# Baseline geochemical characterization of potential receiving reservoirs for carbon dioxide in the Greater Green River Basin, Wyoming

# Matthew S. Smith<sup>1</sup>, Shikha Sharma<sup>2</sup>, Teal B. Wyckoff<sup>3</sup>, Carol D. Frost<sup>1\*</sup>

<sup>1</sup>Department of Geology and Geophysics, University of Wyoming, Laramie, Wyoming 82071, U.S.A.

<sup>2</sup>Department of Renewable Resources, University of Wyoming, Laramie, Wyoming 82071, U.S.A.

<sup>3</sup>Wyoming Geographic Information Science Center, University of Wyoming, Laramie, Wyoming 82071, U.S.A.

\*Correspondence should be addressed to: frost@uwyo.edu

# ABSTRACT

Geologic sequestration of anthropogenic carbon dioxide  $(CO_2)$  will be a necessary part of a carbon management strategy for reducing atmospheric  $CO_2$  emissions so long as fossil fuels are a significant part of the energy mix. Proposed federal and state regulations for underground injection of  $CO_2$  require that underground sources of drinking water be protected. Accordingly, proposed federal regulations require analysis of the suitability of different receiving formations for geologic sequestration.

This study compiles all available water quality data for four potential  $CO_2$  receiving formations in the Greater Green River Basin of southwestern Wyoming. The Greater Green River Basin encompasses two large geologic structures, the Moxa Arch and Rock Springs Uplift, which potentially are capable of storing commercial quantities of  $CO_2$  in a number of formations, including the Nugget Sandstone, Tensleep/Weber Sandstone, Madison Limestone, and Bighorn Dolomite. The data suggest that except along the basin margins, the Tensleep/Weber, Madison, and Bighorn Formations are suitable targets under proposed federal and state geologic sequestration regulations. However, low total dissolved solids in Nugget Sandstone groundwater in parts of the Rock Springs Uplift suggest the potential for local, fracture-assisted recharge in this area. For this reason the Nugget Sandstone is less suitable than the deeper formations for  $CO_2$  storage in the Rock Springs Uplift.

**KEYWORDS**: Bighorn Dolomite, geologic sequestration, Madison Limestone, Moxa Arch, Nugget Sandstone, Rock Springs Uplift, Tensleep/Weber Sandstone, water quality.

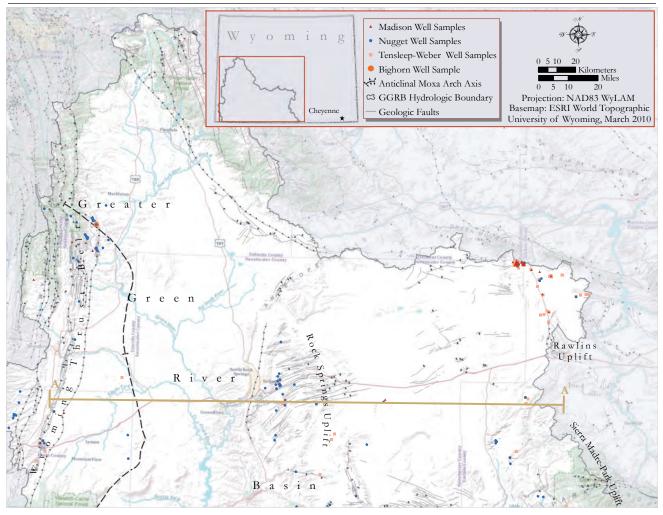
# **INTRODUCTION**

Geologic sequestration of anthropogenic  $CO_2$ is one of a number of strategies for reducing  $CO_2$ emissions to the atmosphere and thus for helping to mitigate anthropogenic climate change. It is part of the process of carbon capture and storage (CCS), in which  $CO_2$  is captured from power plants or other anthropogenic sources, compressed to convert it to a relatively dense supercritical fluid, and delivered to the storage site. It is injected into a subsurface geologic receiving formation at sufficient depth (greater than ~2625 ft (800 m)) to maintain the  $CO_2$  in a supercritical state. Natural subsurface accumulations of  $CO_2$ , including many in Wyoming, show that the gas can be trapped for millions of years (Huang et al., 2007; Lu et al., 2009).

Although in the long term it is anticipated that cleaner forms of energy will become competitive with energy from fossil fuels, in the near term geologic sequestration may be considered a bridging technology by which coal-rich nations such as the U.S., China, and India can continue to burn fossil fuels and limit  $CO_2$  emissions to the atmosphere. According to the International Energy Agency (IEA), the least expensive approach to halve expected carbon emissions by 2050 would rely upon CCS to contribute almost 20 percent of the necessary cuts. As noted by Van Noorden (2010), in order to achieve this target, the CCS industry must develop quickly; by mid-century, the volume of supercritical CO<sub>2</sub> that must be injected underground each year would be three times the current amount of petroleum extracted every year. This requires that the regulatory framework for CCS be established as soon as possible.

In 2008 the EPA proposed a new class of injection well, Class VI, under the authority of the Safe Drinking Water Act, that tailors existing Underground Injection Control (UIC) program standards for the geologic sequestration of  $CO_{\gamma}$  (40 CFR Part 144). The proposed rule outlines minimum technical requirements for geologic site characterization, well construction, operation, monitoring, and post-injection site care, among other criteria for Class VI. The purpose of both the proposed rule and the UIC program is to protect underground sources of drinking water (USDWs) from endangerment. USDWs are defined as an aquifer or a portion of an aquifer that currently supplies, or has sufficient capacity to supply, a public water system and contains less than 10,000 milligrams per liter (mg/L) total dissolved solids (TDS).

Under the EPA proposed geologic sequestration rule, the requirements for obtaining a Class VI injection permit include compiling information on the geochemistry of formation fluids of potential receiving formations within the three-dimensional region that may be impacted by injection activity (i.e., area of review). Pre-injection geochemical data can serve as a baseline against which data obtained throughout the injection phase may be compared. The State of Wyoming has primary enforcement authority (i.e., primacy) for the UIC program; in Wyoming, permits for geologic sequestration of CO<sub>2</sub> will be issued by the Wyoming Department of Environmental Quality (WDEQ) according to its proposed Water Quality Rules and Regulations, Chapter 24 (2010), once primacy for Class VI wells has been delegated to the state by EPA. Like the EPA rule, the WDEQ proposed regulations require baseline geochemical data on subsurface formations, including all USDWs in the area of review.


Demonstration of safe geologic sequestration of  $CO_2$  is a priority for the State of Wyoming because of its dependence upon revenues from the mineral industry. As the producer of 40 percent of the nation's coal, Wyoming has a particular interest in minimizing  $CO_2$  emissions, because coal-fired power plants emit 78 percent more  $CO_2$  per unit of energy than natural gas-fueled plants. Paleozoic saline aquifers in southwestern Wyoming are promising targets for geologic sequestration. Two large geologic structures

that have the potential to store commercial amounts of CO<sub>2</sub> in these formations are the Rock Springs Uplift and Moxa Arch (Fig. 1). The Rock Springs Uplift is an intra-basinal, Laramide-age basement uplift within the Rocky Mountain foreland that is flanked to the south by the east-west-trending Uinta Mountains (Mederos et al., 2005). The Moxa Arch is a ~190-km-long, north–south-trending anticline, bounded on the south by the Uinta Mountains and over-ridden in the north by the leading edge of the Wyoming Thrust Belt (Kraig et al., 1987; Stillwell, 1989). Preliminary characterization of the Bighorn and Madison carbonate formations, as well as the Tensleep/Weber and Nugget Sandstone formations at the Rock Springs Uplift and Moxa Arch indicates that they lie at depths and pressures for which CO<sub>2</sub> will be supercritical, and they appear to have the appropriate thickness, reservoir properties, overlying low-permeability lithofacies, and structural integrity to be good candidates for CO<sub>2</sub> storage. The storage units are overlain by a series of shales and other sealing lithologies that are necessary to ensure CO<sub>2</sub> will be contained. These geologic sites are also adjacent to several significant point source emitters of anthropogenic CO<sub>2</sub>, including PacifiCorp's Jim Bridger power plant at Point of Rocks on the Rock Springs Uplift and ExxonMobil's Shute Creek natural gas processing facility on the Moxa Arch.

