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ABSTRACT

The Thermopolis hydrothermal system is located in the southern portion of the Bighorn Basin, in and
around the town of Thermopolis, in northwest Wyoming. It is the largest hydrothermal system in Wyoming
outside of Yellowstone National Park. The system includes hot springs, travertine deposits, and thermal wells.
Published models for the hydrothermal system propose the Owl Creek Mountains as the recharge zone,
simple conductive heating at depth, and resurfacing of thermal waters up the Thermopolis Anticline.

The geochemistry of the thermal waters of three active hot springs—Big Spring, White Sulphur Spring,
and Teepee Fountain—is similar in composition and characteristic of carbonate or carbonate-bearing
siliciclastic aquifers. Previous studies of the Thermopolis hydrothermal system postulate that the thermal
waters are a mixture of waters from Paleozoic formations. Major element geochemical analyses available
for waters from these formations are not of sufficient quality to determine whether the thermal waters
are a mixture of the Paleozoic aquifers. In the time frame of this study (one year), the geochemistry of all
three springs was constant through all four seasons, spanning spring snowmelt and recharge as well as late-
summer and fall dryness. This relationship is consistent with a deep source not influenced by shallow, local
hydrogeology. Anomalies are evident in the historic data set for the geochemistry of Big Spring. We speculate
that anomalies occurring between 1906 and 1926 suggest mixing of source waters of Big Spring with waters
from a siliciclastic formation, and that anomalies occurring between 1926 and 1933 suggest mixing with
waters from a formation containing gypsum or anhydrite. Decreased concentrations measured in our study—
relative to concentrations measured between 1933 and 1976—may reflect mixing of thermal waters with
more dilute waters. Current data are not sufficient to rigorously test these suggestions, and events of sufficient
scale taking place in these timeframes have not been identified.

KEY WORDS: Bighorn Basin, hot springs, hydrogeochemistry, hydrothermal system, Thermopolis,
Wyoming,

INTRODUCTION

The Thermopolis hydrothermal system is the
largest hydrothermal system in Wyoming outside
of Yellowstone National Park. Unlike Yellowstone,
however, the travertine depositing hot springs of the
Thermopolis hydrothermal system are not associated

with any obvious volcanic activity; thus, they are
considered a non-volcanic hydrothermal system
that is partially controlled by regional faulting and
fracturing (Hinckley et al., 1982a).

The geology of the Thermopolis area, the area’s
travertine deposits, and the geochemistry of its hot
springs have been studied for more than 100 years.
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That being said, the last published quantitative study
of Thermopolis waters was completed more than
30 years ago. Here, we present new water analyses
for the Thermopolis hydrothermal system that were
collected over a one-year period across the seasons
between June 2011 and June 2012. Using our new
data and historical water analyses of the Thermopolis
hydrothermal system, we examine how the system
has changed on both seasonal and decadal time
scales since 1906. In addition, we use water analyses
of formation waters compiled from oil and gas fields
to provide a regional context for the Thermopolis
hydrothermal system.

BACKGROUND
Regional Geology

The Thermopolis hydrothermal system is located
in the southern portion of the Bighorn Basin (Fig. 1),
on the northern flank of the east—west trending Owl
Creek Mountains (Fig. 1), and along the crest of the
west-northwest trending Thermopolis Anticline (Fig.
2). The Thermopolis Anticline stretches for almost
48 km (30 miles) and generally parallels the northern
flank of the Owl Creek Mountains. The anticline is
segmented into three sections by two north-dipping
thrust faults (Paylor et al., 1989). An unnamed
syncline separates the Owl Creek Mountains and the
Thermopolis Anticline.

The Bighorn Basin is well known for its
petroleum systems with many active oil and gas
fields surrounding the Thermopolis hydrothermal
system (Fig. 2). The Bighorn Dolomite, Madison
Limestone, Tensleep Sandstone, and Phosphoria
Formation all produce significant quantities
of hydrocarbons. These same formations
contain large quantities of water, and some also
produce large amounts of carbon dioxide (CO,).
Stratigraphic relationships, relative thicknesses,
physical descriptions, and general water-bearing
characteristics of the formations important to this
study are described in Table 1.

