Chapter 2: Systems

- Components (individual parts)
- State of a system (attributes)
- Links or couplings (allow flow of information)
 - Positive –
- Feedback loops (round-trip couplings)
 (Rule about overall effect)
 - (Rule about overall effect)

Cheesey example: President and Rosalynn Carter

Positive and Negative Feedback

Fig. 2-2

Equilibrium State:

- System shows no visible sign of change, and does not change if it is not disturbed
 - Stable equilibrium state: if system is disturbed it will return to its original equilibrium state
 - Unstable equilibrium state: if the system is disturbed, the system will be carried farther and farther from its equilibrium state

Mauna Loa Observatory Atmospheric Transmission

Perturbations: temporary disturbance of the system

Injection of SO_2 into atmosphere (by volcanoes or burning fossil fuels) forms sulfate particles that prevent sunlight from reaching Earth's surface.

Albedo = reflectivity of a surface:

TABLE 2-1Albedos of Some Common Surfaces

Type of Surface	Albedo
Sand	0.20-0.30
Grass	0.20-0.25
Forest	0.05-0.10
Water (overhead Sun)	0.03-0.05
Water (Sun near horizon)	0.50-0.80
Fresh snow	0.80-0.85
Thick cloud	0.70-0.80

© 2010 Pearson Education, Inc.

Low number = more solar energy is absorbed High number = more solar energy is reflected

Forcings: persistent disturbance of the system

"Daisyworld"

Daisy covered areas reflect more light away.

Temperature of planet depends on how much of its surface is covered by daisies.

Fig. 2-8

Fig. 2-12: Effect of forcing

Daisy coverage

Fig. 2-13

Rising solar input moves the line depicting the dependence of temperature on daisy coverage upward, which has the effect of moving P_1 to P_1' (closer to the high point of the parabola) – which makes the P1 state less stable:

 $\Delta T_o = T$ change w/o feedback

$$\Delta T_{eq} = T$$
 change w/ feedback

 $\Delta T_f = T$ change of feedback effect

Feedback effect: $f = \Delta T_{eq} / \Delta T_{o}$

f<1 is neg. feedback f>1 is pos. feedback

Fig. 2-14: Quantifying Daisyworld

Daisyworld tells us

- Climate systems have feedback loops that respond to perturbations and forcings
- Response is not "intelligent", but the system can be self-regulating
- It isn't necessarily optimal or perfect
 - Daisyworld response to solar luminosity increase dampens the T increase but does not stop it
 - Daisies do not get to live at their optimum temperature!