The objective of this study is to compile preinjection baseline geochemical data for water from four potential receiving formations in the Greater Green River Basin of southwestern Wyoming: the Ordovician Bighorn Dolomite, Mississippian Madison Limestone, Pennsylvanian Tensleep/Weber Sandstone, and Jurassic Nugget Sandstone. These data are used to identify the geochemical character of the water in these formations, the variability of water geochemistry within each formation across the study area, and whether or not these aquifers meet the criteria of USDWs. Data were collected from different sources available in the public domain, including the U.S. Geological Survey and the Wyoming Oil and Gas Conservation Commission.

#### **GEOLOGIC BACKGROUND**

The Moxa Arch and Rock Springs Uplift lie within the Greater Green River Basin located in southwestern Wyoming and northwestern Colorado



**Figure 1.** Map of the Wyoming portion of the Greater Green River Basin. Well locations for which water quality data are available are color coded according to the formation from which the geochemical data were collected. The axis of the Moxa Arch is shown by the black dashed line and the location of the cross-section shown in Figure 2 is indicated by line A-A'.

(Fig. 1). It encompasses an area of approximately 21,000 mi<sup>2</sup> (54,000 km<sup>2</sup>). The basin is bounded on the west by the western Wyoming Thrust Belt, on the south by the Uinta Mountains and the Axial Basin anticline, on the east by the Sierra Madre and Rawlins Uplift, and on the north and northeast by the Gros Ventre and Wind River Mountains.

The Moxa Arch is a south-plunging, intra-basin, asymmetrical buried anticline about 72 miles (116 km) long and 12 mi (19 km) wide (Figs. 1 and 2). It terminates against the Uinta Mountains of Utah to the south and continues north into the LaBarge Platform. Structural growth of the Moxa Arch began during Frontier Formation deposition and continued into late Campanian time. This movement was contemporaneous with deformation in the western Overthrust Belt during the Sevier orogeny (Lehrer, 2006). Subsequent structural contraction during the late Laramide Orogeny reversed the original northward plunge of the arch and rotated it slightly to the east into its current structural position. This uplift resulted in the erosional truncation of over 3500 ft (1067 m) of Cretaceous Rock Springs and Hilliard Formations (Lehrer, 2006).

The Rock Springs Uplift is a north–south-trending, anticlinal structure in southwest Wyoming that formed in the Late Cretaceous/early Tertiary. The uplift is approximately 60 mi (100 km) long by 40 mi (65 km) wide. The uplift lies in the middle of the Greater Green River Basin and separates the Green River sub-basin to the west from the Washakie and Sandwash sub-basins to the east (Mederos et al.,

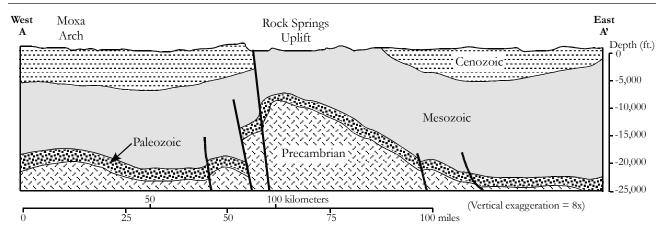



Figure 2. Schematic east-west cross section through the Greater Green River Basin. Vertical exaggeration 8x. Modified from Clarey (2008).

2005). The uplift is characterized by its asymmetric, west-vergent, antiformal shape and doubly plunging geometry. Seismic data suggest that a high-angle, west-vergent reverse fault occurs under the steeper western flank of the anticline and that basement is involved in the uplift (Bradley, 1964; Garing and Tainter, 1985; Montgomery, 1996). The uplift displays 14,800 ft (-4.5 km) of structural relief relative to the surrounding basins (Fig. 2; Montgomery, 1996).

Four geologic formations appear to be the best candidates for  $CO_2$  storage because they may have appropriate porosity, permeability, and capacity to hold large quantities of  $CO_2$ , they are overlain by thick shales and other sealing rock types, and they lie at sufficient depth to store  $CO_2$  as a supercritical fluid. These are the Nugget Sandstone, Tensleep/ Weber Sandstone, Madison Limestone, and Bighorn Dolomite (Fig. 3).

The Jurassic Nugget Sandstone is a major eolinite that, along with its probable equivalents such as the Navajo Sandstone, spans an area from northern Wyoming southward into Arizona and eastward into Colorado. In the Utah-Wyoming thrust belt, the Nugget is texturally heterogeneous with anisotropic reservoir properties inherited primarily from the eolian depositional environment (Lindquist, 1988). Nugget dune deposits primarily consist of grain-flow and wide-ripple cross-strata, the former of which have the better reservoir quality and the lesser heterogeneity in bedding texture. The thickness of the Nugget Sandstone in southwestern Wyoming varies from around 800 to 1000 ft (240 to 305 m), and porosity is variable (Table 1; Johnson, 2005). Low-permeability, gouge-filled micro-faults compartmentalize the formation, whereas intermittently open fractures provide effective permeability paths locally (Lindquist, 1988).

The Pennsylvanian Tensleep/Weber Sandstone was deposited in a marginal-marine setting of low relief where coastal dunes, marine foreshores and shorefaces, and carbonate shoals shifted positions in response to minor changes in sea level and sediment supply; this fluctuation of environments resulted in a complex package of interfingering lithofacies (Johnson, 2005). The sandstone is called Tensleep throughout much of Wyoming, although it is referred to as the Weber at oil and gas fields on the east side of the Rock Springs Uplift and the Sand Wash Basin. The Weber is approximately equivalent stratigraphically to the Tensleep Sandstone, but the upper part of the Weber is younger than the Tensleep (Johnson, 2005). Numerous dolomite layers exist throughout the Tensleep/Weber Formation, some as much as 12 ft (4 m) thick. The intervening thick bodies of quartz sand exhibit prominent crossbedding, some sets more than 50 ft (15 m) thick, as well as distinctive intervals of large-scale contorted bedding (Boyd, 1993). The formation contains linear and barchan dunes as well as interdunal deposits. The thickness of the formation is highly variable and depends on specific location, but most geologists report an average of about 500-700 ft (150-215 m) (Table 1; e.g., Johnson, 2005).

The Mississippian Madison Limestone was deposited on a carbonate shelf along the western

|          | Age           | Moxa Arch Rock Springs Uplift   |
|----------|---------------|---------------------------------|
| Tertiary | Eocene        | Wasatch Formation.              |
| Tert     | Paleocene     | Ft. Union Formation             |
|          |               | Mesaverde Group                 |
|          |               | Baxter Shale                    |
|          | Cretaceous    | Frontier Formation              |
|          |               | Mowry Shale                     |
|          |               | Muddy Sandstone                 |
|          |               | Thermopolis Shale               |
|          |               | Cloverly Formation              |
|          | Jurassic      | Sundance Formation              |
|          | 5             | Twin Creek Ls/Gypsum Spring Fm. |
|          |               | Nugget Sandstone                |
|          | Triassic      | Chugwater Formation             |
|          | Triassic      | Dinwoody Formation              |
|          |               |                                 |
|          | Permian       | Phosphoria Formation            |
|          |               |                                 |
| Pe       | ennsylvanian  | Tensleep/Weber Sandstone        |
|          | anno yrvannan | Amsden Formation                |
|          |               |                                 |
| М        | ississippian  | Madison Limestone               |
|          |               |                                 |
|          | Devonian      | Darby Fm                        |
|          | Silurian      |                                 |
| (        | Ordovician    | Bighorn Dolomite                |
|          |               | Gallatin Limestone              |
|          | Cambrian      | Gros Ventre Formation           |
|          | Jannonan      | Flathead Sandstone              |
|          |               |                                 |
|          |               |                                 |

edge of the North American craton. Where exposed at the southern end of the Wind River Mountains, the Madison is at least 215 ft (66 m) thick (Table 1; Berry, 1960). Over most of the state of Wyoming, the Mississippian carbonate strata are given formation Figure 3. Schematic Phanerozoic stratigraphic chart for southwestern Wyoming, including the Moxa Arch and Rock Springs Uplift. Simplified from Love et al. (1993).

rank as the Madison Limestone. Several of the equivalent strata, including Lodgepole Limestone, Mission Canyon Limestone, and Pahasapa Limestone, differ in ratio of dolomite to limestone, bedding type, texture, grain origin, and chert content (Boyd, 1993). The narrow seaway that extended into part of Wyoming in latest Devonian time was reestablished very early in Mississippian time after a brief absence. The limited areas drowned in these incursions received several tens of feet of conodont-bearing dark shale and silty dolomite now recognized as a basal member of the Madison sequence (Boyd, 1993).

