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The western margin of British Columbia mani-
fests terrane accretion and subsequent distilla-
tion of large granitic batholiths throughout the 
late-Mesozoic and early Cenozoic.  Remarkable 
is the 55-50 Ma magmatic flareup that created 
the Coast Mountain Batholith (CMB) and was 
contemporaneous with laterally variable exhu-
mation along the orogen.  Distillation of the 
CMB requires a complementary ultramafic root 
that could be negatively buoyant if the distilla-
tion occurs at >30 km depth.  Determining the 
fate of such a potentially negatively buoyant 
root is critical to understanding the processes 
of crustal evolution.

Analysis of data from 42 broadband PASSCAL 
seismic stations that operated for 15 months 
along two transects (north and south line, Fig. 
1) provides images of the crust and upper 
mantle.  The two transects were chosen to con-
trast their different exhumation histories with 
the very similar granite distillation histories 
during the 55-50 Ma flareup.  While both lines 
distilled similar volumes of granite, the north 
line underwent large-scale exhumation where-
as the south line did not. 

Figure  2) Regional geologic maps of Western Brit-
ish Columbia (Rusmore et. al., 2001) A) Tertiary 
strike-slip faults including the Coast Shear Zone B) 
Coast Shear Zone and adjacent units in the area 
between the Douglas and Burke Channels (north 
and north seismic lines).

Figure  1)  Topographic map of Western British Co-
lumbia showing the location of the North and South 
seismometer line arrays (black triangles). The white 
lines are the datum used in the seismic results. 

Figure 5) Interpreted geologic history of the Coast Mountain Batholith (CMB) from the ACCRETE project north of 
our study area (From Hollister and Andronicos, 2006)  A) In the late Cretaceous the CMB region was in a state of 
transpression which lead to crustal thickening due to the underthrusting of the Wrangellia terrane. At this time the 
CMB was an active magmatic arc due to the subduction of oceanic lithosphere. B) In the late Paleocene, the arc 
under went a period of transtension leading to the tectonic denudation/exhumation of the Central Gneiss Complex 
and the emplacement voluminous granatoid batholiths, termed the Eocene flare up.

Given a similar amount of granitic material emplaced into the crust for 
both the northern and southern transect regions, the lack of high veloci-
ties in the lower crust beneath the northern transect, coupled with high 
rates of exhumation there indicate that foundering of the crustal root is 
plausible.  Whereas beneath the southern transect, the lower crust condi-
tions apparently have not been sufficient to promote an eclogite-driven 
density instability.  This leaves the CMB distillation root in-situ, consistent 
with the elevated velocities and crustal thickening.  Thus, the question re-
mains as to when the north line foundered its restitic root and why the 
north line root foundered but the south line did not.  The combination of 
geochemical and exhumation studies will provide constraint with re-
spect to these unanswered questions.

Discussion

Surface Wave Inversion for Shear Velocity
- Ambient noise cross correlation for group velocities (5-25 sec.)
- Two-plane wave technique for phase velocities (20-120 sec.)
- Group and phase velocities inverted along profiles using crustal              
thickness estimates from CCP stacks as constraints

Receiver Functions:
- 70 events binned by backazimuth/slowness
- ~2 events per bin
- Events in the same bin simultaneously inverted for one 
  receiver function estimate
- Source spectrum estimated in the frequency domain using a 
  spline smoother

P wave Tomography:
- 90 teleseismic events 
- Variance reduction is 74% and 63% for north and south lines

The northern transect reveals a gradual crustal thickening from west to 
east with shear wave velocities that range from less than 3.4 km/s in the 
upper crust to 3.8 km/s near the crust-mantle boundary. In contrast, 
along the southern transect beneath the surface exposure of the CMB an 
8-10 km thick crustal welt with shear wave velocities exceeding 4.0 km/s 
in the lower crust are imaged. Both cross sections exhibit upper mantle 
shear velocities 4-9% lower than global averages, consistent with the 
high heat flow observed in the region.

Figure 3)  Global distribution of earthquakes used 
for tomography and receiver function results.  P
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Where the northern line crosses the Coast Mts. Batholith, a relatively flat 32 km thick crust is found.  While where the southern line crosses the Coast Mts. 
Batholith, a thicker 36 km crust with a welt that extends to 42 km depth is found. This welt is filled with high velocity lower crust from 42 to 25 km depth. 
This biggest difference between the north and south lines is that while the north line underwent massive exhumation to bring 9 kb gneissic rocks to the 
surface,  the south line had very little tectonic exhumation.. Our speculation is that the northern line has  dropped off its batholithic root below 30 km 
depth (depth at which garnet becomes stable in a granitic restite), while the south line has not dropped its batholitic root.