The Thermopolis Hydrothermal System
The surface expression of the Thermopolis

hydrothermal system includes hot springs, travertine
deposits, and thermal wells along the Bighorn River
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Figure 1. Generalized geologic map of a portion of northern
Wyoming showing important sedimentary basins and mountain
ranges in the immediate vicinity of Thermopolis, Wyoming.
The area of Figure 2 is designated by the dashed box.

on the crest of the Thermopolis Anticline (Fig. 2).
All of the hot springs are located inside Hot Springs
State Park, within an area of less than five square
km (two square miles) (Fig. 3). Two hot springs are
active today, Big Spring and White Sulphur Spring,.
Two additional hot springs—Teepee Fountain and
an unnamed spring at the entrance to Hot Springs
State Park—are man-made structures fed by Big
Spring. Six other hot springs were previously active,
but no longer discharge thermal waters; these are
Piling Spring, Railroad Spring, Bathtub Spring,
Black Sulphur Spring, Terrace Spring, and the Devils
Punch Bowl. The cessation of discharge from these
springs has been the most notable change in the
hydrothermal system in the last century. Privately
owned wells located north of Hot Springs State
Park (Fig. 3) also produce thermal waters. Detailed
descriptions of the hot springs and thermal wells of
the Thermopolis hydrothermal system are compiled
in Breckenridge and Hinckley (1978) and Hinckley
etal. (1982a, b). In the following, we present a brief
summary of the hydrothermal system and related
travertine deposits.

Travertine deposits are located on the fractured
crest of the Thermopolis Anticline along a distance
of approximately ten km (six miles) to the west-
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Figure 2. Map depicting the regional geology and hydrology of the Thermopolis hydrothermal system as well as locations of oil
and gas fields proximate to the system. Contours are elevations (in feet) of equal hydraulic head in the Park City-Tensleep Aquifer
as determined by Huntoon (1993). Dashed arrows illustrate groundwater flow directions based on a model by Jarvis (1986) and
Spencer (1986). Information for faults and folds are from Love et al. (1978), Love et al. (1979), and Paylor et al. (1989). Locations
of travertine are from Hinckley et al. (1982a). Locations of oil and gas fields are from De Bruin et al. (2004). Hot springs,
travertine, and privately-owned thermal wells that are the focus of this study are all located within the town of Thermopolis.

northwest of the Bighorn River (Fig. 2). These
outcrops are approximately 100 m (several hundred
feet) above the elevation of the river. Travertine
outcrops on Round Top and T Hill, for example,
lie about 200 m and 100 m (700 feet and 350 feet)
above the Bighorn River, respectively. No hot
springs are associated with these outcrops; thus,
thermal waters must have flowed and deposited
travertine along the Thermopolis Anticline in the
past. The first published study of the Thermopolis
hydrothermal system (Darton, 1906) suggests that
travertine deposition may date back to the Tertiary;
however, the volume and thickness as well as the age

and stratigraphic relationships of these rocks have not
been determined.

The modern hydrothermal system is located
within 100 m (a few hundred feet) of the Bighorn
River and no more than 10 m (a few tens of feet)
above the level of the river. The system is capped
by the Triassic Chugwater Formation (Table 1)
(Hinckley et al., 1982a). Thermal waters emanate
from the Chugwater Formation, and water wells that
produce thermal waters penetrate this formation.

Big Spring is the largest and deepest spring.
It consists of a deep pool, about 7.5 m (25 feet) in
diameter, which emerges directly from the subsurface.
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Figure 3. Locations of hot springs, travertine, and privately-owned thermal wells
in the Thermopolis hydrothermal system. Hot Springs State Park is located entirely
within the town of Thermopolis. Modified from Breckenridge and Hinckley (1978).