The Madison is the most productive gas reservoir in the Green River Basin, with an original inplace natural gas resource of 22 trillion standard cubic feet (TSCF; Huang et al., 2007). Production is mainly from the LaBarge Platform at the northern end of the Moxa Arch. The gas is on average composed of 66 percent CO<sub>2</sub>, 21 percent methane, 7 percent nitrogen, 5 percent hydrogen sulfide, and 0.6 percent helium. Some CO<sub>2</sub> is separated from natural gas and helium at ExxonMobil's Shute Creek processing facility and supplied for enhanced oil recovery operations within Wyoming and Colorado. The remaining  $CO_2$  is vented or injected into down-dip acid gas injection wells (Huang et al., 2007). The Madison Limestone lies approximately 14,000 ft (4300 m) below ground level on the Moxa Arch near Shute

| Formation | Number of Wells | Thi  | ckness ( | (ft) | Porosity range (%) |
|-----------|-----------------|------|----------|------|--------------------|
|           |                 | Mean | Max      | Min  |                    |
| Nugget    | 87              | 900  | 1050     | 800  | 11-18              |
| Tensleep  | 87              | 640  | 840      | 500  | 4–12               |
| Madison   | 41              | 250  | 410      | 215  | 10-13              |
| Bighorn   | 7               | 450  | 500      | 200  | 2–8                |

Table 1. Number of wells with water quality data (Appendix 1) and reservoir properties of formations of interest (Johnson, 2005).

Table 2. Average water quality by formation, in mg/L, for formations of interest. Data from Appendix 1.

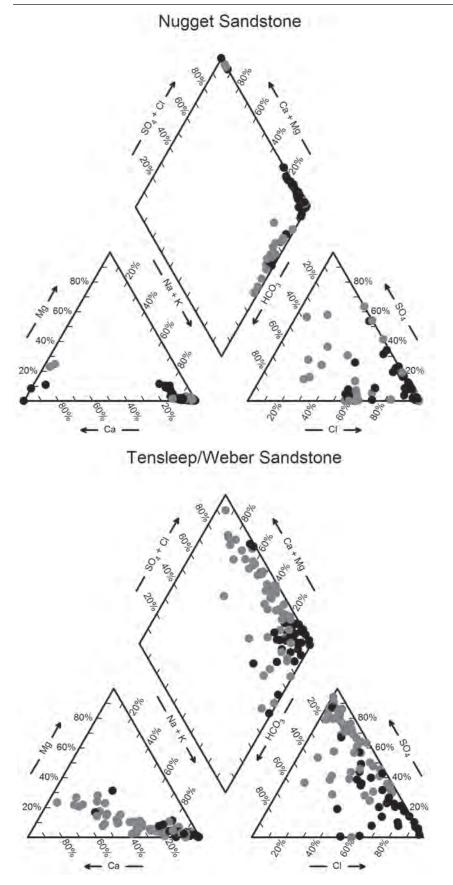
| Formation | Ca <sup>2+</sup> | Mg <sup>2+</sup> | Na⁺   | K⁺  | HCO <sub>3</sub> - | SO <sub>4</sub> - | Cl-   | TDS   | pН  |
|-----------|------------------|------------------|-------|-----|--------------------|-------------------|-------|-------|-----|
| Nugget    | 960              | 161              | 14732 | 507 | 1460               | 1996              | 23015 | 42110 | 7.2 |
| Tensleep  | 512              | 131              | 3431  | 104 | 1319               | 2541              | 4020  | 11570 | 7.6 |
| Madison   | 613              | 135              | 4270  | 154 | 1014               | 2491              | 5814  | 14114 | 7.4 |
| Bighorn   | 529              | 98               | 6037  | 339 | 1896               | 1750              | 8220  | 17974 | 8.1 |

Creek and 7500 ft (2300 m) below ground level at the crest of the Rock Springs Uplift.

The Bighorn Dolomite is an Upper Ordovician unit that is overlain by the Madison Limestone, Tensleep Sandstone, and the Nugget Sandstone, and like the other formations is also of sufficient thickness and adequate porosity to represent a potential target reservoir for geologic sequestration (Table 1). The Bighorn Dolomite shares stratigraphic, paleontologic, and petrologic similarities with correlative rocks from west Texas to east-central Montana (Zenger, 1996). Sweet (1979, p. 46) describes the lower part of the Upper Ordovician western midcontinent succession as characterized by "...thick-bedded to massive, burrow-mottled skeletal wackestone and packstone, which, in many parts of the area studied have been altered to microcrystalline dolomite with little indication of original limestone fabric." Water quality data from this unit in the Green River

Basin are sparse because relatively few wells penetrate this deepest formation.

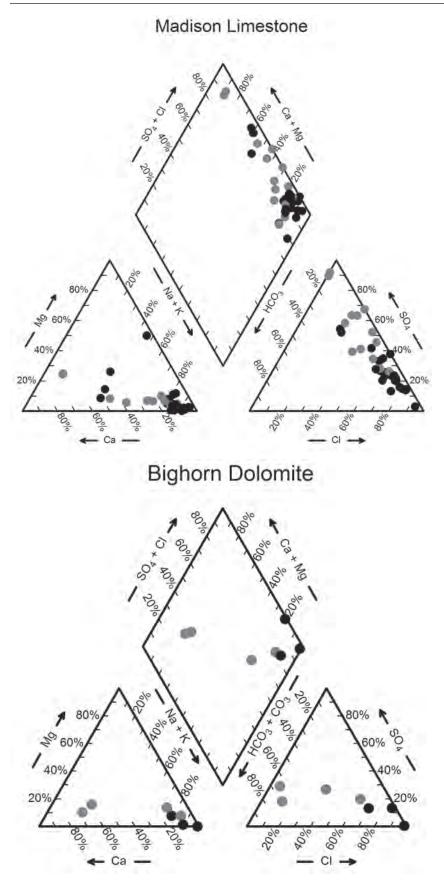
# **GEOCHEMICAL DATA**


The geochemical data used in this study were compiled from two online sources: the Wyoming Oil and Gas Conservation Commission (http://wogcc.state. wy.us/) and the United States Geological Survey (http://energy. cr.usgs.gov/prov/prodwat/data. htm). Average data for each formation is presented in Table 2; the complete data set are provided in Appendix 1.

Geochemical variation Piper diagrams were created with AqQaChem software (version 1.1.1) from RockWare from the compiled water quality data (Figs. 4–7; Appendix 1). Average water quality for each formation is presented in Table 2. Data for the Nugget, Tensleep/Weber, and Madison Formations are plotted spatially (Figs. 8–10) and contoured using kriging, an interpolation method based on statistical models that use spatial autocorrelation. This method assumes that distance and direction between sample points reflects a spatial correlation that can be used to explain variation in the surface. Inspection of the maps reveals that the distribution of data points has a profound effect on the resulting surfaces. With well sample locations distributed sporadically and centering on certain fields, the results skew when a single input point influences the resulting prediction surface.

The waters in this study from the Nugget Sandstone are dominantly Na<sup>+</sup>-Cl<sup>-</sup> plus a few samples of  $Ca^{2+}-Cl^{-}$  type (Fig. 4). The TDS of Nugget Sandstone waters are highly variable, ranging from 100 to >100,000 TDS (Appendix 1). The waters from the Tensleep/ Weber Sandstone are dominantly Na<sup>+</sup>-Cl<sup>-</sup> to Ca<sup>2+</sup>-SO<sub>4</sub><sup>-</sup> type, with TDS values >10,000 mg/L in the majority of the basin (Fig. 5; Appendix 1). The waters from the Madison Limestone are predominantly Na<sup>+</sup>-Cl<sup>-</sup> type with a few samples trending to Ca<sup>2+</sup>-SO<sub>4</sub><sup>-</sup> type (Fig. 6). In the majority of the basin, the TDS values are >10,000 mg/L (Appendix 1). On the basis of very limited data, the waters from the Bighorn Dolomite appear to be Na<sup>+</sup>-Cl<sup>-</sup> type, and TDS values are variable, with three samples >18,000 mg/L and four samples <6000 mg/L (Fig. 7; Appendix 1).

