Yellowstone hotspot is an upper mantle plume

UW Post-doc Derek Schutt UW Ph.D. Huaiyu Yuan UU Greg Waite

Arizona Talk Febuary 2005

faculty.gg.uwyo.edu/dueker

www.mantleplumes.org

Outline

- Introduction
- 410 and 660 km topography
- Teleseismic P-wave tomogram
- Rayleigh wave S-wave tomogram
- Conclusions: upper mantle plume

Hotspot map (anderson's website)

Last 17 Ma Volcanism

map from Christenson et al., 2002

Is this MIP-sized volcanic event a subduction distorted plume head impact?

or just plain-old back-arc spreading?

Plume Head Impact at 17 Ma

from Jordan et al., 2004

Heat flow gradient

(Blackwell's website)

Geoid

Geoid map of the U.S. (Geoid99, NGS)

Scale: Blue to red is approximately +25 m

Shear wave velocity

Godey et al., 2004.

nothing extraordinary about Yellowstone region at this 500 km resolution scale-length

Nd and Hf Isotopic History of Silicic Volcanism of the Yellowstone Hotspot

Other's Yellowstone publications

- Walker et al., 2004, Plume under Elko, Nevada from SKS anisotropy (Harkening to Savage/Sheehan, 2000).
- Camp and Ross, 2004, Plume head impact and spreading
- Jordan et al., 2004, Plume head impact and spreading
- Christiansen et al., 2002, Upper Mantle origin for Yellowstone

Mantle Discontinuity Constraints

Fee, D. and K. Dueker Mantle transition zone topography beneath the Yellowstone hotspot Geophys. Res. Lett., vol. 31(L18603), doi:10.1029/2004GL02063, 2004.

http://faculty.gg.uwyo.edu/dueker

Converted S-wave Piercing Points at 660 km depth

good sampling within 90 hit-count contour

Global Pds stack and phasing

Phasing

Stack

Pds stack cross-sections

'olivine' discontinuity topography

410

Section conclusions

- 12 km depression in the 410 under Dillion Montana about 140 km NW of Yellowstone Caldera is consistent with 110 degree thermal anomaly. Would require a 15 degree dipping to the NW conduit to connect with Yellowstone Caldera.
- Negative velocity gradient at 380 km (atop the 410) and at 720 km (below 660). Both arrival phase correctly in global stack. Ongoing research in progress.

Mantle P-wave Tomogram

Yuan, H. and K. Dueker Teleseismic P-wave Tomogram of the Yellowstone Plume Geophys. Res. Lett., in review.

http://faculty.gg.uwyo.edu/dueker

Stations and Topography

combination of four arrays:

Snake River Plain 1993 Yellowstone array 2001 Billings array 2000 NSN and Utah Stations

> array time statics calculated using NSN/UU 8 station reference array

Mean crustal shear velocity

Schutt and Dueker, in review

6.82 km/s

3.88

3.86

3.84 3.82

3.80

3.78 3.76 3.74 3.72

3.70

3.68

3.66 3.64

3.62

3.60 3.58 3.56 3.54

3.52

3.50

3.48 3.46

44[°] N

6.08 km/s

P(moho)s times mapped to depth

velocity model is surface wave shear velocity and 1.76 Vp/Vs

Teleseismic Pwave crustal thickness and velocity timing corrections

0.3 s peak to peak

P-wave Tomogram

P-wave tomogram cross-sections

Synthetic smearing comparison

Real tomogram >>> Best fit by 400-600 km deep models

Theoretical anelasticity (Cammanaro et al., 2004) depends on Qs, E*, and V*

P-wave tomogram conclusion

- 80 km diameter conduit extends from beneath the Park to 500 km depth.
- 0.8% Vp conduit anomaly at 410 km is 140 degree thermal anomaly (using average Qs model).
- Velocity conduit at 410 km and the topography on the 410 discontinuity are consistent with about a 150 degree temperature anomaly.

