Chapter 11 Bankruptcy...no, wait...

Effect of Life on the Early Earth Atmosphere

© 2010 Pearson Education, Inc.

© 2010 Pearson Education, Inc.

Fig. 11-1: Stromatolites from the 3.5 billion year old Warrawoona formation in Australia. "Algal" mats?

© 2010 Pearson Education, Inc.

Note: Book committed a "no-no" by providing no scale...

If so, not like modern analogs (here) because oxygenic photosynthesis had not evolved yet

© 2010 Pearson Education, Inc.

BACTERIA

- Hyperthermophilic chemoautotrophs
- Evidence from C isotope fractionation
 but how?
- Anoxygenic photosynthesis, perhaps iron reducers very early
- Methanogens occur fairly close to the root of the molecular "tree of life"
- Is there a modern analog?

ARCHAEA

Example: Fe^{II/III} cycling and early life

 $2H^+ + 2Fe(II) \rightarrow H_2 + 2Fe(III)$

Characteristics of early life...

- Organisms closes to "last common ancestor" are chemoautotrophs (get fuel from inorganic sulfide, hydrogen, etc.)
- They are also hyperthermophilic they live at high temperature (current record for growth is about 123°C)

Carbon isotope fractionation

- ¹²C, ¹³C are stable isotopes
- Different masses lead to slightly different chemical reaction rates

Methanogenesis

- $CO_2 + 4H_2 --> CH_4 + 2H_2O$
- Some methanogens metabolize other chemicals, like formate (HCOO⁻)
- Without much oxygen in the atmosphere, could have had 1000 ppm methane from methanogens!
- Methane is ~23 times better as a greenouse gas than CO₂, would have kept Earth pretty toasty despite dimmer sun

Methanogenesis:

- $CO_2 + 4H_2 --> CH_4 + 2H_2O$
- C isotope fractionation
- Used by other organisms, making its way into organic matter? Or like Titan (hydrocarbon particles)?

Fractionation between inorganic and organic carbon all the way back...

Titan- moon of Saturn

Atmosphere \sim 98% N₂, 2% CH₄

Orange haze due to photochemical alteration of methane, forming hydrocarbon particles (like smog!)

 Titan's methane-containing atmosphere, from a distance and closer-up...

Titan:

Close up, shows a changing pattern of clouds in the nitrogen and methane atmosphere

Nitrogen Fixation

- Life needs nitrogen to make proteins, but most cannot use N₂ must use "fixed nitrogen" (NH₃, NO_{3⁻}, etc. because N₂ is quite inert).
- In today's atmosphere, lightning actually provides some fixed nitrogen: N₂ + O₂ --> 2 NO
- On early Earth, without O₂, another reaction may have provided fixed nitrogen: N₂ + 2CO₂ --> 2NO + 2CO
- NO eventually gets oxidized to nitrate (NO₃⁻)
- Prokaryotes can fix nitrogen and are more resistant to UV radiation! (evolved before much ozone?)
- Bacteria can then use NO_3^- for respiration, reduce it back to N_2

(a)

© 2010 Pearson Education, Inc.

The Rise of Oxygen

- Initially, oxygen must have been a poison (life started without it, makes it as a byproduct of photosynthesis)!
- First evidence (though equivocal) is from about 2.7 Ga
- 2a-methylhopanes (a breakdown product of modern cyanobacteria), steranes (from cholesterol, which is unique to eukaryotes that require oxygen)

 2α (Me), 17α (H), 21β (H)-hopane

- Coccoid (round)
- Filamentous
- Heterocystic
- Nitrogenase, for N fixation, is poisoned by oxygen
- Specialized cells

Endosymbiosis

- Chloroplasts are the parts of plant cells where photosynthesis occurs
- Chloroplasts have their own DNA which closely resembles that of cyanobacteria
- So modern plants host cyanobacteria, much like modern animals host mitochondria (resembling an organisms that is a diseasecausing organism today!)

If cyanobacteria were around 2.7 Ga ago, why didn't atmospheric oxygen react modern levels until 300 my ago?

- Lots and lots and LOTS of Fe (iron) around, most of it ferrous (Fe²⁺) like in many Fe-silicate minerals
- Fe²⁺ is very soluble in water
- The oxidized form, *ferric* Fe (Fe³⁺) is insoluble in water
- Complex but production of O₂ in ocean water would lead to oxidation of some ferrous Fe to ferric Fe, deposition
- So, even though oxygen produced, it was used immediately and could not build up in atmosphere, especially if oxygen production limited, "self poisoned", or limited by reduced volcanic emissions

Examples of BIFs...

FORMS OF DIFFERENT ELEMENTS UNDER DIFFERENT CONDITIONS

STRONGLY

STRONGLY

Detrital Uraninite (UO₂)

 U(VI) soluble, U(IV) insoluble

Detrital Pyrite (FeS₂)

What is the effect of oxygen on pyrite?

Paleosols, Redbeds

 Hematite (Fe³⁺ mineral) coats these windblown sand grains in arid environments, indicate oxygenated atmosphere

Mass-independent S isotopes

- Most chemical processes fractionate S isotopes
- (32, 33, 34, 36)
- Modern S in sediments falls along the MFL line
- Archaean S isotopes are shown - and DO NOT fall on the MFL!

© 2010 Pearson Education, Inc.

Example S fractionation eqn:

- $\delta^{34}S(^{o}/_{oo}) = \{[(^{34}S/^{32}S)_{sample} (^{34}S/^{32}S)_{std}]/[(^{34}S/^{32}S)_{std}]$
- This can only happen photochemically in an atmosphere without much oxygen

S chemistry complex before atmospheric oxygen...

No oxygen, no ozone...or...

© 2010 Pearson Education, Inc.

Fig. 11-12

So...

- At 2.7 Ga, evidence for cyanobacteria (that photosynthesize and make oxygen) and eukaryotes that require it.
- Oxygen in atmosphere isn't that great until about 2.3 up to 1.9 Ga, however
- Oxygen didn' t reach near-PAL levels until perhaps as late at 300 my!
- Paleontology (Ediacaran fauna, 600 my): These precambrian animals would have required at least 0.1 PAL, but there was probably not much more than this.

C isotopes in limestone get heavy...

© 2010 Pearson Education, Inc.

Fig. 11-17

Other constraints on atm O_2 ...

- O₂ levels < 13%, no forest fires
- O₂ level > 35%, everything would burn and we wouldn' t be here!

Fig. 11-19

© 2010 Pearson Education, Inc.

Do low-oxygen zones aid preservation of organic carbon and lead to increased atmospheric oxygen?

Dissolved O₂ concentration

© 2010 Pearson Education, In-

© 2010 Pearson Education, Inc.

Alternatively, we can simplify this to the negative feedback Above, keeping in mind the following:

$$CO_2 + H_2O = CH_2O + O_2$$