The Isabella anomaly imaged by earthquake and ambient noise Rayleigh wave dispersion
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Dispersion measurement of fundamental mode Rayleigh waves was

the earthquakes and the parametric Bessel-zeros ; . DE; performed using ambient noise (J. Stachnik) and earthquakes (H.
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Sierra Nevada Earthscope Project (SNEP) and Earthscope Transportable Array (TA) Rayleigh wave dispersion data are inverted for a shear velocity model to

constrain the geometry of the sub-crustal Isabella anomaly beneath the San Joaquin valley. The Rayleigh wave dispersion dataset was measured using the The starting velocity model for the velocity model in

two-plane wave method with earthquake records and using the parametric Bessel-zeros method (Ekstrom et al., 2009) with correlated ambient noise records. this box s a3.7km/s crustand a 4.4 km/s mantle

Two starting velocity models have been tested: a uniform (4.4 km/s) starting model and a starting model with the Moho mapped by Pn station time terms halfspace. The moho is imposed using the Pn-time
9 y . . . : ' _ 9 . . 9 . . PP y_ terms provided by Beuler and Shearer (in review).

(Buehler and Shearer, in review). We find that over most of our sampling, a uniform starting velocity model inversion can be used to estimate the Moho depth
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In contrast to the shear wave model to the left of this text, a uniform
velocity starting model was used:i.e., a 4.4 km/s halfspace.
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The white lines at moho depths are moho depth estimates from

* receiver functions (Frassetto et al., in review)
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as the depth of the maximum velocity gradient. The shear wave images are made in three steps: 1) a . -
phase velocity map inversion at 4-100 s periods; 2) a 100 122
Our image of the Isabella anomaly is provisionally interpreted to manifest a composite anomaly consisting of a Pacific plate slab-flap (Monterrey microplate) vertical velocity Inversion on a 20 km_ grid Saml?'ed - — - - - TS0 B0 S0 S0 4 4 3 0 ;0 10 o
and the foundering roots of the southern Sierra Nevada batholith.The pros and cons of this composite interpretation will be discussed.The slab flap is identified ‘:Loerq tgi?n'oe?]a;sr:’gsg:xirpagzili?n'?szrtpﬁr':zO” of
as the 4.4-4.6 km/s NW-SE striking 150 km wide planar anomaly imaged at 60-100 km depth beneath the San Joaquin valley. The foundering southern Sierra dimensional velocity volu>r/ne
batholithic root is identified as the N-S trending 4.1-4.4 km/s high velocity region beneath the southern Sierran foothills. This anomaly is bowed down beneath @ : : s 0 - o, 0 v o,
the high standing southern Sierra block to form a wedge filled with 4.1-4.2 km/s which is interpreted as in-flowed asthenosphere. - B - 2 70 U B - —— A - : = v
Comparison of our velocity model with another ambient/earthquake dispersion data image (Moschetti et al., in review) finds that the two models are well e 2s - e
correlated. Comparison of our velocity model with teleseismic body wave images reveals substantial differences in the geometry and depth extent of the R sy sy ey e e e e A et 5 e o 100 20 2o st0 ofo a0 abo
Isabella anomaly related to wave resolution differences. P-wave receiver function crustal thickness maps agree in about 70% of their jointly sampled area. o . o s " " . . " \
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1. Both the uniform starting models (4.4 km/s) with no imposed moho and aimposed moho using the Pn time-terms from Beuhler and Shearer (in review) give -
very similar images especially with respect to the geometry of the subcrustal Isabella velocity anomaly. e h 3 % oo 1% o sko o sto 40 4t e o b o 1he 2o 2o abo ato sk ko S0 00 0 % me o w0 s 40 45 -0 80 0 0 e 1% a0 o 0 o o
2.The Isabella velocity anomaly can be explained as a composite anomaly associated with a N-S oriented foundering batholithic root from the southern Sierras ’ > e s - o e B <
and a NW-SE oriented anomaly that could be interpreted as a vertically oriented slab-flap extending beneath the continental margin associated with on i o . . sl -
inboard extension of the stalled Monterrey mricoplate. " oo " o - L
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3.In 70% of our shear velocity image using a uniform starting veloicty model (no imposed moho), the depth of the moho can be estimated as the depth of the -ion S0 0= 100 150 20 2% a0 sE o0 s -0 -G 0 g0 160 1% 20 20 w0 %0 400 450 P e EmE
maximum vertical velocity gradient . This method does not work in the Coast Range province.
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Moschetti et al. (in revew): Moho depth/amplitude From P,_s stacking segmentation is happening to the Juan de Fuca plate today with its two microplates: the Gorda and Explorer plates. - . - .
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versus our model : : . : e, L P L We estimate the depth to the moho by pickin - FR— i
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. Moho c:eith clomg)arisgr:b roug Ithey bloc This depends on how the micrplate segment from its subduction portions; two possibilities exist. Ritawoller P._s Moho Beubler/Shearer Pn Moho Stachnik max-gradient Moho velocity images constructed using the uniform - - -
50 rassetto (white line) vs. Gilbert - _ ime- ing 6. ' iSDersi (4.4 km/s) starting velocity model. mErr o om mom e e .
(black line) vs. Stachnik (4.0 1.Do the microplates viscously neck at the base of the seismogenically locked zone from its subducted portions (Andrews |Ibert/Fu200 ! 78vp/vs ame ters usm3 S crust _from ab'ent/eq dispersion d 4 u a Q | a
75 ‘ ' l . 2f and Billens, 2009) ? AN fi SR a0 - ki - .
km/s contour) ' N ¢ This moho depth picking method gives good i
’ results in most regions except the Coast Range -
100 > ! g 2.Do the microplates nucleated a ‘tear’ that propagates laterally along the slab to disconnect the subducted portions from region where thegcrustal thilc[:)kness of 44 km g =
e 3 w,,..m _ — the ‘dead’ microplate? : e.g.,as maybe happening in the zone of NE-SW left lateral faulting at the Mendocino triple-junction. clearly errant. We attribute the failure to find
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-3 the correct moho depth here due to two
factors: 1) reduced seismic sampling,and 2)
complicated velocity structure below the
Moho associated with understuffed

B 0 I L\ =00 g 200 How far inboard the microplates segment from their subducted portions will determine how much of a slab-flap may

initially extend beneath the margin to exert tractions at the base of the lithosphere/crust as the Pacific plate and its
inherited microplates translates to the NW. After segmenting, the slab flab may bend downwards due to eclogite loading
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