Chapter 12:
Long-Term Climate Regulation

Carl Sagan and George Mullen posed the “Faint Young Sun”
Paradox in 1972.




What about the details?

“Faint young Sun
paradox”

Solution: A
greenhouse gas or a
lower albedo

Strong negative
feedback over the
long term by silicate
weathering

Methane in early
atmosphere?




Was Sun Really Dimmer 4.5
Ga ago”?

* Understanding of
nuclear fusion is,
scientifically speaking,
relatively simple and
robust

 Was Sun more
massive previously?

« How would it lose
mass”?

Solar wind: 10,000 times too slow to account for 1% mass loss



“Faint Young Sun” Revisited
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Conclusion: Earth was too cold for liquid surface water until
1.9 Ga, but we have good evidence otherwise for 3.8 Ga or
older! This requires AN ADDITIONAL FACTOR

Solar luminosity relative to present value



Proposed Explanations:

* Albedo lower
» Greater greenhouse effect earlier
* Another source of heat

Geothermal heat: Radioactive decay in Earth keeps the
interior hot, and was greater on early Earth (simply because
our initially-supplied radioactive material had not decayed yet!)

...but the “deficit” is about 70 W/m?2, and geothermal only
suppies 0.06 W/m? today...and maybe up to 0.3 W/m? on
early Earth!

...geothermal vents? Stromatolites? C-isotope fractionation?



Albedo?

NOT if cold! (snow, ice)

With rocks like today, you would have to have
albedo near 0 to account for the 30% dimmer
Sun - which is impossible

Some have proposed that absorption by
water and black, basaltic rocks on land (not
today’ s more granodiorite-like rocks with
forests) could sufficiently decrease albedo —
but this remains controversial

This leaves us with a greater greenhouse
effect as the most likely explanation



Long-term C cycle...
 Silicate weathering: negative feedback

Silicate rock weathering: |
CaSiO; + 3H,0 +2CO, --> gl
Ca?* + 2HCO; + H,SiO,
Limestone and chert formation
In oceans: Y
Ca2t + 2HCO3— > surface silicate
temperature » weatherin
CaCO, + H,0 + CO, ) .
H,S10, --> S10, + 2H,0 X
(-)
Plate tectonics i
returns CO, to atm: .
: greenhouse | atmospheric
CaCO; + S10,--> effect  [* pCO,

CaSiO, + CO,



How much CO, needed?
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...at 10 bars, the Earth would have been 80°-90°C - which
Is another potential reason early life was hyperthemophiles!

CO, concentration (X present level)



Surface temperature (K)

Other greenhouse gasses?
Methane

300

 Methanogenic bacteria:

290
280
270

260

« Could have caused ~1000
ppm methane in early (no
or little oxygen)
atmosphere

« With this much methane,
we would not need any
more CO, in atm than
today to overcome the
“faint young sun” paradox

1074 03 1072 107"
CO, partial pressure (bar)

Lack of siderite (FeCO,) in Archaean paleosols limits
The amount of CO, that could have been in the early atm



But a problem...+ feedback!

 Methanogens
produce more
methane on a
warmer planet -
Increasing
greenhouse effect

+ CO,, CH,
comparable in
concentration

CH,-Climate Feedback Loop

Surface
temperature

A

CH,
> production
rate
(+)
Greenhouse
effect
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Anti-greenhouse effect

If sufficient methane, hydrocarbon aerosols (haze) form (like
Titan, one of the moons of Saturn)
This absorbs incoming sunlight and radiates it back to space

- an “anti-greenhouse” effect
Archean Climate Control Loop

CH,
production
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A bit like daisyworld...
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Evidence of past glaciations
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Glacial dropstone from Gowganda Fm. (Huronian Glaciation)
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Millions of years ago



GOWGANDA FM.
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Neoproterozoic Glaciation

Spreading ridge

/‘ Subduction zone

Continents largely tropical - yet evidence for glaciation on all
of them between 800 my and 600 my ago (except Antarctica,
and that’ s just because it’ s so glaciated now we can’t look).



How can Earth become
completely ice-covered?
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How did photosynthetic life
survive the icehouse?

* Ice s
transparent
to some
degree
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Vascular land plants

Photosynthesis

CO, + Hy0

> CH,0 + 0,

energy gg
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CO, concentration (times present level)
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Greater 3C/12C ratio in last 20 my
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Effect of collision of India with Asia?

! Dgi

60 m.y. ago

High elevations
Middle elevations
Low elevations
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High elevations
Middle elevations
Low elevations

© 2010 Pearson Education. Inc.

4
Tibetan
Plateau

Himalaya
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