sink effects [14][16], this topic is beyond the scope of the current study and
will be left for another treatment.

To drive steady-state flow through the aquifer, no-flow boundaries are specified
to the model top and bottom boundaries, while constant hydraulic heads are spec-
ified on the left and right sides of the model, i.e., 300 feet and 200 feet, respectively
(Fig. 1). The map of facies K is adopted from [18], consisting of 100 pixels in both
the horizontal and vertical directions. The facies (true) conductivities were set to
K1 = 1 ft/yr (silty sand) and K2 = 10 ft/yr (clean sand) according to lithology
type [19]. Note that the horizontal facies correlation range of the clean sand (light
grey regions in Fig. 1) is approximately the lateral domain problem size, i.e., 100
pixels. The forward model is discretized with a uniform fine grid (Nx = 500 and
Nz = 500; each facies pixel is thus represented by 5×5 grid cells) and is solved
with the finite difference method (FDM) with MODFLOW2000 [20]. (The forward
model is also referred to herein as the FDM.) Mass balance reports from MOD-
FLOW2000 suggest negligible errors on the order of 10−7, thus the simulated flow
field is considered error-free.
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Fig. 2 Locations of 12 sampling wells placed uniformly across the aquifer transect. Along each
well, head and flux sampling points are shown. The reference facies map (100 by 100 pixels)
is shown in the background.

To provide the measurements for inversion, a set of synthetic observation wells,
each with a width of one FDM grid cell (1/5 pixel width in the facies map),
was sampled for facies, hydraulic heads, and point-scale Darcy fluxes. Facies was
sampled along the full length of each well, representing borehole measurements.
Hydraulic head and flux samplings were made at discrete locations corresponding
to a multilevel configuration, e.g., 10 hydraulic head and 5 flux measurements per
well. A schematic diagram with 12 uniformly spaced sampling wells is shown in
Fig. 2. Moreover, if the lateral domain size is used to approximate the horizontal
facies correlation range (λH), the lateral well spacing of Fig. 2 is thus ∼1/12 of
λH . As part of the analysis on sampling density, the number of sampling wells
will be reduced, i.e., 6 wells (well spacing is ∼1/6 of λH) and 3 wells (well spacing
is ∼1/3 of λH). A horizontal sampling index (SI) can be defined as: λH

well spacing .

For the different sampling schemes, SI = 12 (12 wells), 6 (6 wells), and 3 (3
wells). A larger SI value suggests higher sampling density, with correspondingly
smaller well spacing in relation to the lateral characteristic length of the facies.
Furthermore, twice and four times as many measurements were sampled when SI
is 12, compared to when SI=6 and SI=3, respectively. For each sampling density,
the reference model facies distribution, the facies Ks, and fluid flow BC will be
later recovered using the proposed stochastic integration technique.

2.2 Static Data Integration

Indicator geostatistics is used to assimilate the observed facies along the wellboles
[21]. Given the coded facies data (e.g., 0 for silty sand, 1 for clean sand), ex-
perimental variograms are computed along the horizonal and vertical directions.
These variograms are fitted with an exponential model, which is found to best
capture the facies correlation structure. When 12 wells were sampled, Fig. 3 (top
row) presents the experimental facies variograms for “clean sand” and the fitted
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models, which are also presented below:

γ(|l|) =

{
0.035 + 0.24[1− e(−

lx
60

)]

0.035 + 0.24[1− e
(− lz

4
)
]

(2)

where γ is variogram and l is lag distance in pixels (lx is horizontal lag; lz is vertical
lag). In fitting the model, geometric anisotropy is assumed, thus the modeled
horizontal sill (not reached in Fig. 3; top row) is the same as the modeled vertical
sill. The fitted horizontal facies correlation range is ∼105 pixels, which is greater
than the fitted vertical facies correlation range (∼15 pixels). Both parameters
are consistent with the average lateral extent and thickness of stratification as
exhibited by “clean sand” (Fig. 1).