# DISCUSSION


The potential receiving formations in the Greater Green River Basin can be divided into two major types: the sandstone



**Figure 4 (top).** Piper diagram for the Nugget Sandstone showing chemical variation for water quality data from Nugget Sandstone groundwater. Black symbols represent samples with >10,000 mg/L TDS; gray symbols represent samples with <10,000 mg/L TDS.

**Figure 5 (bottom).** Piper diagram for the Tensleep Sandstone showing chemical variation for water quality data from Tensleep Sandstone groundwater. Black symbols represent samples with >10,000 mg/L TDS; gray symbols represent samples with <10,000 mg/L TDS.

aquifers comprising Nugget and Tensleep, and the carbonate aquifers comprising Madison and Bighorn. A great deal of research has focused on mineral trapping potential of sandstone aquifers. The findings indicate that reactions with Ca/Mg/Fe-bearing silicate minerals neutralize the acidic CO<sub>2</sub> and provide alkali metals that trap the CO<sub>2</sub> through the precipitation of carbonate (Gunter et al., 1997, 1999; Saylor et al., 2001; Hovorka et al., 2001). However, these chemical processes are very slow because of the low chemical reaction rates of the clay and feldspar minerals involved in the reactions. Injection of CO<sub>2</sub> into a sandstone reservoir like the Tensleep or Nugget Sandstone may initiate similar kinds of chemical reactions and utilize the buffering power of aluminosilicate reactions to take up the CO<sub>2</sub> through production of bicarbonates. However, the sandstone thickness, seal strata, grain size, permeability, porosity, and the mineralogy of these sandstones will be the prime determinants of their geologic sequestration potential. Mineralogy is important because the proportion of reactant CO<sub>2</sub> to the proportion



**Figure 6 (top).** Piper diagram for the Madison Limestone showing chemical variation for water quality data from Madison Limestone groundwater. Black symbols represent samples with >10,000 mg/L TDS; gray symbols represent samples with <10,000 mg/L TDS.

**Figure 7 (bottom).** Piper diagram for the Bighorn Dolomite showing chemical variation for water quality data from Bighorn Dolomite groundwater. Black symbols represent samples with >10,000 mg/L TDS; gray symbols represent samples with <10,000 mg/L TDS.

of reactant mineral in the rock will determine the amount of CO<sub>2</sub> stored as mineral precipitate. Moreover, the Nugget Sandstone, in which carbonate is the most prevalent cement, will have a different reactive potential than Tensleep Sandstone, which is cemented by quartz overgrowths as well as carbonate (Fox et al., 1975; Knapp, 1978). Much less is known about sequestration of  $CO_2$  in carbonate-rich rocks like those of the Madison and Bighorn Formations. However, it is generally agreed the reactions between CO<sub>2</sub> and carbonate rocks involve dissolution of calcite and adsorption of dissolved calcium on clays and formation of bicarbonate ions neutralizing the dissolution of CO<sub>2</sub> and buffering carbonate dissolution (Gunter et al., 1993).

In both sandstone and carbonate reservoirs the reactions with minerals in the formation are hypothesized to be much slower than reactions with formation water. Therefore, the sequestration resulting from simple  $CO_2$ -water interaction is more important on short time scales (Gilfillan et al., 2009). This is mainly because the dissolution of injected  $CO_2$ into formation water produces

Rocky Mountain Geology, v. 45, no. 2, p. 93–111, 10 figs., 2 tables, 1 appendix, October 2010

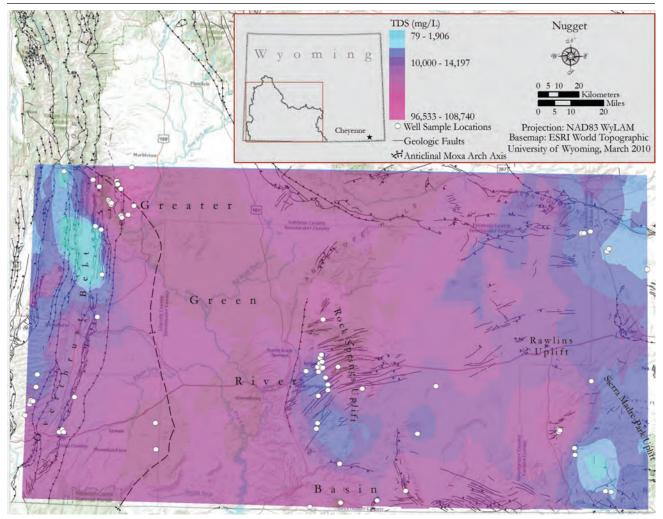



Figure 8. Geospatial map of the Green River Basin for the Nugget Sandstone showing the variation in TDS relative to well locations.

carbonic acid ( $H_2CO_3$ ), which forms large sinks of  $CO_2$  and initiates other water–rock reactions. The chemical composition of water is important because the solubility of injected  $CO_2$  will be controlled by concentrations of Na<sup>+</sup>, K<sup>+</sup>, Ca<sup>2+</sup>, Mg<sup>2+</sup>, Cl<sup>-</sup>, and  $SO_4^{-1}$  in the formation water (Duan and Sun, 2003; Chapoy et al., 2004; Duan et al., 2006).

### Spatial variability of water quality data

The water quality data for the Nugget Sandstone show spatial variability, as displayed in the TDS geospatial map (Fig. 8). Areas of low TDS indicate potential recharge zones, both along basin margins and in the Rock Springs Uplift area in the central part of the basin. The inferred rock fracture permeability in the Nugget Formation is considered high in the Rock Springs Uplift region (Clarey, 2008), and this could possibly account for the fresh water recharge in the central parts of the basin. It appears that the majority of Nugget wells in the Rock Springs Uplift are near surface faults (Fig. 1), which may provide conduits for fresh water recharge. If true, then the Nugget Sandstone may be a poor receiving formation for  $CO_2$  storage in the Rock Springs Uplift because of the potential for leakage along these pathways.

Water quality data for the other formations studied suggest recharge is limited to the basin margins. The Tensleep/Weber waters with <10,000 mg/L TDS are present along the eastern edge of the basin and probably represent areas of fresh water recharge near the Rawlins and Sierra Madre-Park Uplift (Fig. 9). These waters also have low concentrations of Na<sup>+</sup>, Cl<sup>-</sup>, and SO<sub>4</sub><sup>-</sup>. For the Madison Limestone, the low

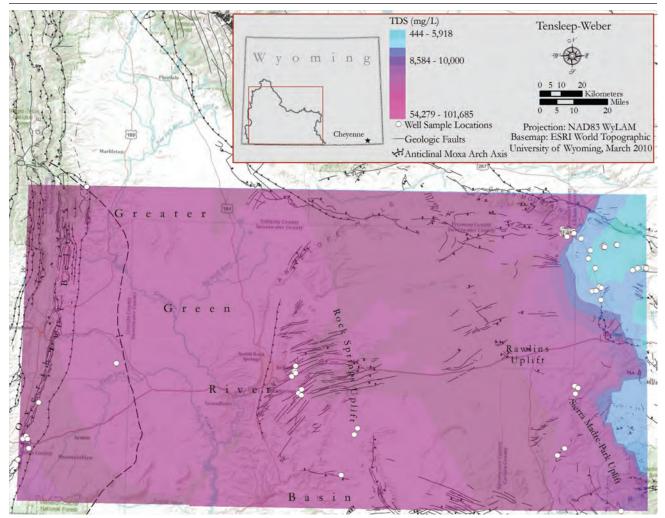



Figure 9. Geospatial map of the Green River Basin for the Tensleep Sandstone showing the variation in TDS relative to well locations.