Big Spring may be deeper than
40 m (130 feet) (S. M. Smaglik,
personal communication, 2010).
Gas bubbles rich in CO, are
continuously rising from the
bottom of the spring. Water from
the spring is funneled through a
man-made channel to a series of
holding pools. The thermal water
is then diverted to flow over a
series of travertine terraces—the
Rainbow Terraces (Fig. 3)—
and eventually into the Bighorn
River. Big Spring has the greatest
discharge of all the hot springs,
roughly 1,500 gallons per minute
(gpm) (Jarvis, 1986). About 400

gpm used to be diverted to flow
over the Rainbow Terraces.

Big Spring feeds two large
underground pipes that channel
water to Teepee Fountain, the
unnamed spring at the entrance
to Hot Springs State Park, one
public bathhouse, and two
commercial establishments within
the park. Thermal water from
Big Spring is supplied to Teepee
Fountain in the summer and fall;
the fountain is not active in the
winter and early spring. Teepee
Fountain was constructed in
1906 by piping thermal waters
through a vertical pipe. Thermal

water exits the pipe at the top and
runs down the sides, precipitating
travertine until reaching a trough
at the bottom where the water
then flows through another man-
made channel into the Bighorn
River. Travertine has precipitated
over the years to form the cone-
like structure seen today. Teepee
Fountain is more than 7.5 m (25
feet) in diameter and grows in
diameter by about 5 to 8 cm (2
to 3 inches) each year (K. Skates,
personal communication, 2010).

Travertine of the Rainbow
Terraces is approximately 12 m
(40 feet) thick. Water discharged
from Black Sulphur Spring once
flowed over the Rainbow Terraces
(Burk, 1952), but this spring is
no longer active. Local residents
claim that Black Sulphur Spring
ceased flowing after the Hebgen
Lake, Montana, earthquake in
1959 (Breckenridge and Hinckley,
1978). Burk (1952) noted,
however, that Black Sulphur
Spring was already “slow moving”
and that discharge had already
been declining by 1952.

White Sulphur Spring
emerges from a narrow cavity less
than a foot wide at the base of
travertine that is approximately
12 m (40 feet) thick. This hot
spring is located approximately 1
m (several feet) above the level of
the Bighorn River; the spring is no
more than 0.3 m (1 foot) wide and
a6 to 8 cm (a few inches) deep and
flows about 9 m (30 feet) until
discharging into the river. White
Sulphur Spring has a discharge of
roughly 200 gpm (Jarvis, 1986).
Native sulfur exists in small,
localized patches on the surface
of the travertine surrounding
White Sulphur Spring. Sulfur

deposits occur elsewhere along
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the anticline within the Phosphoria Formation and
were once economically mined (Woodruff, 1909).

Regional Hydrogeology and Groundwater Flow

Models for the regional hydrogeology and the
source of water for the Thermopolis hydrothermal
system propose the Owl Creek Mountains as
the recharge zone (Hinckley et al., 1982a; Jarvis,
1986; Spencer, 1986; Paylor et al., 1989; Huntoon,
1993). Groundwater flows northward in Paleozoic
aquifers, down the unnamed syncline, and up the
Thermopolis Anticline, where it breaches the surface
(Fig. 2). Potential contributions from recharge
zones to the northeast and northwest have not been
evaluated. Two models have been proposed for
how groundwater flows within the Thermopolis
Anticline. In one, the thrust fault that cores the
Thermopolis Anticline diverts groundwater to the
west-northwest, parallel to the fault (Fig. 2). At the
terminus of the fault, groundwater in the Paleozoic
aquifers mixes and changes flow direction to east-
southeast, exploiting the higher permeability of
the fractured crest of the anticline (Hinckley et al.,
1982a; Jarvis, 1986; Spencer, 1986; Huntoon, 1993).
An alternate model emphasizes the influence of faults
that segment the anticline into blocks and domes
(Paylor et al., 1989). Deep basement-controlled faults
provide vertical groundwater flow paths through
the anticline. Travertine deposits occur near the
Owl Creek Fault (Fig. 2), for example, suggesting
that thermal waters exploited the fault and flowed
vertically to the surface.