Given the fitted variogram models and the sampled indicator histograms, Se-
quential Indicator Simulation (SIS) was used to generate 100 facies realizations,
which were conditioned to the observed wellbore facies (Fig. 4). Each facies real-
ization has the same resolution as the original facies map, i.e., 100 × 100 pixels.
When well density is changed, the above analysis, including both variogram mod-
eling and SIS, is repeated. Fig. 3 also presents the variogram models fitted when
fewer wells were sampled: not only will the fitted models be less accurate, the
number of conditioning facies data for SIS is significantly reduced. As a result, as
the number of wells is reduced, the SIS realization of the facies has become less
accurate (Fig. 4).

For a given sampling density, 100 facies realizations will be created. Using direct
inversion, 100 flow fields and 100 sets of facies K values will be determined, one set
for each realization. To drive inversion, dynamic observations (i.e., hydrogeological
data) will be sampled from the same wells in the forward model.
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Fig. 3 Variogram analysis of the “clean sand” facies when a different number of wells was
sampled. The dotted lines denote the experimental variograms and the smooth curves are the
fitted exponential models. To eliminate edge effect, the maximum lag in both horizontal and
vertical directions is half of the corresponding domain length scales, i.e., 50 pixels.

2.3 Dynamic Data Integration

For a given facies realization, which delineates the K distribution, this research
adopted the direct method of [5] to estimate facies K values and head distribu-
tion throughout the domain. To apply the direct method, a set of fundamental
solutions of inversion is fitted locally to the observed dynamic data, while flow
continuity is honored over all inversion grid cells. The fundamental solutions of
inversion are derived by solving the steady-state groundwater flow equation to ob-
tain a set of local analytical solutions assuming that local K of a subdomain or a
single inversion grid cell is homogeneous. However, unlike [5], whose fundamental
solutions yielded only a single K value (i.e., ratios between facies Ks were assumed
known as a set of prior information constraints for inversion), the fundamental so-
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Fig. 4 SIS realizations given 12, 6, and 3 sampling wells. For each sampling density, one facies
realization (out of 100 realizations) is shown.
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lutions have been modified to allow the simultaneous estimation of both Ks of the
reference model (this approach is extendable to any number of facies):

h̃(x, z) = a0 + a1x+ a2z + a3xz + a4(x2 − z2)
q̃x(x, z) = −K(a1 + a3z + 2a4x)
q̃z(x, z) = −K(a1 + a3x− 2a4z) (x, z) ∈ Ωi

(3)

where h̃ denotes the approximate hydraulic head, (q̃x, q̃z) denote the approximate
groundwater fluxes, ai (i = 0, ..., 4) denote a set of coefficients that locally define
these approximate solutions, K is local hydraulic conductivity: K ∈ (K1,K2, . . .)
of the facies, and Ωi is a subdomain of the problem, here corresponding to an
inversion grid cell.

The continuity equations, which penalize the mismatch between the fundamen-
tal solutions at the interface between adjacent inversion grid cells, can be written
as:

δ(pj(xj , zj)− ε)(K1h̃
(k)(x, z)−K1h̃

(l)(x, z)) = 0, ∀(k,l) ∈ K1

δ(pj(xj , zj)− ε)(K2h̃
(k)(x, z)−K2h̃

(l)(x, z)) = 0, ∀(k,l) ∈ K2

δ(pj(xj , zj)− ε)(Kmh̃(k)(x, z)−Kmh̃(l)(x, z)) = 0, ∀(k) ∈ K1,
(l) ∈ K2,m ∈ (1, 2)

δ(pj(xj , zj)− ε)(q̃(k)n (x, z)− q̃(l)n (x, z)) = 0, ∀K(k) 6= K(l)

δ(pj(xj , zj)− ε)(q̃(k)t (x, z)− q̃(l)t (x, z)) = 0, ∀K(k) = K(l)

δ(pj(xj , zj)− ε)(q̃(k)n (x, z)− q̃(l)n (x, z)) = 0, ∀K(k) = K(l)

(4)
where pj(xj , zj) denotes the jth collocation point, which lies on the interface
between grid cells (k) and (l), q̃n is normal flux at pj , q̃t is tangential flux at pj ,
δ(pj(xj , zj)− ε) is a Dirac delta weighting function [5] that samples the mismatch
between the fundamental solutions at pj(xj , zj). The relation between (q̃n, q̃t) and
(q̃x, q̃z) can be determined using the angles between the interface and the global
coordinate axes.