TDS waters characterize areas receiving fresh water recharge near the eastern and northwestern parts of the basin (Fig. 10). These recharge zones are present in parts of the basin where the Madison Limestone is exposed at or near the surface, such as areas surrounding the Rawlins Uplift in the northeastern part of the basin and the overthrust belt in the northwestern part of the basin. In both Tensleep/Weber Sandstone and Madison Limestone, the Na<sup>+</sup>-, Cl<sup>-</sup>-, and SO<sub>4</sub>, concentrations and TDS values tend to increase with increasing distance from recharge areas toward the basin margin. The presence of briny Na<sup>+</sup>,  $Cl^-$ , and  $SO_4$ -rich waters in the deeper central part of the basin indicate that halite and gypsum/anhydrite dissolution was probably an important source of salinity in these formations in addition to, or instead of, evaporated seawater. Bighorn Dolomite

water quality data are limited to the western edge of the Green River Basin, where TDS values are variable. Because the data include some high TDS values even on the basin margins, then as was true for the overlying Madison and Tensleep aquifers, it is likely that TDS will exceed the definition of a USDW in the Bighorn Dolomite in the middle of the basin. Therefore the Bighorn Dolomite should be considered a viable target for geologic sequestration along with the other Paleozoic target formations.

The data compiled in this study indicate that the Tensleep/Weber Sandstone, Madison Limestone, and probably also the Bighorn Dolomite, contain water too saline to meet the definition of a USDW except near recharge zones along basin margins. The Nugget Sandstone also exceeds the definition of a USDW except along basin margins and on most of

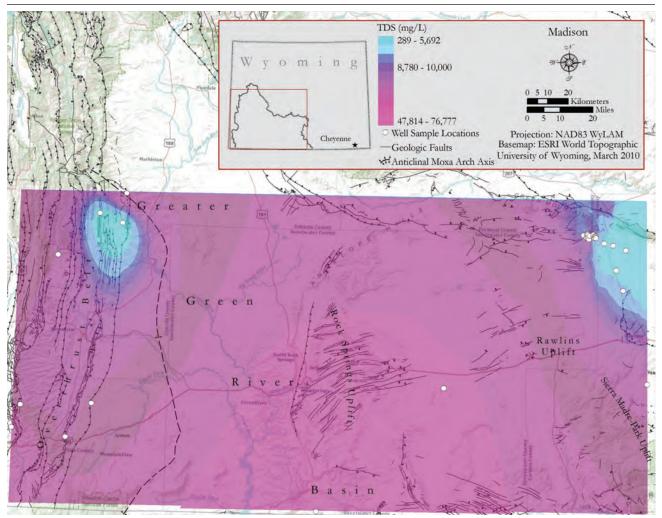



Figure 10. Geospatial map of the Green River Basin for the Madison Limestone showing the variation in TDS relative to well locations.

the Rock Springs Uplift. The relatively high density of mapped surface faults and potential for fault and fracture permeability on the Rock Springs Uplift decreases the suitability of the Nugget Sandstone as a  $CO_2$  storage formation.

### CONCLUSION

To assess the long-term  $CO_2$  storage potential of any geological formation it is important to develop a good understanding of these  $CO_2$ -water-rock interactions. In order to develop accurate models it is necessary to have baseline chemistry information on the formation waters and rocks into which  $CO_2$  is proposed to be injected. Field experiments are difficult to implement due to the long timescales of these reactions and challenges associated with the sample accessibility. Laboratory experiments and numerical and geochemical models are commonly used for predicting the fate of these  $CO_2$ -water-rock interactions. The preliminary geochemical data generated in this study can be used to characterize the chemical composition of formation waters and help to develop realistic geochemical models for these target formations.

Geologic sequestration should be considered in regions where TDS values of brines are greater than 10,000 mg/L and where baseline water quality data are available so that potential chemical reactions between  $CO_2$ , the reservoir host-rock, and brines may be modeled and understood. Based on the available geochemical data in this study, the Madison Limestone and Tensleep/Weber Sandstone waters meet the EPA Class VI requirements for injection in the majority of the Green River Basin. Although water quality data are sparse, the Bighorn Dolomite most likely also exceeds the EPA definition of a USDW. On the other hand, the water quality data for the Nugget Sandstone suggest that groundwater from this formation is below 10,000 mg/L TDS and meets the definition of a USDW on much of the Rock Springs Uplift. TDS on the uplift are variable; this variability may be related to proximity to faults, which may serve as conduits for recharge. The apparent higher fracture permeability for formations nearest the surface suggests caution is appropriate when considering younger units like the Nugget Sandstone for geologic sequestration.

#### ACKNOWLEDGMENTS

This project represents an undergraduate research project undertaken by M. Smith. It was funded by DOE award DE-NT0004730-Task 3, "Baseline geochemical characterization of produced waters and gases at Moxa Arch" to PI Shikha Sharma and co-PI Carol Frost. The authors thank Kevin Frederick and Sean Porse for helpful reviews, and Keith Clarey of the Wyoming State Geological Survey and Timothy Bartos and Laura Halberg of the USGS Water Resources Division for their assistance. This manuscript was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

### **REFERENCES CITED**

40 CFR Part 144, 2008, Federal requirements under the Underground Injection Control (UIC) Program for Carbon Dioxide  $(CO_2)$  Geologic Sequestration (GS) Wells; Proposed Rule: Environmental Protection Agency, Federal Register, July 25, 2008.

- Berry, D. W., 1960, Geology and groundwater resources of the Rawlins area, Carbon County, Wyoming: U.S. Geological Survey Water-Supply Paper 1458, 74 p.
- Boyd, D. W., 1993, Paleozoic history of Wyoming, *in* Snoke, A. W., Steidtmann, J. R., and Roberts, S. M., eds., Geology of Wyoming: Laramie, Wyoming, Geological Survey of Wyoming Memoir No. 5, p. 164–187
- Bradley, W. H., 1964, Geology of the Green River Formation and associated Eocene rocks in southwestern Wyoming and adjacent parts of Colorado and Utah: U.S. Geological Survey Professional Paper 496-A, 85 p.
- Chapoy, A., Mohammadi, A. H., Chareton, A., Tohidi, B., and Richon, D., 2004, Measurement and modeling of gas solubility and literature review of the properties for the carbon dioxide–water system: Industrial and Engineering Chemistry Research, v. 43, p. 1794–1802.
- Clarey, K. E., 2008, WWDC Green River Basin Plan II, groundwater study (Level I): Wyoming State Geological Survey, U.S. Geological Survey, Water Resources Data System Cooperative Water Study, http://74.125.155.132/ search?q=cache:o1QN4VyVBckJ:waterplan.state.wy.us/ BAG/green/briefbook/GRB\_GWStudy\_20081023.pdf+ WWDC+Green+River+Plan+II&cd=1&hl=en&ct=clnk &gl=us&client=safari.
- Duan, Z., and Sun, R., 2003, An improved model calculating CO<sub>2</sub> solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar: Chemical Geology, v. 193, p. 257–271.
- Duan, Z., Sun, R., Zhu, C., and Chou, I. M., 2006, An improved model for the calculation of CO<sub>2</sub> solubility in aqueous solutions containing Na<sup>+</sup>, K<sup>+</sup>, Ca<sup>2+</sup>, Mg<sup>2+</sup>, Cl<sup>-</sup>, and SO<sub>4</sub><sup>-2</sup>: Marine Chemistry, v. 98, p. 131–139.
- Fox, J. E., Lambert, P. W., Mast, R. F., Nuss, N. W., and Rein, R. D., 1975, Porosity variation in the Tensleep and its equivalent the Weber Sandstone, western Wyoming—A log and petrographic analysis, *in* Bolyard, D. W., ed., Deep drilling frontiers of the central Rocky Mountains: Denver, Colorado, Rocky Mountain Association of Geologists Guidebook, p. 185–216.
- Garing, J. D., and Tainter, P. A., 1985, Greater Green River Basin regional seismic line, *in* Gries, R. R., and Dyer, R. C., eds., Seismic exploration of the Rocky Mountain region: Denver, Colorado, Rocky Mountain Association of Geologists and Denver Geophysical Society, p. 233– 238.
- Gilfillan, S. M. V., and ten others, 2009, Solubility trapping in formation water as dominant CO<sub>2</sub> sink in natural gas fields: Nature, v. 458, p. 614–618.