Thermal modeling is consistent with the latter
hydrogeologic model and attributes the heating
mechanism for the Thermopolis hydrothermal
system to simple conductive heating (Hinckley et al.,
1982b). No evidence for heating by igneous activity
has been identified. One analysis of helium isotopes
(R/R, =0.062) (Welhan et al., 1988) suggests the
thermal waters of the Thermopolis hydrothermal
system do not have a mantle signature, an observation
consistent with the regional model of Newell et al.
(2005).

Drawdown of the Park City-Tensleep Aquifer
coincides with several oil and gas fields located
to the north and northwest of the Thermopolis

hydrothermal system, notably Hamilton Dome,
King Dome, Little Sand Draw, and Gebo (Fig. 2). A

groundwater model developed for Hamilton Dome
suggests that withdrawal of deep formation waters
in this field has a small effect on the Thermopolis
hydrothermal system (Spencer 1986).

METHODS

Oil and gas development in the southern
Bighorn Basin (Fig. 2) provides a wealth of
subsurface data, including gas analyses, water
analyses, core samples, well logs, and bottomhole
temperatures. To develop a regional geochemical
perspective, analyses of formation waters sampled
from the Chugwater Formation and underlying
formations (Table 1) were compiled for oil and gas
fields proximate to the Thermopolis hydrothermal
system (Hinckley et al., 1982a, b; Wyoming Oil and
Gas Conservation Commission, 2011). The quality
of these data was evaluated using charge and mass
balance criteria. Samples exceeding +10% charge
or mass balance were excluded from consideration.
Geochemical analyses of the thermal waters of
the Thermopolis hydrothermal system were first
published in 1906 and most recently in 1976
(Breckenridge and Hinckley, 1978; Hinckley et
al., 1982a, b). These data have been compiled
and the quality evaluated using charge and mass
balance criteria; no samples were excluded from
consideration.

Our new geochemical data consists of water
samples collected from Big Spring, White Sulphur
Spring, and Teepee Fountain between June 2011
and June 2012. Big Spring and White Sulphur
Spring were sampled: 1) in each of the four seasons,
2) in two sequential summer months (June and July
2010), and 3) in three sequential months in late fall
and early winter (October, November, and December
2010). Teepee Fountain was sampled in fall 2010 and
summer 2011. A detailed description of sampling and
analysis methods is provided in Appendix A.

RESULTS
Regional Hydrogeochemistry

A total of 60 analyses of waters sampled from
formations underlying the Chugwater Formation are

compiled in Table 2. To provide a visual display of the
data we plot select analyses from Table 2 on a Piper
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diagram (Fig. 4). The one analysis
of formation water of the Amsden
and Park City Formations listed
in Table 2 is plotted on the Piper
diagram. Average compositions of
formation waters of the Madison
Limestone, Tensleep Sandstone,
and Phosphoria Formation
are also plotted. Waters of the
Phosphoria Formation are
separated into two groups on
the diagram: waters containing
high total dissolved solids (TDS)
(>15,000 mg/kg) obtained from
fields located to the far eastern
side of Figure 2 (Zimmerman
Butte, Kirby Creek, and Lake
Creek) and lower TDS waters
(<10,000 mg/kg) obtained from
other fields. Analyses in Table 2
that are attributed to two or more
formations indicate that the water
could have originated from one or
more of these formations or that a
mixture of water from all of these
formations was analyzed. We do
not plot these analyses in Figure
4 because we cannot attribute
them to specific formations.
The significance of Figure 4
is examined in the Discussion
section below.