Inversion further satisfies a set of data constraints which can be written as:

δ(pt − ε)(Kmh̃(k)(xt, zt)−Kmho(xt, zt)) = 0 m ∈ (1, 2)

δ(pt − ε)(q̃(k)n (xt, zt)− qon(xt, zt)) = 0

δ(pt − ε)(q̃(k)t (xt, zt)− qot (xt, zt)) = 0

(5)

where δ(pt − ε) is the Dirac delta weighting function, which reflects confidence in
the observed data (e.g., it can be inversely proportional to the measurement error
variance), (xt, zt) denotes the location where an observed datum was sampled, and
ho, qon, qot are the observations, Km denotes the conductivity of the facies which
contains the observations. Flux measurements are used here to provide flow rate
related information for inversion, because conductivity cannot be uniquely identi-
fied from hydraulic head observations alone. If subsurface flow rate measurements
are available, however, the flux conditioning equations can be integrated to enforce
conditioning by flow rates [5]. As was discussed in [15], measurements of in-situ
fluxes and flow rates can be made with a variety of borehole and water balance
techniques.
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Based on the proposed fundamental solutions [Eqn. (3)], by assembling the
continuity [Eqn. (4)] and the data equations [Eqn. (5)], a system of linear equations
was developed:

A · x ≈ b (6)

where A is the coefficient matrix, b is the right hand side vector, and x is the

solution vector, where x = [K1,K2, a
(k)
0 , a

(k)
1 , a

(k)
2 , a

(k)
3 , a

(k)
4 , . . .], k = 1, 2, . . ., M

(number of cells in the inversion grid).

Previous research [14] suggests that if dynamic observations are too few result-
ing in under-determined inversion systems of equations, stability of inversion can
suffer. In this work, a sufficient number of head and flux observations was sam-
pled (Fig. 2), thus Eqn. (6) is over-determined and is solved with a least-squares
minimization technique as implemented by the LSQR algorithm [22]. For smaller
problems reported in previous research, LSQR was found to be an efficient solver.
However, problems inverted here are larger with many more unknowns, for which
the speed of convergence was found to be sensitive to the condition number of
A. To improve matrix conditioning, preconditioning techniques including matrix
scaling and Gaussian Noise Perturbation were used before the matrix solve [23].
Depending on the problem, pre-conditioning has improved the solver speed by up
to 100 times (generally, greater speedup is achieved with larger matrices), with-
out suffering ill-effects in inversion accuracy. After pre-conditioning, inversion of
a single realization with the SIS grid will take ∼10 min. The hydraulic head field
can then be recovered piecewise from the coefficients defining the fundamental so-
lutions at each grid cell; from the estimated Ks, Darcy flux field can be similarly
recovered. The hydraulic head BC can be obtained by sampling the appropriate
h̃(x, z) at the boundary locations. Similarly, flux BC can be obtained by sampling
the appropriate q̃x(x, z) and q̃z(x, z) at the boundaries. In this work, the inverted
BC are presented as hydraulic head values.

Because forward model is not solved, the direct method can employ flexible
grids with various parameterizations for representing conductivity. In general, the
SIS-generated facies realizations exhibit small-scale artifacts which lead to “patch-
iness” in the simulated facies distributions (Fig. 4). This may in turn impact the
quality of inversion, as a greater degree of patchiness will lead to fewer continuity
equations (i.e., the number of flux continuity constraints will be reduced). Three
K parameterizations are tested in this work: (1) inversion directly adopts the noisy
SIS parameterization with an identical grid (Nx = 100, Nz = 100); (2) inversion
adopts the same SIS grid (Nx = 100, Nz = 100), but the SIS-simulated facies
are smoothed by simulated annealing (SA)[24]; (3) inversion adopts a coarsened
grid (Nx = 50, Nz = 50) whose facies parameterization is created by upscaling
the SA field. For ease of reference, these parameterizations are labeled as “SIS”,
“SA”, and “coarsened” inversion grids (example of each grid can be seen in [25]).
For the latter two parameterizations, SIS realizations are first smoothed, and then
coarsened, before dynamic integration is carried out to estimate the K and flow
field ensembles. For a given sampling density, by comparing the inversion out-
comes using all grids, the impact of inverse K parameterization on the quality of
inversion is assessed. Moreover, if reduced resolution in the parameterization does
not significantly degrade inversion performance (i.e., accuracy and uncertainty),
lower resolutions will be preferred due to their greater computational efficiency.
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2.4 Uncertainty Quantification

