Exponential Decay

Where did we get the expression $[^{235}U] = [^{235}U]_0 e^{-\lambda t}$ to describe the radioactive decay of ^{235}U over time? ($[^{235}U]$ means "the concentration of ^{235}U ", $[^{235}U]$ (t) means "the concentration of ^{235}U as a function of time", $[^{235}U]_0$ means "the concentration of ^{235}U at time = zero – i.e., at the beginning", λ is a rate constant, and t is time. Of course, this equation applies not just to the decay of ^{235}U , but to what we call the "first-order decay" of many things, including radioactive isotopes generally.

The equation $[^{235}U] = [^{235}U]_0 e^{-\lambda t}$ follows from an extremely simple rate law:

$$\frac{d[^{255}U]}{dt} = -\lambda[^{235}U]$$
 1

First, because $[^{235}U]$ is *decreasing* because of decay, we know that this rate is a negative number. Second, the equation just means that the rate of change of $[^{235}U]$ with time is directly proportional to the concentration of ^{235}U ($[^{235}U]$). Any given atom of ^{235}U has the same chance of decay as any other atom in a given time period. The more atoms you have, the more atoms decay in a given time period. That's all we're saying here. Equation 1 is a very simple differential equation, which can be solved by algebraic rearrangement:

$$\frac{d[^{235}U]}{[^{235}U]} = -\lambda dt$$
 2

Now, this isn't a math class, so I'm not going to tell you why this is true, but $\int dN/N = \ln N + c$ (where c is a constant of integration). So, we can perform an indefinite integral on both sides to obtain:

$$\ln[^{235}U] = -\lambda t + C \tag{3}$$

where C is another constant of integration (we'll get a constant of integration on both sides, but we can consolidate the two into a single constant on whatever side we choose). We have to define what we call "boundary conditions" to figure out what C is. A useful boundary condition arises by asking "how much ²³⁵U is there at the beginning, when t = 0?" When t = 0, $C = [^{235}U]_0$. In other words, at t = 0 we have as much ²³⁵U as we started with (duh). So, we can write

$$\ln[^{235}U] = -\lambda t + \ln[^{235}U]_0$$
⁴

because the identity of C doesn't change just because t does not equal zero – it's a constant, after all. We rearrange to obtain:

$$\ln[^{235}U] - \ln[^{235}U]_0 = -\lambda t$$

This is the same as:

$$\ln\left(\frac{[^{235}U]}{[^{235}U]_0}\right) = -\lambda t$$

Now, remembering that $e^{\ln(x)} = x$, we have $\frac{\begin{bmatrix} 2^{35}U \end{bmatrix}}{\begin{bmatrix} 2^{35}U \end{bmatrix}_0} = e^{-\lambda t}$

 $[^{235}U] = [^{235}U]_0 e^{-\lambda t}$

Putting this solution into words, this simply says that the concentration of ²³⁵U decreases with time from [²³⁵U]₀ (the amount we started with) to zero (eventually) in an exponential fashion. The rate is controlled by the rate constant λ , which you encounter in lab this week. Remember that although we derived this with ²³⁵U, you can substitute ²³⁸U in there because it follows the same mathematical rules.

Problem: Using the result of the above derivation (equation 7), and the information in the table below, calculate the half-life of ²³⁵U and ²³⁸U from the decay constant (λ is the decay constant). I've already given you the half-life below – I'm just asking you to show me how you calculate the number in the half-life column from the numbers in the decay constant column:

Isotope	Abundance	half-life (y)	decay constant (y^{-1})
²³⁸ U	99.2743%	$4.468 \ge 10^9$	$1.55125 \ge 10^{-10}$
²³⁵ U	0.7200	0.7038 x 10 ⁹	9.8485 x 10 ⁻¹⁰

Problem 2: When one half-life of 235 U has passed, what percentage of the original 238 U (NOT 235 U) in the rock remains?

Problem 3: If the Earth is 4.6 billion years old, is the ratio of parent ²³⁸U to daughter product (²³⁸U decays through a reaction chain to a stable daughter product, ²⁰⁶Pb) slightly greater than or slightly less than 1?

6