Hydrogeochemistry of the
Thermopolis Hydrothermal
System

Historic Analyses

Published geochemical
analyses of the thermal waters are
presented in Table 3. One recorded
analysis of aqueous hydrogen
sulfide is reported in June 1933
(Breckenridge and Hinckley,
1978) for Big Spring (4.5 mg/L),
White Sulphur Spring (2.3 mg/L),
and Black Sulphur Spring (1.4
mg/L). The aqueous geochemistry
of the thermal waters from all

@ Big Spring

O White Sulphur Spring

[0 Madison Ls (avg of 8 analyses)

O Madison Ls (gypsum saturated)

% Tensleep Ss (avg of 24 analyses)

* Tensleep Ss (gypsum saturated)

/\ Phosphoria Fm (avg of 6 analyses, TDS < 10,000 mg/kg)
A Phosphoria Fm (avg of 6 analyses, TDS > 15,000 mg/kg)
<> Amsden Fm (1 analysis)

X Park City Fm (1 analysis)

Figure 4. Piper diagram of waters from Thermopolis hydrothermal system (Big
Spring and White Sulphur Spring). Also plotted are formation waters of important
water-bearing formations proximate to the hydrothermal system, as determined
from produced waters of regional oil and gas fields. Formation waters of the Amsden
and Park City Formations, each representing one analysis, are plotted, as are average
compositions of formation waters of the Madison Limestone, Tensleep Sandstone,
and Phosphoria Formation. Waters of the Phosphoria Formation are separated into
two groups: high TDS waters (>15,000 mg/kg) obtained from fields on the far
eastern side of Figure 2 (Zimmerman Butte, Kirby Creek, and Lake Creek) and lower
TDS waters (<10,000 mg/kg) obtained from other fields. Chemical analyses and
their sources are supplied in Table 2 (formation waters) and Table 4 (waters from the
hydrothermal system).

of these hot springs is broadly
similar, with a few exceptions.
Sodium, chloride, and sulfate
concentrations are comparatively

low for the waters analyzed in
1906, whereas potassium and
magnesium concentrations are
comparatively high for the waters
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AQUEOUS GEOCHEMISTRY OF THE THERMOPOLIS HYDROTHERMAL SYSTEM

analyzed in 1906 and 1926. The
large positive charge imbalance

calculated for Big Spring water

analyzed in 1906 and 1926 is
because bicarbonate was not

measured. For the rest of the
analyses, combined concentrations
of calcium, magnesium, and
bicarbonate exceed 50% of total

dissolved constituents, whereas no

specific cation-anion pair exceeds

Results of field measurements,
laboratory analyses, and

geochemical calculations

generated in this study for
Big Spring, White Sulphur
Spring, and Teepee Fountain

are presented in Table 4. The

composition of the three springs is
fairly uniform; the concentration

of all ions among the three springs
does not vary more than analytical
uncertainty over the course of a

year of sampling. This uniformity
persists through the seasons, in

consecutive months and days,
and at different times of the day.
The only notable exception to
this uniformity is for calcium and
magnesium in Big Spring between
November and December 2010
and again between December

2010 and April 2011. Calcium
concentration decreased by
0.37 mmol/kg (-5%; analytical
uncertainty of 0.06 mmol/
kg) between November and
December and subsequently

increased by 0.72 mmol/kg

(+10%; analytical uncertainty
of 0.07 mmol/kg) between
December and April. Magnesium

concentration decreased by 0.34
mmol/kg (-12%; analytical

uncertainty of 0.03 mmol/
kg) between November and
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to 1.5), whereas these waters
are supersaturated with respect

to dolomite (SI

0.71 to 3.7).

These waters are also saturated
with respect to barite (SI = -0.08

to 0.24), but are undersaturated
with respect to anhydrite (SI

-0.45 to -0.76). The degassed
waters of Teepee Fountain are
the most saturated with respect
to carbonate minerals and barite;
waters of White Sulphur Spring

and Big Spring, respectively, are

progressively less saturated with

these minerals. Partial pressures of

CO, range from 10" to 10,

and concentrations of dissolved
inorganic carbon range from
approximately 16 to 25 mmol/kg
for both Big Spring and White

Sulphur Spring (Table 4).