Uncertainty in the proposed stochastic integration derives from both static and
dynamic data uncertainty, which comes from limited borehole sampling and mea-
surement errors (if imposed). For facies sampling along boreholes, no measurement
errors are imposed, i.e., observed facies type is assumed error-free. For sampling the
dynamic data (heads, fluxes) from the same wells, random measurement errors are
imposed. Because the FDM is the reference model, measurements sampled from
this model are error-free, that is, “true” heads or “true” fluxes. To impose errors,
the true heads are corrupted by random noises: hm = hFDM ± δh, where hm is
measured head provided to inversion, hFDM is true head, and δh is hydraulic head
measurement error. The highest δh is ±10% of the total hydraulic head variation
in the forward model, with an absolute error up to ±10 feet. This is reasonable
considering that modern measurement techniques can determine water levels with
a precision as fine as 1 cm [26]. Flux measurements, though also amenable to er-
rors, are assumed error-free. The effect of imposing errors on fluxes is similar to
imposing errors on heads, while imposing both errors at the same time can lead to
inversion outcomes that are difficult to interpret, e.g., positive error in observed
head gradient can be canceled by negative error in a nearby flux measurement.

Given a given facies parameterization (SIS, SA, or coarsened), 100 inversion
systems of equations were assembled and solved, resulting in a set of ensemble
solutions including the inverted Ks, flow fields (i.e., heads and fluxes), and BCs.
The accuracy of each solution can be assessed by comparing the estimated param-
eters and flow fields to those of the reference model. Because a given flow field
can be uniquely determined from K distribution and BC, only the estimated Ks
and the recovered BC are compared to those of the forward model. The inverted
ensemble flow fields will not be presented.

Uncertainty in the inverted conductivity of each facies is evaluated by a set of
ensemble error statistics or performance metrics:

εK =

∣∣∣∣∣E[Kinv]−Ktrue

Ktrue

∣∣∣∣∣× 100%

σK =

∣∣∣∣∣Kinv
max −Kinv

min

4Ktrue

∣∣∣∣∣× 100%

(7)

where Kinv is the inverted facies conductivity, Ktrue is the corresponding true
conductivity, and E[·] is expectation, taken here as arithmetic mean. E[Kinv] is
thus the ensemble mean of the inverted facies conductivity.Kinv

max andKinv
min denote

the maximum and minimum inverted facies conductivity from the ensemble.
To evaluate the uncertainty in the inverted BC, two performance metrics were

adopted:

εBC = (1/n)
n∑
i=1

∣∣∣∣∣ (E[hinvi ]− htruei )

htruei

∣∣∣∣∣× 100%

σBC =

√√√√(1/n)
n∑
i=1

(
(hmaxi − hmini )

4htruei

)2

× 100%

(8)

where hinvi is the inverted hydraulic head at boundary cell location i (n is the
number of cells along the domain boundary), htruei represents the true head at the
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same location, hmaxi and hmini denote the maximum and minimum inverted heads
at location i from the ensemble solution, respectively, and E[hinvi ] is the ensemble
mean of the recovered head at location i. Note that by summing and averaging
over all boundary cells, εBC and σBC represent the average BC estimation error
and spread surrounding the ensemble mean.

In the following, inversion accuracy is defined by εK and εBC : higher values
indicate a bias in the ensemble mean, thus poorer accuracy [4]. On the other
hand, σK and σBC reflect the spread of the ensemble from the true parameters
and flow field, respectively, and are thus linked to the precision of inversion [4].
Higher precision is reflected by lower σK and σBC , and thus lower estimation
uncertainty. The quality of inversion is considered high if ε and σ are both small
for conductivity estimation and BC recovery.

3 Results

In the uncertainty study, the accuracy and precision of the ensemble inverse solu-
tions are examined when measurement quantity, quality, and inverse parameteriza-
tion are varied. (1) Data quantity was varied by reducing the number of sampling
wells from 12 to 6, and then to 3 wells, from which static and dynamic data were
sampled from the FDM. The observed hydraulic heads were then subject to in-
creasing measurement errors (±1,±2,±5,±10%), while inverse parameterization
adopted the SIS (noisy) facies realizations with 100×100 grid cells. (2) From the
above, data quality was examined closely to evaluate the effect of measurement
errors on inversion. (3) Using error-free measurements from the 12 wells, inverse
parameterization was then varied, i.e., dynamic integration was performed using
the same observed heads and fluxes, but with facies patterns embodied by the SIS,
SA, and coarsened grids. (4) A co-effect study was carried out varying two factors
at the same time.

