Chapter 12: Long-Term Climate Regulation

Carl Sagan and George Mullen posed the "Faint Young Sun" Paradox in 1972.

What about the details?

- "Faint young Sun paradox"
- Solution: A greenhouse gas or a lower albedo
- Strong negative feedback over the long term by silicate weathering
- Methane in early atmosphere?

Was Sun Really Dimmer 4.5 Ga ago?

- Understanding of nuclear fusion is, scientifically speaking, relatively simple and robust
- Was Sun more massive previously?
- How would it lose mass?

Solar wind: 10,000 times too slow to account for 1% mass loss

"Faint Young Sun" Revisited

- Solid: Solar output over time
- Bottom dashed: Effective radiating temperature T_e
- Top: Greenhouse effect assuming 340 ppm CO₂

Conclusion: Earth was too cold for liquid surface water until 1.9 Ga, but we have good evidence otherwise for 3.8 Ga or older! This requires AN ADDITIONAL FACTOR

Proposed Explanations:

- Albedo lower
- Greater greenhouse effect earlier
- Another source of heat

Geothermal heat: Radioactive decay in Earth keeps the interior hot, and was greater on early Earth (simply because our initially-supplied radioactive material had not decayed yet!)

...but the "deficit" is about 70 W/m², and geothermal only suppies 0.06 W/m² today...and maybe up to 0.3 W/m² on early Earth!

...geothermal vents? Stromatolites? C-isotope fractionation?

Albedo?

- NOT if cold! (snow, ice)
- With rocks like today, you would have to have albedo near 0 to account for the 30% dimmer Sun - which is impossible
- Some have proposed that absorption by water and black, basaltic rocks on land (not today's more granodiorite-like rocks with forests) could sufficiently decrease albedo – but this remains controversial
- This leaves us with a greater greenhouse effect as the most likely explanation

Long-term C cycle...

Silicate weathering: negative feedback

How much CO₂ needed?

- About 1000 times current 1 levels
- ...but there isn't all that much CO₂ in the atm today, so 1000 times isn't all that much
- We need only about 0.5% of C in limestones to solve the "faint young sun" problem!

...at 10 bars, the Earth would have been 80°-90°C - which Is another potential reason early life was hyperthemophiles!

Other greenhouse gasses? Methane

- Methanogenic bacteria: CO₂ + 4H₂ -> CH₄ + 2H₂O
- Could have caused ~1000 ppm methane in early (no or little oxygen) atmosphere
- With this much methane, we would not need any more CO₂ in atm than today to overcome the "faint young sun" paradox

Lack of siderite (FeCO₃) in Archaean paleosols limits The amount of CO_2 that could have been in the early atm

But a problem ... + feedback!

- Methanogens produce more methane on a warmer planet increasing greenhouse effect
- CO₂, CH₄
 comparable in concentration

CH₄-Climate Feedback Loop

Copyright © 2004 Pearson Prentice Hall, Inc.

Anti-greenhouse effect

- If sufficient methane, hydrocarbon aerosols (haze) form (like Titan, one of the moons of Saturn)
- This absorbs incoming sunlight and radiates it back to space
 - an "anti-greenhouse" effect

Archean Climate Control Loop

A bit like daisyworld...

Atmospheric CH₄ concentration

Evidence of past glaciations

(C)

© 2010 Pearson Education, Inc.

Glacial dropstone from Gowganda Fm. (Huronian Glaciation)

Glaciation Record...

- Huronian...rise of oxygen, loss of methane?
- Neoproterozoic
- Late Ordovician?
- Carboniferous
- Pleistocene

Neoproterozoic Glaciation

© 2010 Pearson Education, Inc.

Continents largely tropical - yet evidence for glaciation on all of them between 800 my and 600 my ago (except Antarctica, and that's just because it's so glaciated now we can't look).

How can Earth become completely ice-covered?

- This plot give "ice line" latitude for different CO₂ levels as a function of solar radiation input
- Unstable regions indicate "runaway icehouse" (unstabl e) conditions

How did photosynthetic life survive the icehouse?

 Ice is transparent to some degree

Temperature, Humidity

- The geologic record gives us indications of mean global temperature and mean global precipitation - not exact, but relative (high, low).
- How?
- Why this different glaciations?

Vascular land plants

Greater ¹³C/¹²C ratio in last 20 my

Effect of collision of India with Asia?