The composition of the
three springs is broadly similar
to historic geochemical data
published for the Thermopolis
hydrothermal system (compare

Tables 3 and 4). Big Spring
possesses the most complete
record of historic geochemical

data; we plot these historic
analyses as well as our results for

Na, Ca, Mg, Cl, SO, and HCO,
in Big Spring waters in Figure

5. Several anomalies exist in the

historic data set for the aqueous

geochemistry of Big Spring. These
anomalies center on differences
in the water chemistry reported

in 1906 and 1926 relative to the

water chemistry reported in 1933,
1958, 1971, 1976, and this study.

No bicarbonate analyses are
reported for 1906 or 1926; thus,
it’s difficult to evaluate the quality
of the 1906 and 1926 data using

charge and mass balance criteria.

No known temperature data is

available before 1976. Analytical
uncertainties are not available
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Figure 5. Water analyses for Big Spring as a function of time
(data from this study and from sources listed in Table 3). Data
plotted for 2010 are the mean of all analyses performed for this
study. The symbols are the size of the two sigma uncertainty for
the analyses determined in this study; analytical uncertainties
are not available for the historic analyses. Trend lines are drawn
to help guide the eye and are not statistically significant.

for any of the analyses published prior to this study,
making the task of evaluating and interpreting the
data set even more difficult.

Sodium and chloride concentrations reported for
1906 are about one-third lower than concentrations
reported for subsequent years; these concentrations
remain relatively constant between 1933 and 1976.
Calcium and sulfate concentrations are consistent
between 1906 and 1926, but are about one-sixth
lower than subsequent calcium and sulfate analyses.

Magnesium concentrations are consistent between
1906 and 1926, but are about 50% greater than
subsequent magnesium analyses. Differences in
calcium, sulfate, and magnesium concentrations are
small enough to be within the realm of analytical
uncertainty, but are large enough to be consistent with
real changes in the evolution of these ions. Between
1933 and 1976, concentrations of all of the ions
remained relatively constant. In our study, magnesium
concentrations are similar to those measured in 1976,
whereas concentrations of HCO,, Cl, SO,, Na, and
Ca are less than those measured in 1976.

Analyses of Big Spring and White Sulphur
Spring waters determined for this study (a total 22
analyses) are plotted on the Piper diagram depicted
in Figure 4. Big Spring waters plot in a tight cluster in
the upper quadrant of the quadrilateral portion of the
diagram; White Sulphur Spring waters plot near Big
Spring waters with a slightly greater distribution.

DISCUSSION

The thermal waters of the Thermopolis
hydrothermal system contain combined concentrations
of calcium, magnesium, and bicarbonate that exceed
50% of the total; such waters are generally considered
“hard” and characteristic of carbonate aquifers or
rocks containing abundant carbonate minerals. No
specific cation-anion pair exceeds 50% of the total in
any of the thermal waters; this geochemical signature is
generally produced by dissolution of multiple minerals
or by mixing of two or more chemically distinct
groundwaters (Freeze and Cherry, 1979).

Gas bubbles rich in CO, are continuously rising
from the bottom of Big Spring, and all of the thermal
waters emit the characteristic odor of hydrogen sulfide
gas. No evidence for heating by igneous activity has
been identified for the Thermopolis hydrothermal
system (Hinckley et al., 1982a). The source of the
abundant CO,, however, has not been identified, and
our results do not shed light on its origin.