In the following, units of the relevant quantities are: K in ft/yr (1 ft/yr =
0.305 m/yr), q in ft/yr (1 ft/yr = 0.305 m/yr), h in ft (1 ft = 0.305 m), flow rate
in ft3/yr (1 ft3/yr = 0.028 m3/yr). Alternatively, a consistent set of units can be
assumed and all unit information can be removed [27].

3.1 Data Quantity

When 12 wells were sampled from the forward model, static and dynamic data from
these wells were provided to the proposed data integration: (1) given the observed
facies at the wells, variogram model was fitted, with which 100 facies realizations
were generated with SIS; (2) for each realization, dynamic data, sampled at the
same wells, were inverted to obtain facies Ks and the associated flow field; (3)
for all realizations, an ensemble of inversion outcomes was generated, and Eqn.(7)
and Eqn.(8) were used to assess the quality of inversion. The dynamic data were
initially error-free, before increasing measurement errors —±1,±2,±5,±10% —
were imposed (for the 5 levels of measurement errors tested, 500 inversions were
performed). When the sampling density was reduced to 6, and then to 3, the above
steps were repeated (an additional 1,000 inversions were performed).
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Fig. 5 Inverted distributions of K1 and K2 obtained with different sampling densities when
measurements were error-free. For each facies, arrow points to the true conductivity value.
Inverse parameterization is SIS.

The results for conductivity estimation are summarized in Table 1. Several
observations can be made: (1) for a given magnitude of the measurement error, the
quality of inversion is highest when 12 wells were sampled and lowest when 3 wells
were sampled (Fig. 5). Clearly, when sampling density is reduced, fewer static and
dynamic data are available for the integration and, accordingly, inversion outcome
worsens. (2) for a given sampling density, the quality of inversion worsens with
increasing measurement errors (Table 1). When the observed heads were imposed
with ±10% errors, conductivity estimation error becomes very high suggesting
strong biases: when 12 wells were sampled, εK is 76% for K1 and 27% for K2;
when 6 wells were sampled, εK is 102% for K1 and 40% for K2; when 3 wells were
sampled, εK is 156% for K1 and 34% for K2. When 6 and 3 wells were sampled,
E[K1] even becomes negative. This occurs when head gradients yield the wrong
sign due to noisy measurements, but the correct flux measurements were still used
in inversion. (3) an optimal sampling density for accurate K estimation depends
on the magnitude of the measurement error (that is expected in a field problem)
and an acceptable level of estimation error (that is user defined). For example, if
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±2% is considered a realistic measurement error (absolute measurement error is
±2 ft), 3 wells (SI=3) will provide sufficient accuracy for inversion if K estimation
error of 12% is considered acceptable. However, for the same level of measurement
error, 6 wells (SI=6) will be needed if K estimation error of 5% is considered
acceptable. (4) an optimal sampling density for precise K estimation also depends
on the magnitude of the measurement error and an acceptable level of estimation
error. For example, if ±2% is considered a realistic measurement error, 6 wells will
provide sufficient precision if σK of 7% is considered acceptable. However, 12 wells
will be needed if σK of 5% is considered acceptable.

The results for BC estimation are summarized in Table 2, where ensemble
statistics are compiled for 4 boundary segments (Fig. 1): a− b, b− c, c− d, and
d − a. Along the same segment, the inverted boundary heads are compared to
the true heads (Fig. 6 presents results given error-free measurements). Similar to
K estimation, for a given measurement error, the quality of BC estimation (i.e.,
accuracy and precision) is highest when 12 wells were sampled and lowest when 3
wells were sampled. For a given sampling density, the quality of inversion worsens
with increasing measurement errors (more on this later). For BC estimation, the
optimal number of sampling wells also depends on the magnitude of the measure-
ment error and an acceptable level of BC estimation error. For each boundary
segment, distinct behavior in the ensemble statistics is also observed. For exam-
ple, head recovery along different segments is sensitive to well density to different
degrees. Both accuracy and precision of head recovery along the inflow bound-
ary (a − b) are not significantly affected by the decreasing well density (Fig. 6).
However, inversion along the outflow boundary (c−d) degrades appreciably when
the number of sampling well is reduced. Inversion quality is spatially non-uniform,
despite the fact that the sampling wells are uniform. This suggests the importance
of identifying optimal sampling locations. To understand this issue, future work
will combine inversion with sensitivity analysis [4][28].

