Planetary Geology 4460 Homework #3 Due Friday Sept. 22, 2017

#1 (20 points) Initial ²⁶Al abundances in CAI's

²⁶Al decays to ²⁶Mg with a half-life of 0.73 My. Because this is so short, essentially all the ²⁶Al which was originally present has now become ²⁶Mg. The isotopes ²⁴Mg and ²⁷Al are non-radiogenic and (assuming chemically closed systems) remain constant. We want to determine the amount of ²⁶Al which was originally present when our sample formed (actually, the (²⁶Al/²⁷Al) ratio), which we can then use to determine formation ages and formation conditions.

We determine this (²⁶Al/²⁷Al) ratio by measuring the abundance of current ²⁶Mg vs. current ²⁷Al in different minerals making up the sample. Ideally we use minerals rich in Al and poor in Mg, and also the reverse. As usual in isotope geochemistry we actually determine abundance ratios, in this case relative to ²⁴Mg, so we will plot (²⁶Mg/²⁴Mg) vs. (²⁷Al/²⁴Mg).

If we assume all the ²⁶Al had decayed to ²⁶Mg before the sample formed (and presumably homogenized the chemically "identical" isotopes of Mg) then all minerals in the sample will have the same ²⁶Mg/²⁴Mg ratio, regardless of how much Al they contain, because all the ²⁶Al was gone. In our plot all the minerals would lie on a horizontal line. However if live ²⁶Al was present when it formed, then the more Al rich a mineral is, the more excess ²⁶Mg it should now have. Again assuming isotopic homogenization, although the amount of Al in the different minerals vary, the initial ²⁶Al/²⁷Al ratio should be the same. The more ²⁷Al which was (and is) present, the more ²⁶Al was present, now become ²⁶Mg. Therefore the slope of the line in our plot will indicate the initial (²⁶Al/²⁷Al) abundance.

In the following a symbol like ${}^{26}Mg_0$ denotes the initial abundance while ${}^{26}Mg$ without a subscript $_0$ denotes the current value. For ${}^{24}Mg$ and ${}^{27}Al$ which do not change, ${}^{24}Mg_0={}^{24}Mg$ and ${}^{27}Al_0={}^{27}Al$ so the subscript can be added or dropped as is convenient.

$${}^{26}Mg = {}^{26}Mg_0 + {}^{26}Al_0$$

= ${}^{26}Mg_0 + {}^{27}Al \times ({}^{26}Al_0/{}^{27}Al)$
= ${}^{26}Mg_0 + {}^{27}Al \times ({}^{26}Al/{}^{27}Al)_0$

Or dividing both sides by the constant ²⁴Mg:

Below is such a plot for 3 Calcium-Aluminum rich Inclusions (CAI's) from an E type chondrite, as published in Guan *et al.* (2000).

For the upper two panels (where you can readily determine the slope), find both the initial (²⁶Al/²⁷Al)₀ ratio and the initial (²⁶Mg/²⁴Mg)₀ ratios.

As a "sanity check", compare your $({}^{26}\text{Al}/{}^{27}\text{Al})_0$ result to the abundance ratio listed in the lowest panel. (I've erased the values in the upper two panels.) The value is so uncertain because the slope is uncertain – but the value should scale with the slope shown. As a further check you can use the ADS to find the Guan *et al.* paper and view the original version of the figure. However, even if you do this, show your work in calculating the slope and the abundance ratios.

Fig. 2. Mg-Al isotopic systematics for three CAIs from E chondrites. (A) and (B) are hibonite-spinel inclusions. (C) is the hibonite-pyroxene microspherule that shows no resolvable ${}^{26}Mg^*$ excess. The $({}^{26}Al/{}_{27}Al)_{o}$ ratios are listed on the plot for each inclusion.

#2. δ Notation for Isotope Abundances (10 points)

Because most isotopic ratios vary so little, the δ notation is often used for reporting results. In this notation rather that report the absolute ratio, you report the difference from some "standard" value. Also, you usually report the difference as a fraction (in parts per 1000) relative to that standard. For example

$$\begin{split} \delta^{26}Mg &\equiv 1000 \times \{ ({}^{26}Mg/{}^{24}Mg)_{sample} / ({}^{26}Mg/{}^{24}Mg)_{standard} - 1 \} \\ &= 1000 \times \{ [({}^{26}Mg/{}^{24}Mg)_{sample} - ({}^{26}Mg/{}^{24}Mg)_{standard})] / ({}^{26}Mg/{}^{24}Mg)_{standard}) \} \end{split}$$

Often, as a reminder that the excess ²⁶Mg is radiogenic, it is written ²⁶Mg*.

<u>Assuming</u> that $({}^{26}Mg/{}^{24}Mg)_{standard} = 0.1394$, report the $({}^{26}Mg/{}^{24}Mg)_0$ values you found above using the δ notation.