- Gunter, W. D., Perkins, E. H., and McCann, T. J., 1993, Aquifer disposal of CO<sub>2</sub>-rich gases: reaction design for added capacity: Energy Conversion and Management, v. 34, p. 941–948.
- Gunter, W. D., Wiwchar, B., and Perkins, E. H., 1997, Aquifer disposal of  $CO_2$  rich greenhouse gases: Extension of the time scale of experiment for  $CO_2$ -sequestering reactions by geochemical modeling: Mineralogy and Petrology, v. 59, p. 121–140.
- Gunter, W. D., Perkins, E. H., and Hutcheon, I., 1999, Aquifer disposal of acid gases: Modeling of water rock reactions for trapping of acid wastes: Applied Geochemistry, v. 15, p. 1085–1095.
- Hovorka, S. D., Doughty, C., Knox, P. R., Green, C. T., and Benson, S. M., 2001, Evaluation of brine bearing sands of the Frio Formation upper Texas Gulf Coast for geological sequestration, *in* Proceedings, First National Conference of Carbon Dioxide Sequestration, Washington D.C., March 3–6, 2001: National Energy Technology Laboratory, http://www.netl.doe.gov/publications/ proceedings/01/carbon\_seq/carbon\_seq01.html.
- Huang, N. S., Aho, G. E., Baker, B. H., Matthews, T. R., and Pottorf, R. J., 2007, Integrated reservoir modeling to maximize the value of a large sour-gas field with high concentrations of inerts: International Petroleum Technology Conference 11202, 16 p.
- Johnson, E. A., 2005, Geologic assessment of undiscovered oil and gas resources in the phosphoria total petroleum system, southwestern Wyoming province, Wyoming, Colorado, Utah, *in* Petroleum Systems and Geologic Assessment of Oil and Gas in the Southwestern Province, Wyoming, Colorado, and Utah, Chapter 4, http://pubs. usgs.gov/dds/dds-069/dds-069-d/REPORTS/69\_D\_ CH\_4.pdf.
- Knapp R. R., 1978, Depositional environments and diagenesis of the Nugget Sandstone: southcentral Wyoming, northeast Utah and northwest Colorado, *in* Boyd, R. G., Olson, G. M., and Boberg, W. W., eds., Resources of the Wind River Basin: Casper, Wyoming Geological Association 30th Annual Field Conference, Guidebook, p. 131–138.
- Kraig, D. H., Wiltschko, D. V., and Spang, J. H., 1987, Interaction of basement uplift and thin-skinned thrusting, Moxa Arch and the western Overthrust Belt, Wyoming: a hypothesis: Geological Society of America Bulletin, v. 99, p. 654–662.
- Lehrer, M. G., 2006, Revitalizing the Moxa Arch: exploiting resource play: The Mountain Geologist, v. 43, p. 201–205.
- Lindquist, S. J., 1988, Practical characterization of eolian reservoirs for development: Nugget Sandstone, Utah–Wyoming thrust belt: Sedimentary Geology, v. 56, p. 315–339.
- Love, J. D., Christiansen, A. C., and Ver Ploeg, A. J., 1993, Stratigraphic chart showing Phanerozoic nomenclature

for the State of Wyoming: Wyoming State Geological Survey Map Series MS-41, 1 sheet., 1 p.

- Lu, J., Wilkinson, M., Haszeldine, R. S., and Fallick, A. E., 2009, Long-term performance of a mudrock seal in natural CO, storage: Geology, v. 37, p. 35–38.
- Mederos, S., Tikoff, B., and Bankey, V., 2005, Geometry, timing, and continuity of the Rock Springs Uplift, Wyoming, and Douglas Creek Arch, Colorado: Implications for uplift mechanisms in the Rocky Mountain foreland, U.S.A.: Rocky Mountain Geology, v. 40, p. 167–191.
- Montgomery, S. L., 1996, Brady Unit, Rock Springs Uplift, Wyoming: Migration and structural history: American Association of Petroleum Geologists Bulletin, v. 80, p. 1535–1546.
- Saylor, B., Matissoff, G., and Morrison, P., 2001, Geological and geochemical evaluation of the potential for CO<sub>2</sub> disposal in deep saline aquifers beneath Ohio: *in* Proceedings, First National Conference of Carbon Dioxide Sequestration, Washington D.C., March 3–6, 2001: National Energy Technology Laboratory, http:// www.netl.doe.gov/publications/proceedings/01/carbon\_ seq/carbon\_seq01.html.
- Stillwell, D. P., 1989, CO<sub>2</sub> resources of the Moxa Arch and the Madison Reservoir *in* Eisert, J. L., ed., Gas resources of Wyoming: Casper, Wyoming Geological Association 40<sup>th</sup> Field Conference, Guidebook, p. 105–115.
- Sweet, W. C., 1979, Late Ordovician conodonts and biostratigraphy of Western Midcontinent Province, *in* Sandburg, C. A., and Clark, D. L., eds., Conodont biostratigraphy of the Great Basin and Rocky Mountains: Brigham Young University Geology Studies, v. 26, p. 45–85.
- Van Noorden, R., 2010, Carbon sequestration: buried trouble: Nature, v. 463, 871–873.
- Wyoming Department of Environmental Quality, 2010, Class VI injection wells and facilities, underground injection control program, Chapter 24 (Draft for comment, February 2010), in Water quality rules and regulations: http://deq.state.wy.us/wqd/events/public%20notices/ UIC/Ch%2024%20Draft%20for%20WWAB%20 Sept%2025%2009%20(1).pdf.
- Zenger, D. H., 1996, Dolomitization patterns in widespread 'Bighorn Facies' (Upper Ordovician), western craton, USA: Carbonates and Evaporates, v. 11, p. 219–225.
- Manuscript Submitted April 7, 2010
- Revised Manuscript Submitted July 9, 2010
- Manuscript Accepted August 2, 2010

Appendix 1. Water quality data used in this study. Cation, anion, and total dissolved solids (TDS) concentrations are in mg/L. Data sources: WOGCC = Wyoming Oil and Gas Conservation Commission (http://wogcc.state.wy.us/), USGS = United States Geological Survey (http://energy.cr.usgs.gov/prov/prodwat/data.htm); NA = not available; an entry of -3 = no data; and entry of -1 = trace quantity. Continued on pages 107–111.