Convectively destabilizing 80 km thick Archean Wyoming Craton ?

Region of maximal Laramide shortening between Bighorn's and Wind River's

Yuan and Dueker

Shear-wave velocity tomogram from Rayleigh waves (absolute velocities)

Schutt and Dueker

Excess temperature estimate of the Yellowstone Plume from a Rayleigh-wave tomogram

in review, 2005

Stations, topography and velocity regionalization

47 Yellowstone30 Billings array

red swath is domain of the Yellowstone hotspot track (YHT) velocity region

Crustal thickness and velocity

Crustal thickness map created via a combined inversion of phase velocity data and Moho Pds times. A Vp/Vs of 1.76 is assumed.

Rayleigh wave shear velocity

Minimum low velocity of 3.8 km/sec at 70 km among slowest subcrustal velocity on planet. YHT, BR, WY Shear velocity profiles and depth resolution

YHT 3.8 km/sec minimum at 75 km very slow!

WY profile shows 80 km thick 'normal' lithosphere

BR profile in between YHT and WY profiles

Tanzanian velocity (Weerarante et al, 2003)

Grain size sensitive velocity and attenuation

 Theoretical anelasticity: Qs(T, f, V*, E*, a, A) assume simple visco-elastic response specifiying Qs model specifies V-anelastic

 Empirical lab data fit: Vs(T, f, V*, E*, grain-size) use lab measured values on sub-solidus olivine at varying grain sizes and frequencies.

Grain size proportional to stress (higher stress promotes small grain-sizes).

Shear-wave velocity profiles

Intersection of dry solidus (Hirschman, 2000) with YHT around 100 km depth.

Intersection of 1320 degree adiabat translated to velocity with 2-6 mm grain-size with YHT around 120 km depth.

Theoretical velocity with respect to geotherm, V* and Qs

No melt in the velocity models

Grain size sensitivity shear modulus (Jackson and Faul, 2004)

Extended Burgers model fitted to G and 1/Q data for melt-free Fo₉₀ olivine Conditions: T = 1000-1300°C, $T_o = 1-1022$ s period, $d = 2.9 - 165 \mu m$ N=206, $d_R = 10 \mu m$, $T_R = 950$ °C, $\chi^2 = 213.0$

Smaller grains = lower velocity and higher attenuation

Excess temperature versus olivine grain size

"most would say" mean grain size is >2 mm

Need density constraints to separate grain-size and temperature velocity effects

max melt=1.1%

Grid Search of Yellowstone Excess Temperatures

Raleigh wave conclusions

- For Laboratory-based GSS velocity.
 > 100 deg hotter for 2 mm grains
 > 150 deg hotter for 4 mm grains.
 such small grains predict low Qs of 10-30.
 large melt-velocity scaling (H&H) explain data better (hmm).
- For theoretical based non-GSS anelasticity.
 - >> Qs of 10-20 in plume layer
 - >> V* between 4-25 cm^3/mole (lower is better)
- 1.1% maximum mean melt porosity helps reduce velocities. However, big uncertainty in choice of velocity reduction: the 2.1% Kreutzmann et al. or 8% H&H numbers.

Final answer: small upper mantle plume

Plumes

plume nucleating from a low viscosity zone between 660-1000 km depth.

Plumes nucleated from the coremantle boundary.

The End

Attenuation measurements

Gravity and topography modeling Mapping LAB with Pds/Sdp waves

North America Shear Velocity

Goes and van der Lee, 2001

Truncated model smearing tests

Top-Driven Processes

Edge-driven convection

Melt-rolls

Bowie/J. Fuca/Yellowstone

Global Pwave Tomogram

1.5

1.3

1.1

0.5 v

0.3 ο

0.1

- 0.3 u

- 0.5

- 0.7 ο n -0.9 %

-1.3

- 1.5

0.9 P

w

а 0.7 v

e

С

t ý - 0.1 р

b

SRP93 Vp/Vs cross-section (Schutt and Humphreys, 2004)