In their evaluation of the Thermopolis
hydrothermal system, Hinckley et al. (1982b)
proposed that the thermal waters are a mixture of
groundwater from Paleozoic aquifers. We use a Piper
diagram to begin to assess this hypothesis; Piper
diagrams provide one means of identifying and
evaluating geochemical trends for evidence of mixing
processes (Crossey et al., 2006; Crossey et al., 2009;
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Williams et al., 2013). We compare the composition
of the thermal waters of Big Spring and White Sulphur
Spring with the composition of formation waters of
important Paleozoic aquifers (Table 2) on the Piper
diagram in Figure 4. If the thermal waters are a
mixture of two end members, the compositions will
lie on a straight line in each of the fields of the diagram
(Drever, 1997). If the thermal waters are a mixture of
three end members, the compositions will lie within
an area bounded by the three. Observing these trends
on Piper diagrams strongly suggests—but does not
prove—mixing as a controlling process. Big Spring
and White Sulphur Spring water compositions do
not lie along a straight line or within an area defined
by formation waters of any of the Paleozoic aquifers
(Fig. 4), suggesting that the thermal waters are not
a mixture of these formation waters. Analyses of
formation waters, however, display a wide range of
composition for the Madison Limestone, Tensleep
Sandstone, and Phosphoria Formation (Table 2).
For most of the analyses, the value of the standard
deviation (2 ©) calculated for analyses from each of
these formations is as large as the mean value. We
illustrate the consequences of these uncertainties
with respect to two important Paleozoic aquifers: the
Tensleep Sandstone and Madison Limestone. Both
formations are known to contain gypsum or anhydrite,
yet average water compositions are not saturated
with respect to these two minerals. We increased
calcium and sulphate concentrations for waters in
both formations to values that lie within standard
deviations and that yielded saturation with respect
to gypsum and anhydrite. The results are plotted
on Figure 4. By including these two values, several
combinations of waters from two or three formations
can be used to constrain the compositions of Big
Spring and White Sulphur Spring. Clearly, the major
element compositions that are available are insufficient
to determine whether the thermal waters are a mixture
of the Paleozoic aquifers. Similarly, the available major
element geochemistry does not distinguish between
the two models proposed for groundwater flow in the
Thermopolis hydrothermal system (see discussion in
section on Regional Hydrogeology and Groundwater
Flow). Major, trace, and isotopic analyses of gasses as
well as trace and isotopic analyses of waters have been
successfully used to evaluate complex groundwater
phenomena (Crossey et al., 2006; Crossey et al.,
2009; Banerjee et al., 2011; Monjerezi et al., 2011;

Karlstrom et al., 2013; Williams et al., 2013) and may
be prove valuable for understanding processes in the
Thermopolis hydrothermal system.

The geochemistry of the Thermopolis
hydrothermal system remained uniform over the
year of this study. With one exception, no changes
were observed in the chemistry or temperature of
water samples collected through the four seasons, on
consecutive months and days, or even during different
times of the same day. The exception is a decrease in
calcium and magnesium concentrations in Big Spring
in December 2010, but we lack sufficient data to
provide plausible explanations for this anomaly. This
anomaly aside, our observations suggest that surface
and shallow groundwater does not influence the
geochemistry of the hydrothermal system.

In the previous section, we describe several
anomalies in the historic data set for the aqueous
geochemistry of Big Spring. These anomalies preclude
a definitive interpretation of the geochemical evolution
of Big Spring. Nonetheless, we speculate on potential
interpretations that are consistent with the data set.
Increases in sodium and chloride concentrations
between 1906 and 1926 are consistent with mixing of
waters from a siliciclastic formation and thermal waters
at the source of Big Spring. The magnitude of the
increase in both sodium and chloride are equivalent, a
relationship consistent with both ions being controlled
by the dissolution of halite. Increases in calcium and
sulfate concentrations between 1926 and 1933 are
consistent with mixing of waters from a formation
containing gypsum or anhydrite and thermal
waters at the source of Big Spring. The decrease in
magnesium concentration in this same time frame is
consistent with dilution by this same mixing event.
The magnitude of the increase in both calcium and
sulfate are roughly equivalent, a relationship consistent
with both ions being controlled by the dissolution
of gypsum or anhydrite. An historic geologic event
of sufficient importance to affect crustal fluid-
rock systems was the earthquake at Hebgen Lake,
Montana. This event, however, took place in 1959,
well after the geochemical anomalies observed in Big
Spring. Events taking place between 1906 and 1926,
and again between 1926 and 1933, of sufficient scale
to affect the geochemistry of Big Spring have not been
identified. Decreased concentrations measured in our
study, relative to concentrations measured between
1933 and 1976, may reflect mixing of thermal waters
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with more dilute waters. We lack sufficient data to
develop a dilution model to test this hypothesis. In
addition, an event taking place between 1976 and
2010 that may have caused this mixing has not been
identified. Stable isotope and tritium analyses of spring
waters and local formation waters may be helpful in
testing this hypothesis.