#### Nugget Sandstone:

| Well API   | LATITUDE  | LONGITUDE   | Ca   | Mg   | Na    | НСО3 | к    | SO4  | CI    | TDS    | рН  | Upper<br>Depth<br>(feet) | Lower<br>Depth<br>(feet) | Data source |
|------------|-----------|-------------|------|------|-------|------|------|------|-------|--------|-----|--------------------------|--------------------------|-------------|
| 4904120184 | 41,386060 | -110.841730 | 865  | 131  | 7650  | 244  | 232  | 3500 | 11200 | 23698  | 6.1 | NA                       | NA                       | USGS        |
| NA         | 41.4348   | -110.8176   | 478  | 68   | 5316  | 244  | 157  | 3450 | 6700  | 16289  | 7.1 | 7492                     | 7506                     | USGS        |
| 4904120080 | 41.45364  | -110.81339  | 412  | 111  | 5006  | 195  | 150  | 4200 | 5700  | 15675  | 7.3 | 7956                     | 7968                     | USGS        |
| 4904120113 | 41.448300 | -110.812460 | 457  | 56   | 4801  | 256  | -3   | 3150 | 5800  | 14779  | NA  | NA                       | NA                       | USGS        |
| 4904120080 | 41.453640 | -110.807410 | 467  | 84   | 4705  | 268  | -3   | 3145 | 5500  | 14539  | NA  | NA                       | NA                       | USGS        |
| NA         | 41.4496   | -110.7984   | 467  | 62   | 4657  | 281  | 130  | 3450 | 5600  | 14504  | 6.9 | 7459                     | 7470                     | USGS        |
| 4904120236 | 41.5128   | -110.78346  | 444  | 63   | 3297  | 154  | -3   | 2800 | 3900  | 10658  | 6.8 | 8748                     | 8818                     | USGS        |
| NA         | 41.5682   | -110.7792   | 356  | 44   | 2226  | 195  | -3   | 3700 | 1350  | 7871   | 6.9 | 9551                     | 9610                     | USGS        |
| NA         | 42.472433 | -110.666846 | 29   | 5.5  | 1.4   | 122  | 0.6  | 3690 | 1.2   | 168.1  | 8   | NA                       | NA                       | USGS        |
| 4904105215 | 41.31693  | -110.63675  | 1065 | 381  | 8245  | 559  | -3   | 4398 | 12120 | 26498  | 7.6 | 2120                     | NA                       | WOGCC       |
| 4904105218 | 41.329300 | -110.619010 | 1093 | 491  | 6013  | 48   | -3   | 3884 | 9700  | 21268  | 7.8 | NA                       | NA                       | USGS        |
| 4904105216 | 41.317780 | -110.610400 | 929  | 374  | 7698  | 465  | -3   | 4324 | 11400 | 25040  | NA  | NA                       | NA                       | USGS        |
| 4904105244 | 41.47508  | -110.55462  | 1045 | 437  | 7307  | 550  | -3   | 4304 | 10900 | 24264  | 7.9 | 1170                     | NA                       | USGS        |
| 4903520394 | 42.44045  | -110.49079  | 330  | 44   | 6807  | 73   | 275  | 3280 | 9000  | 19772  | 7   | 11267                    | 11294                    | USGS        |
| NA         | 42.234661 | -110.466280 | 51   | 11   | 43    | 210  | 0.9  | 2876 | 3.2   | 303.3  | 8   | NA                       | NA                       | USGS        |
| 4903505776 | 42.41089  | -110.45225  | 777  | 113  | 16400 | 380  | -3   | 2416 | 25000 | 44893  | 7.4 | 11620                    | 11646                    | USGS        |
| 4902360015 | 41.83405  | -110.43624  | 568  | 275  | 4011  | 273  | -3   | 5790 | 3540  | 14457  | NA  | 2225                     | 2230                     | USGS        |
| NA         | 42.220217 | -110.431279 | 50   | 745  | 3.6   | 0    | -3   | 4576 | 2.5   | 79     | NA  | NA                       | NA                       | USGS        |
| NA         | 42.022165 | -110.418222 | 57   | 24   | 8.6   | 0    | -3   | 1498 | 11    | 104    | NA  | NA                       | NA                       | USGS        |
| 4903520218 | 42.353210 | -110.393010 | 1862 | 37   | 29931 | 342  | -3   | 1300 | 50800 | 86139  | NA  | NA                       | NA                       | USGS        |
| NA         | 42.5      | -110.2622   | 2650 | 305  | 34471 | 451  | 2500 | 1029 | 60000 | 101177 | 6.2 | 9600                     | NA                       | USGS        |
| 4903520165 | 42.338690 | -110.381540 | 1960 | 276  | 31269 | 342  | -3   | 1251 | 53000 | 89865  | NA  | NA                       | NA                       | USGS        |
| 4903520198 | 42.33261  | -110.37653  | 2107 | 239  | 31884 | 342  | 1800 | 1362 | 54000 | 91560  | 8   | 11008                    | 11064                    | USGS        |
| 4903520345 | 42.33979  | -110.37522  | 2167 | 172  | 32436 | 268  | 1800 | 1150 | 55000 | 92857  | 7.3 | 10974                    | 10980                    | USGS        |
| 4903505833 | 42.433660 | -110.349760 | 390  | 253  | 32767 | 635  | -3   | 936  | 50000 | 85259  | NA  | NA                       | NA                       | USGS        |
| 4903520169 | 42.4374   | -110.34886  | 3500 | 2135 | 31577 | 586  | 2200 | 1060 | 62000 | 102761 | 6.7 | 9796                     | 9830                     | USGS        |
| 4903505819 | 42.42839  | -110.34531  | 2573 | 214  | 35489 | 390  | -3   | 1000 | 59000 | 98497  | 6.8 | 9770                     | 9808                     | USGS        |
| 4903520058 | 42.42168  | -110.34476  | 2812 | 135  | 31114 | 622  | 1860 | 934  | 54000 | 91161  | 6.8 | 9432                     | 9464                     | USGS        |
| 4903505812 | 42.42476  | -110.3428   | 3208 | 413  | 38527 | 236  | -3   | 1145 | 65331 | 108740 | 6.5 | 9874                     | 9891                     | USGS        |
| NA         | 42.4234   | -110.3415   | 2996 | 386  | 35973 | 220  | -3   | 1069 | 61000 | 101532 | 6.5 | 9874                     | 9891                     | USGS        |
| 4903505746 | 42.40369  | -110.32238  | 2792 | 257  | 36526 | 403  | -3   | 1078 | 61000 | 101851 | 6.2 | 10079                    | 10101                    | USGS        |
| 4903505128 | 42.28565  | -110.3215   | 1869 | 169  | 30019 | 415  | 1750 | 950  | 50800 | 85772  | 7.3 | 11020                    | 11030                    | USGS        |
| 4903506320 | 42.28741  | -110.31922  | 1674 | 230  | 29392 | 403  | 1720 | 400  | 50000 | 83614  | 7   | 10817                    | 10840                    | USGS        |
| 4903505176 | 42.288550 | -110.316180 | 1883 | 209  | 31412 | 378  | 317  | 1030 | 53000 | 89210  | 8.1 | NA                       | NA                       | USGS        |
| 4903520035 | 42.28341  | -110.31555  | 1090 | 109  | 18936 | 622  | 640  | 371  | 31400 | 52852  | 6.6 | NA                       | NA                       | USGS        |