For a given sampling density, hydraulic head recovery along the inflow (a −
b) and outflow (c − d) boundaries are generally less accurate and precise, when
compared to head recovery along the model top and bottom boundaries (b − c,
d − a). This can be explained by extrapolation of the fundamental solutions in
the model domains between the inflow boundary and the first sampling well, and
between the outflow boundary and the last sampling well (Fig. 2). Because no
measurements were made there, the inverse solution, which is conditioned at the
well locations, is extrapolated towards the boundaries. Inversion quality along
model top and bottom is higher, because both boundaries are closely conditioned
by well data (Fig. 2). This suggests that (1) inversion domain should be defined by
the well locations to reduce extrapolation errors, and (2) sampling along a−b and
c−d, in effect providing (partial) BC to inversion, will likely improve inversion at
these boundary locations.

3.2 Data Quality

Results from the previous section are reexamined to assess the effect of measure-
ment errors on inversion. Again, as reported in Table 1 and Table 2, quality of
the inverted Ks and BCs degrades with increasing head measurement errors and
decreasing sampling density. Fig. 7 presents the distributions of the estimated K1
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Fig. 6 Inverted distributions of boundary heads obtained with different sampling densities
when measurements were error-free. The true BC are also shown. The bold alphabets denote
the boundary locations (Fig. 1).
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and K2 under increasing measurement errors. Compared to K2 (clean sand), es-
timation of K1 (silty sand) degrades more quickly with increasing errors. For the
measurement errors of 0, ±1, ±2, ±5, and ±10% of the total head variation, εK
for K1 is 0.0, 3.0, 7.0, 29.0, 76.0%, and for K2, it is 0.3, 1.3, 2.9, 10.3, 27.4%; σ
for K1 is 3.8, 4.3, 4.8, 6.5, 7.3, and for K2, it is 1.2, 1.5, 1.5, 2.2, 2.5%. When
measurement errors are low, inversion performance in estimating both conductiv-
ities is similar, but when errors grow higher, K2 estimation is more accurate and
precise. Thus, conductivity of low-K facies may become more difficult to identify
when significant errors exist in measurements. This effect may be attributed to
the fact that flow in low-K facies is more sensitive to variation in the hydraulic
head and its spatial gradient.

The inverted boundary heads under increasing measurement errors are pre-
sented in Fig. 8. When 12 wells were sampled, increasing measurement errors only
leads to a slight degradation of the inverted boundary heads. For example, when
measurement errors are progressively increased, slightly increased σBC is observed
along the inflow boundary (a− b). When 6 wells were sampled, this degradation,
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Fig. 7 Distribution of the estimated K for each facies under increasing measurement errors.
(top) inverted K1 histograms; (bottom) inverted K2 histograms. Arrows point to the true
values.
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Fig. 8 Recovered boundary head ensembles under decreasing sampling density: (first column)
12 wells, (second column) 6 wells, (third column) 3 wells. In each column, boundary heads are
inverted under increasing measurement errors: (first row) 0%, (second row) ±1%, (third row)
±2%, (fourth row) ±5%, (fifth row) ±10%.

in terms of inversion accuracy and precision, is more pronounced. When 3 wells
were sampled, a similar degree of degradation as that of the 6 wells is observed.
Overall, for the problem investigated here, BC recovery is not very sensitive to the
imposed random measurement errors when a sufficient number of wells (12 wells)
were sampled. On the other hand, for a practical situation where measurement er-
rors can be quantified (e.g., ±2%), optimal sample spacing can again be identified
by setting acceptable tolerances for εBC and σBC .