CONCLUSIONS

This investigation, the first published
geochemical analyses of the thermal waters of the
Thermopolis hydrothermal system in more than 30
years, evaluates the aqueous geochemistry of this
hydrothermal system in an historic and regional
geochemical context. The following are conclusions
from this investigation:

1) Thermal waters of three active hot springs,

Big Spring, White Sulphur Spring, and
Teepee Fountain, are similar in composition.
The geochemistry of these thermal waters is
characteristic of carbonate aquifers or rocks
containing abundant carbonate minerals.

2) Previous studies postulate that the thermal
waters for the Thermopolis hydrothermal
system are a mixture of waters from Paleozoic
formations. The major element analyses
available for waters from these formations,
however, are not of sufficient quality to
determine whether the thermal waters are a
mixture of the Paleozoic aquifers.

3) In the time frame of this study (one year),
the water chemistry of Big Spring, White
Sulphur Spring, and Teepee Fountain was
constant through all four seasons, spanning
spring snowmelt and recharge as well as late
summer and fall dryness. This relationship is
consistent with a deep source not influenced
by shallow, local hydrogeology.

4) Several anomalies are evident in the historic
data set for the aqueous geochemistry of
Big Spring. Speculative interpretations of
these anomalies include thermal waters at
the source of Big Spring mixing with waters
from a siliciclastic formation between 1906
and 1926 and mixing with waters from a
formation containing gypsum or anhydrite
between 1926 and 1933. Decreased
concentrations measured in our study,

relative to concentrations measured between
1933 and 1976, are consistent with mixing
of thermal waters with more dilute waters.
Sufficient data are not currently available
to develop a dilution model to test this
suggestion, and events taking place in these
timeframes and of sufficient scale to affect

the geochemistry of Big Spring have not been
identified.
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Appendix 1. Methods.

Temperature, pH, oxidation-reduction potential
(ORP), dissolved oxygen (DO), and conductivity
(C) for each spring were measured using a YSI
Professional Plus handheld multiparameter meter.
The instrument was calibrated before each trip into
the field. Water samples were collected in 60-mL
Nalgene syringes that were pre-contaminated by
triple rinsing with spring water from the respective
spring, filtered through 0.45 um Nalgene syringe
filters using a 25mm surfactant-free cellulose acetate
membrane, and stored in acid washed and triple
rinsed 60-mL polyethylene bottles. One bottle was
filled for cation analysis, and a second was filled for
anion analysis. Cation samples were acidified with
trace-metal grade nitric acid to pH 2. Sample bottles
were subsequently sealed and stored in a refrigerated
environment.

Major, minor, and trace cations were analyzed
using inductively coupled plasma-optical emission
spectrometer (ICP-OES) and inductively coupled
plasma-mass spectrometer (ICP-MS). Anions were
analyzed using ion chromatography. The alkalinity
of the springs was measured in the field in April and
June 2011 (Table 4) using a Hach® digital titrator
(Model 16900) following U.S. Geological Survey
procedures (Rounds, 2006). The alkalinity of the
springs for the 2010 sampling events was calculated
from the chemical analysis by charge difference; these
results were comparable to the field measurements
made in 2011. Charge balances were computed
as the difference between the sum of cations and
sum of anions normalized to the total, expressed as
percent milliequivalents/kg. Saturation indices, the
partial pressure of CO,, and total dissolved inorganic
carbon (Table 4) were calculated for each water
sample using Geochemist’s Workbench® v10.0, the
b-dot ion activity model, and the resident database

thermo.com.V8.R6+.dat (Bethke and Yeakel, 2014).
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