Ch. 14: Pleistocene Glaciations



© 2010 Pearson Education, Inc.



s R —
e TR & YA
4 e Y







al T

Glac













Gobi Desert
Huang

Ala Shan
Desert

DESERT 1 ALLUvVIUM
LOESS I derived from loess
Huang He hefore 1852 = = = ————






Moraines
















Glacial Landscapes







Oxygen Isotope Fractionation

e ...Between ocean and ice
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Fractionation Processes...

« H,'°0 evaporates more readily than
H,180

« H,’80 condenses more readily than
H,'°0 in rain...

* Ice in ice sheets is enriched in H,'°0,
and oceans become enriched in H,'80O
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Recent Ice Ages.:

» What causes ice ages”?

* Why do they change frequency over
time?
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* For the last 700,000 years, glaciations
occur roughly every 100,000 years

* Prior to this, cold periods occurred
about every 40,000 years

« Something fundamental changed at
about 700,000 years ago
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Milankovitch Cycles

Variations in Earth’ s orbital parameters definitely
affect total solar insolation a key latitudes!

-Insolation equatorially is not so important

-Insolation at ~65°N latitude is VERY important!
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(@) Low obliquity

(b) High obliquity
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The Vostok ice core record Sowce: Fetit et al, Natur, 1999,

Berger &Loutre, QSE, 1991
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A close link between global temperatures, greenhouse gasses,
and global ice volume



Feedbacks...

Global mean temperature

Intensity of summer

Planetary albedo
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Growth of continental
ice sheets

Fig. 14-9



Back to the “biological pump™:

Processes: Photosynthesis
Fecal-pellet production

° Long_te rm Oxygen production
inorganic carbon CO; + H0 —*CH0" + O,
cycle is too long | —— |
for the glacial- e e Lo
interglacial cycle o
Processes: Decomposition

e Focus on the Nutrient release
biOIOgiCaI pump Oxygen consumption
because it
operates on the
right time scale

Deep ocean



Efficiency with P,

At preindustrial 280 ppm CO,, biological
pump operates at intermediate
efficiency

* |f bio-pump were 100% efficient and
used all nutrients to their limit, P-q,
would be about 165 ppm

* If bio-pump ceased, P-4, would be
about 720 ppm!



Low P, = efficient bio-pump?

 In other words, you can substantially
affect atmospheric CO, and the
greenhouse effect by changing nutrient
supply to the oceans

* Shelf-nutrient hypothesis
* |ron-fertilization hypothesis
» Coral-reef hypothesis



Shelf-nutrient hypothesis
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... Bura i segiments Fig. 14-10



More ice, lower sea-level

 Rivers draining exposed shelf bring
nutrients from sediments

Interglacial sea level

Phosphorus-rich sediments - 5 T BT A
of the continental shelf
Glacial sea level

Fig. 14-11




P-cycle response time Is
~40,000 to 100,000 years
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But Cd chemistry casts doubt on this idea...
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Expansion of polar oceans?




A Temperature (°C)
o »® A N O N A

1280
1 =
260 2
Q.
1240 &
220 O
05

1200

150 200 250 300 350 400
Thousands of Years Ago

Petit J.R. et al. (1999). , Nature, 399: 429-436.



Iron Fertilization Hypothesis

Fe (iron) is often the limiting nutrient in the
open oceans - other nutrients are not used
because there is not enough iron

Fe is part of hemoglobin, but also of key
proteins in photosynthesis

Major source to oceans is wind-blown dust -
which was greater during glacial times (loess)

Marine sediments support this idea
Fertilize oceans with Fe?



Fe-fertilization feedback:

Atmospheric carbon
dioxide content

Intensity of oceanic
biological pump
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Coral Reef Feedback:

Ca2+ + 2HCO3- --> CaCO3 + CO2 + HzO

Glacial ice volume O Sea level O Shelf exposure
T (+)
Global surface O
temperature \
At heri
m%sgz ene < Reef growth

(Reef growth is source of CO, to atmosphere over
the short term)



Fig. 14-16

-) Feedback from vegetation:
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Vegetation Feedback:

Glacial ice volume
G and surface area
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Methane sulfonic acid (MSA)

Marine algae produce dimethyl sulfide (DMS)

DMS escapes to atmosphere, where it is
oxidized to MSA or SO,

Aerosol particles form, increasing
condensation nuclei for cloud formation

MSA preserved in ice as tracer - more marine
biological productivity during glaciation!



Correspondence between
temperature and MSA in ice cores
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Aerosol Feedback:

Biogenic aerosol
production

A

Marine algal
productivity

Cloud albedo

@

Global surface
temperature




Factors In pleistocene glaciations:

 Orbital Mechanics and sunlight to high
latitudes (tropics don’ t vary much)

* Need amplification of such cycles with
feedback systems!

* Biological pump: Shelf, Fe, Coral, MSA
* Negative vegetation feedback
e Others?
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Temperature history in central Greenland
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MAGNITUDE OF FORCING — MAGNITUDE OF FORCING —>

MAGNITUDE OF FORCING —
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