3.3 Inverse Parameterization

Given error-free measurements from 12 wells, inversion outcome is presented when
facies is parameterized alternatively with SIS, SA, and the coarsened grids (Fig. 9,
Fig. 10). When the SIS grid is used, mean conductivity prediction is extremely
close to the true value, while σK remains very small. When the SA grid is used,
both accuracy and precision of the inversion suffer slightly. When the coarsened
grid is used, inversion quality is comparably the worst. The average CPU time for
solving an inverse problem was 550 s (SIS), 450 s (SA), and 330 s (coarsened), thus
speedup due to heterogeneity smoothing and further coarsening is around 18% and
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40%, respectively. When BC recovery is compared, however, inversion performance
does not vary significantly with the variation in parameterizations (Fig. 10). The
above findings suggest that K estimation is sensitive to its parameterization (i.e.,
smoothness in heterogeneity), while hydraulic head recovery is not. It is well-
known that hydraulic head prediction is not sensitive to small-scale K variation
because the groundwater flow equation acts as a filter: the high wave number
components corresponding to small-scale heterogeneity are generally filtered out.
Moreover, if a 10% K estimation error is considered acceptable, inversion using
the coarsened grid is optimal, as the speed of solver with this smaller grid is faster
by approximately 40% (compared to the SIS grid) and 27% (compared to the SA
grid).

3.4 A Co-Effect Study

In the previous sections, inversion accuracy and precision were analyzed separately
against changing observation quantity, quality, and inverse parameterization. To
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Fig. 9 Distribution of the estimated K for each facies under different inverse parameteriza-
tions. (top) inverted K1 histograms; (bottom) inverted K2 histograms. Arrows point to the
true values.



22 Dongdong Wang, Ye Zhang

0 50 100 150 200 250 300 350 400

200

250

300

H
yd

ra
ul

ic
 H

ea
ds

Boundary Cell Number

Observed heads vs. Recovered heads (Error−free 12Wells SIS)

 

 

recovered BC
true BC

a b a

c d

0 50 100 150 200 250 300 350 400

200

250

300

H
yd

ra
ul

ic
 H

ea
ds

Boundary Cell Number

Observed heads vs. Recovered heads (Error−free 12Wells SA)

 

 

recovered BC
true BC

a b a

c d

0 50 100 150 200 250 300 350 400

200

250

300

H
yd

ra
ul

ic
 H

ea
ds

Boundary Cell Number

Observed heads vs. Recovered heads (Error−free 12Wells Coarsening)

 

 

recovered BC
true BC

a b a

c d

Fig. 10 Recovered ensembles of boundary heads along “a-b-c-d-a” under different inverse
parameterizations: (top) SIS, (middle) SA, (bottom) coarsened grid.

understand the relative importance of each factor to the performance of inversion, a
co-effect analysis was conducted. To determine the relative ranking, three separate
two-dimensional experiments varying two factors at a time were designed, i.e., data
quantity versus parameterization, data quantity versus data quality, data quality
versus parameterization. For example, when the co-effect of data quantity and
parameterization is of interest, three different parameterizations were employed
for a given sampling density, resulting in 3 sets of stochastic inversions (i.e., 300
ensemble solutions). For the 3 sampling densities (12 versus 6 versus 3 wells), 900
inversion equations were thus solved. The inversion outcomes —ensemble means
and standard deviation of K or BC estimation, were then analyzed in light of the
joint variation of the two factors. For a given sampling density, this analysis reveals
that parameterization with the coarsened grid always leads to less accuracy and
lower precision in inversion, as expected. The same can be said when fewer wells are
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provided to inversion under a fixed parameterization. To understand the relative
importance of each factor on inversion, matrices of the ensemble outcomes can
be created and analyzed [25]. For the ranges of tested variation in data quantity
and inverse parameterization, data quantity is found to the dominant factor that
influences both the accuracy and precision of K and BC estimations.

Similar two-dimensional experiments were carried out to evaluate the relative
importance of data quantity versus data quality, and data quality versus param-
eterization (an additional 1,800 ensemble solutions were obtained and analyzed).
Detail about these experiments and the co-effect study is provided in [25], and
will not be presented. Here, we summarize the insights gained from this analysis.
For the ranges of tested variation in data quantity, quality, and inverse parame-
terization, data quantity plays the dominant role in determining the accuracy and
precision of the inverted Ks. Data quality is important to the accuracy of K inver-
sion, but has limited influences on its precision. Compared to data quantity and
quality, the impact of inverse parameterization on the quality of inversion is gener-
ally smaller, suggesting the viability of using upscaled parameter fields with coarse
grids to achieve a greater computation efficiency. That is, a resolution-accuracy
trade-off exists for parameter estimation.

