Chapter 6: The Cryosphere

1. Continental Ice Sheets 2. Mountain Glaciers

3. Sea Ice

Highest point in Switzerland: Dufourspitze

The mountain snowpack in the American West contributes about 75% of the available water. The "slow release" snowpack acts as a kind of reservoir for water. Without snowpack, we would need a lot more dams!

TABLE 6-1 Area, Volume, and Sea Level Equivalent (SLE) of the Cryosphere			
Cryosphere Component	Area (10 ⁶ km ²)	Ice Volume (10 ⁶ km ³)	Potential Sea-Level Rise (SLE) (m)
Snow on land (NH*)	1.9–45.2	0.0005-0.005	0.001-0.01
Sea ice	19–27	0.019-0.025	~0
Glaciers and small ice caps			
Smallest estimate	0.51	0.05	0.15
Largest estimate	0.54	0.13	0.37
Ice shelves	1.5	0.7	~0
Ice sheets	14.0	27.6	63.9
Greenland	1.7	2.9	7.3
Antarctica	12.3	24.7	56.6
Seasonally frozen ground (NH)	5.9-48.1	0.006-0.065	~0
Permafrost (NH)	22.8	0.011-0.037	0.03–0.10

*Northern Hemisphere

Source: Lemke, P., J. Ren, R. B. Alley, I. Allison, J. Carrasco, G. Flato, Y. Fujii, G. Kaser, P. Mote, R. H. Thomas, and T. Zhang, 2007:

"Observations: Changes in Snow, Ice and Frozen Ground." In: *Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change* (Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller [eds.]). Cambridge University Press, Cambridge, United Kingdom, and New York, NY, USA.

-Mars?

Builds thermal inertia into the system:

© 2010 Pearson Education, Inc.

-Albedo; reflected light keeps ground from warming up -It takes 335,000 J of energy to convert 1 kg ice into water -Permafrost: By definition, ground temperature is 0°C or less for two years or more (based on temperature – not presence of any particular amount of ice).

-Heated from below, cooled from surface; base is where these forces balance out to 0°C.

-Arctic areas have already warmed more than the rest of the globe, and methane emissions from permafrost areas could increase substantially.

Mer de Glace (Mont Blanc)

 $\tau_b = \rho.g.h.sin\alpha$

 $\tau = \rho.g.h$

Greenland ice flow: Why you drill in the middle when you want a coherent record of the past

^{© 2010} Pearson Education, Inc.

National Snow and Ice Data Center

13 Sep 2015

31 Aug 2015

GREENLAND ICE SHEET MELT EXTENT

BBC 25 July 2012, "Satellites reveal sudden Greenland ice melt"

