
Problem 2, Mon. Sept. 11  2017       Due Fri. Sept. 22  Name:_________________________ 
 
Exponential Decay 
 
Where did we get the expression 

€ 

[235U] =[235U]0e
−λt  to describe the radioactive decay of 235U 

over time?  ([235U] means “the concentration of 235U”, [235U](t) means “the concentration of 235U 
as a function of time”, [235U]0 means “the concentration of 235U at time = zero – i.e., at the 
beginning”, λ is a rate constant, and t is time.  Of course, this equation applies not just to the 
decay of 235U, but to what we call the “first-order decay” of many things, including radioactive 
isotopes generally. 
 
The equation 

€ 

[235U] =[235U]0e
−λt  follows from an extremely simple rate law: 

 

€ 

d[235U]
dt

= −λ[235U]        1 

 
First, because [235U] is decreasing because of decay, we know that this rate is a negative number.  
Second, the equation just means that the rate of change of [235U] with time is directly 
proportional to the concentration of 235U ([235U]).  Any given atom of 235U has the same chance 
of decay as any other atom in a given time period.  The more atoms you have, the more atoms 
decay in a given time period.  That’s all we’re saying here.  Equation 1 is a very simple 
differential equation, which can be solved by algebraic rearrangement: 
 

€ 

d[235U]
[235U]

= −λdt         2 

 
Now, this isn’t a math class, so I’m not going to tell you why this is true, but 

€ 

dN /N = lnN + c∫  
(where c is a constant of integration).  So, we can perform an indefinite integral on both sides to 
obtain: 
 

€ 

ln[235U] = −λt + C         3 
 
where C is another constant of integration (we’ll get a constant of integration on both sides, but 
we can consolidate the two into a single constant on whatever side we choose).  We have to 
define what we call “boundary conditions” to figure out what C is.  A useful boundary condition 
arises by asking “how much 235U is there at the beginning, when t = 0?”  When t = 0, C = [235U]0.  
In other words, at t = 0 we have as much 235U as we started with (duh).  So, we can write 
 
  

€ 

ln[235U] = −λt + ln[235U]0       4 
 
because the identity of C doesn’t change just because t does not equal zero – it’s a constant, after 
all.  We rearrange to obtain: 
 
  

€ 

ln[235U]− ln[235U]0 = −λt        5 
 



This is the same as: 
 

  

€ 

ln [235U]
[235U]0

" 

# 
$ 

% 

& 
' = −λt         6 

 

Now, remembering that eln(x) = x, we have 

€ 

235U[ ]
235U[ ]0

= e−λt  

 
  

€ 

[235U] =[235U]0e
−λt         7 

 
Putting this solution into words, this simply says that the concentration of 235U decreases with 
time from [235U]0 (the amount we started with) to zero (eventually) in an exponential fashion.  
The rate is controlled by the rate constant λ, which you encounter in lab this week.  Remember 
that although we derived this with 235U, you can substitute 238U in there because it follows the 
same mathematical rules. 
 
Problem: Using the result of the above derivation (equation 7), and the information in the table 
below, calculate the half-life of 235U and 238U from the decay constant (λ  is the decay 
constant).  I’ve already given you the half-life below – I’m just asking you to show me how you 
calculate the number in the half-life column from the numbers in the decay constant column: 
 
Isotope  Abundance half-life (y)  decay constant (y-1) 
238U  99.2743% 4.468 x 109  1.55125 x 10-10 
235U  0.7200  0.7038 x 109  9.8485 x 10-10 
 
 
 
 
 
 
 
 
 
 
Problem 2: When one half-life of 235U has passed, what percentage of the original 238U (NOT 
235U) in the rock remains? 
 
 
 
 
Problem 3: If the Earth is 4.6 billion years old, is the ratio of parent 238U to daughter product 
(238U decays through a reaction chain to a stable daughter product, 206Pb) slightly greater than or 
slightly less than 1? 
 
 