For BC and thus flow field estimation, the most important factor that influences
the quality of inversion is data quantity, while data quality and heterogeneity
resolution have lesser influences. And, regardless of the combinations examined,
regions of the inversion domain near the inflow and outflow boundaries, when
compared to the interior regions, always correspond to lower inversion accuracy
and precision. This is a result of extrapolation errors as no measurements exist
along these boundary segments. This is consistent with the earlier results with
deterministic inversion [16].

4 Conclusions

In this research, a stochastic subsurface data integration technique is proposed
by combining geostatistical simulation with a direct inverse method to facilitate
parameter and flow field estimation in steady-state aquifer inversion while quan-
tifying the associated estimation uncertainty. The observation data are obtained
from a set of sampling wells, and include static data (i.e., facies types) and dynamic
data (i.e., hydraulic heads and flux measurements). The static data are assumed
error-free, while increasing measurement errors are imposed onto the observed hy-
draulic heads. First, sequential indicator simulation is used to integrate the static
data, which leads to a set of correlated facies realizations with different hydraulic
conductivity distributions. This facies ensemble is then provided to direct inversion
which utilizes the dynamic data sampled from the same wells to estimate a set of
ensemble parameters and flow fields. With these ensemble inversion outcomes, the
mean (expected) parameters and flow fields and their estimation uncertainty can
then be determined. Because the above stochastic integration requires ensemble
inversions on many facies realizations, computational efficiency is of interest. Via
smoothing and grid coarsening, facies parameterization by SIS can be modified by
reducing the resolution of the facies model prior to inversion. The smoothing of
the facies can improve matrix conditioning in inversion, while smoothing combined
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with grid coarsening can lead to a reduced equation size. Both approaches can re-
duce the computational time needed to solve the inversion systems of equations.

To test the proposed integration technique, a reference forward model pro-
vides both the facies characterization and dynamic measurements at increasing
sampling densities (i.e., data quantity) and measurement errors (i.e., data qual-
ity). Because flow field can be uniquely determined if conductivities and BC are
known, the estimated BC ensemble is examined in lieu of the flow fields. Uncer-
tainty in the estimated conductivities and BC is quantified against the reference
model to evaluate the quality of inversion. Results suggest that for the ranges of
tested variation in data quantity, quality, and inverse parameterization, (1) data
quantity has the greatest impact on both inversion accuracy and inversion preci-
sion; (2) data quality impacts inversion accuracy; (3) inverse parameterization has
the weakest influence on inversion as long as the overall facies pattern is captured
(i.e., sufficient data quantity). A balance can thus be achieved between parame-
terization, computational efficiency, and inversion performance. Moreover, for the
heterogeneity investigated herein, by defining an acceptable margin of uncertainty
for either conductivity or flow field estimation, optimal well spacing in relation
to the characteristic length of heterogeneity can be determined under unknown
aquifer BC. Finally, results of this study suggest that inversion domain should be
closely defined by the measurement locations in order to minimize extrapolation
errors.

Results and insights of this work can lead to field implementation of the pro-
posed stochastic integration technique for problems with unknown information
about aquifer’s boundary conditions. Along with parameter estimation, the in-
tegration technique can explicitly quantify boundary conditions including their
mean values and their uncertainty, thus providing a powerful tool for characteriz-
ing deep, data-poor environments which are increasingly being exploited for waste
disposal (e.g., geological carbon storage and sequestration) as well as for energy
production (e.g., hydraulic fracking, geothermal, oil/gas) operations. Using the
integration technique, by assuming a reasonable level of measurement errors in
the hydrogeological data, well spacing ranging from 1/3 to 1/6 of the lateral fa-
cies correlation length can lead to adequate inversion outcomes with acceptable
estimation uncertainties. Future work will extend the methods of this study to
three-dimensional problems, while static data integration will incorporate not only
direct borehole information but other auxiliary data (e.g., seismic facies analysis)
that can yield additional information of subsurface heterogeneity in between wells.
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