| Well API   | LATITUDE  | LONGITUDE   | Ca   | Mg  | Na    | HCO3 | К    | SO4   | СІ    | TDS    | рН   | Upper<br>Depth<br>(feet) | Lower<br>Depth<br>(feet) | Data source |
|------------|-----------|-------------|------|-----|-------|------|------|-------|-------|--------|------|--------------------------|--------------------------|-------------|
| 4903520062 | 42.276180 | -110.310260 | 1961 | 123 | 32633 | 403  | -3   | 848   | 55000 | 92629  | NA   | NA                       | NA                       | USGS        |
| NA         | 42.2905   | -110.2738   | 1850 | 305 | 31220 | 464  | 2300 | 868   | 53500 | 90272  | 6.2  | 10800                    | NA                       | USGS        |
| NA         | 42.5      | -110.2622   | 2650 | 305 | 34471 | 451  | 2500 | 1029  | 60000 | 101177 | 6.2  | 9600                     | NA                       | USGS        |
| 4903505450 | 42.3301   | -110.23964  | 2288 | 320 | 35532 | 365  | -3   | 785   | 59000 | 98105  | 6.8  | 10128                    | 10178                    | USGS        |
| 4904105230 | 41.37155  | -110.07275  | 1475 | 139 | 28645 | 990  | -3   | 216   | 46500 | 77487  | 6.9  | 14526                    | 14646                    | USGS        |
| 4904120019 | 41.25489  | -110.06478  | 1078 | 239 | 27816 | 488  | 1000 | 184   | 46000 | 76557  | 7.7  | 14597                    | 14643                    | USGS        |
| NA         | 41.619131 | -109.192070 | 78   | 37  | 2700  | 590  | -3   | 210   | 3700  | 7511.1 | NA   | NA                       | NA                       | USGS        |
| 4903720754 | 41.01673  | -109.15309  | 23   | 14  | 16781 | 3123 | 1127 | 1320  | 24200 | 45003  | 6.3  | 12040                    | 12080                    | USGS        |
| 4903720396 | 41.36402  | -109.12415  | 123  | 24  | 2596  | 2513 | 140  | 418   | 2650  | 7189   | 8    | 3619                     | 3630                     | USGS        |
| 4903705644 | 41.63844  | -109.12385  | 103  | 30  | 5703  | 6000 | -3   | 918   | 4899  | 14004  | 7    | 4132                     | 4700                     | USGS        |
| 4903705584 | 41.61675  | -109.1187   | 80   | 37  | 4106  | 4600 | -3   | 117   | 3823  | 10425  | NA   | 4010                     | 4078                     | USGS        |
| 4903705290 | 41.38876  | -109.11855  | 100  | 44  | 2933  | 3550 | 203  | -1    | 3000  | 8038   | 8.2  | 3826                     | 3842                     | USGS        |
| 4903705353 | 41.51061  | -109.11662  | 115  | 30  | 4616  | 4760 | -3   | 59    | 4600  | 11764  | 8    | 4533                     | 4554                     | USGS        |
| 4903705693 | 41.65449  | -109.112    | 86   | 37  | 4088  | 4100 | -3   | -3    | 3900  | 10369  | 73   | 4064                     | 4076                     | USGS        |
| 4903705757 | 41.67835  | -109.11156  | 125  | 25  | 4066  | 4830 | -3   | 78    | 3700  | 10372  | 7.9  | 4365                     | 4375                     | USGS        |
| 4903705775 | 41.69287  | -109.10299  | 39   | 41  | 4238  | 4150 | -3   | 451   | 3980  | 10793  | 8    | 4577                     | 4587                     | USGS        |
| 4903705660 | 41.64132  | -109.1009   | 90   | 44  | 3936  | 4700 | -3   | 11    | 3619  | 9011   | NA   | 4290                     | 4300                     | USGS        |
| 4903705641 | 41.63772  | -109.10073  | 61   | 29  | 4049  | 4350 | -3   | -3    | 3908  | 10186  | NA   | 4095                     | 4135                     | USGS        |
| 4903705712 | 41.66199  | -109.09769  | 48   | -1  | 1613  | 1155 | -3   | 1067  | 1115  | 4998   | NA   | 4169                     | 4223                     | USGS        |
| 4903705622 | 41.6314   | -109.0973   | 34   | 37  | 3782  | 3375 | -3   | 290   | 3564  | 9590   | 8.15 | 4015                     | 4034                     | USGS        |
| 4903720156 | 41.84953  | -109.09676  | 171  | 50  | 34887 | 5124 | 1550 | 14489 | 42000 | 95670  | 7.8  | 8115                     | 8160                     | USGS        |
| 4903705630 | 41.635080 | -109.092440 | 103  | 30  | 2909  | 2500 | -3   | 443   | 2695  | 9111   | 7    | NA                       | NA                       | USGS        |
| 4903705528 | 41.59123  | -109.07643  | 106  | 51  | 3824  | 4490 | -3   | 23    | 3380  | 9787   | 8.3  | 4377                     | 4396                     | USGS        |
| 4903705377 | 41.53696  | -109.06119  | 20   | 38  | 3899  | 4900 | -3   | 60    | 3267  | 9677   | NA   | 3333                     | 3350                     | USGS        |
| 4903705440 | 41.56126  | -109.0611   | 110  | 39  | 3459  | 3800 | -3   | 9     | 3429  | 8916   | NA   | 3542                     | NA                       | USGS        |
| 4903705658 | 41.64035  | -109.00351  | 1087 | 398 | 26182 | 781  | -3   | 1375  | 42000 | 71823  | 7.8  | 4680                     | 4754                     | USGS        |
| 4903705196 | 41.21016  | -108.98377  | 69   | 20  | 3392  | 3250 | -3   | 34    | 3500  | 8617   | 7.5  | 7180                     | 7207                     | USGS        |
| 4903720007 | 41.03787  | -108.97443  | 729  | 176 | 21617 | 1952 | 1400 | 3634  | 32600 | 61117  | 7.4  | 14422                    | 14465                    | USGS        |
| 4903705405 | 41.54574  | -108.85859  | 207  | 34  | 9364  | 5480 | -3   | 1658  | 10500 | 24462  | 7.4  | 6673                     | 6683                     | USGS        |
| 4903705405 | 41.545740 | -108.858590 | 229  | 27  | 9662  | 5620 | -3   | 4850  | 10800 | 25276  | 7.3  | NA                       | NA                       | USGS        |
| 4903705104 | 41.04986  | -108.76042  | 279  | 17  | 6766  | 964  | 650  | 4850  | 7300  | 20518  | 8.6  | 13790                    | 14253                    | USGS        |
| 4903705131 | 41.09511  | -108.59389  | 56   | 8   | 14349 | 451  | 1385 | 340   | 23000 | 39360  | 6.7  | 14722                    | 14940                    | USGS        |
| 4903720522 | 41.34927  | -108.52861  | 25   | 6   | 3822  | 1635 | 39   | 57    | 5000  | 9754   | 7.2  | NA                       | NA                       | USGS        |
| 4903706394 | 41.560680 | -108.422340 | 112  | 51  | 5866  | 4002 | 285  | 95    | 4800  | 16498  | 8.6  | NA                       | NA                       | USGS        |
| 4900705087 | 41.360930 | -107.696760 | 1034 | 4   | 18532 | 476  | -3   | 70    | 30000 | 51895  | NA   | NA                       | NA                       | USGS        |
| NA         | 41.374000 | -107.696600 | 837  | 26  | 16256 | 427  | 65   | 109   | 26600 | 45947  | NA   | 4776                     | 4816                     | USGS        |
| NA         | 41.374000 | -107.696600 | 949  | 58  | 19957 | 464  | -3   | 105   | 32000 | 55165  | NA   | NA                       | NA                       | USGS        |
| 4900705095 | 41.370130 | -107.693730 | 798  | 2   | 18941 | 476  | 24   | 81    | 28800 | 51289  | NA   | NA                       | NA                       | USGS        |
| NA         | 41.368000 | -107.691000 | 809  | 364 | 20483 | 488  | 45   | 106   | 32800 | 56427  | 7.6  | 3871                     | 3913                     | USGS        |
| 4900705066 | 41.289980 | -107.604120 | 46   | 7   | 1130  | 1175 | -3   | 98    | 123   | 3292   | NA   | NA                       | NA                       | USGS        |
| 4900705062 | 41.259400 | -107.601350 | 42   | 7   | 1725  | 1183 | 63   | 91    | 510   | 5143   | 8.1  | 2883                     | 2918                     | USGS        |

| Well API   | LATITUDE  | LONGITUDE   | Ca  | Mg  | Na   | HCO3 | к  | SO4  | CI   | TDS   | рН  | Upper<br>Depth<br>(feet) | Lower<br>Depth<br>(feet) | Data source |
|------------|-----------|-------------|-----|-----|------|------|----|------|------|-------|-----|--------------------------|--------------------------|-------------|
| 4903706001 | 42.238280 | -107.563450 | 20  | 38  | 1521 | 2318 | -3 | 90   | 990  | 3785  | NA  | NA                       | NA                       | WOGCC       |
| NA         | 42.243200 | -107.562300 | 11  | 2   | 1616 | 2562 | -3 | 104  | 1080 | 4015  | 7.1 | NA                       | NA                       | USGS        |
| 4903720134 | 42.242260 | -107.549330 | 36  | 463 | 1724 | 2586 | -3 | 1360 | 1280 | 4450  | 7.4 | NA                       | NA                       | USGS        |
| NA         | 42.250000 | -107.510600 | 760 | 32  | 1826 | 622  | -3 | 750  | 4800 | 8107  | NA  | 3429                     | 3475                     | USGS        |
| 4900720034 | 41.587190 | -107.505120 | 95  | 84  | 3876 | 6954 | 26 | 1040 | 750  | 10316 | NA  | NA                       | NA                       | USGS        |
| 4900705219 | 41.098860 | -107.423820 | 25  | 6   | 1997 | 2500 | 39 | 2428 | 630  | 5213  | 7.2 | 4240                     | 4250                     | USGS        |
| 4900705816 | 42.161640 | -107.412240 | 18  | 136 | 1271 | 1905 | -3 | 1375 | 900  | 3132  | NA  | NA                       | NA                       | USGS        |
| 4900705816 | 42.161640 | -107.412240 | 18  | 3   | 1275 | 1911 | -3 | 1235 | 903  | 3141  | 7.6 | NA                       | NA                       | USGS        |
| 4900705830 | 42.173010 | -107.401310 | 10  | 74  | 1271 | 1320 | -3 | 1500 | 880  | 3081  | 7.1 | NA                       | NA                       | USGS        |
| 4900706984 | 41.095800 | -107.389930 | 22  | 7   | 1716 | 2611 | 30 | 1750 | 780  | 4432  | 8.2 | NA                       | NA                       | USGS        |
| 4900705722 | 42.081360 | -107.173060 | 72  | 25  | 843  | 1074 | -3 | 1720 | 316  | 2421  | NA  | NA                       | NA                       | USGS        |

# Tensleep/Weber Sandstone:

| WellAPI    | LATITUDE  | LONGITUDE   | Ca   | Mg   | Na    | K   | НСО3 | SO4  | CI    | TDS    | рН   | Upper<br>Depth<br>(feet) | Lower<br>Depth<br>(feet) | Data source |
|------------|-----------|-------------|------|------|-------|-----|------|------|-------|--------|------|--------------------------|--------------------------|-------------|
| 4904105094 | 41.22818  | -110.65982  | 890  | 44   | 4549  | -3  | 5200 | 4226 | 2432  | 15802  | 8.6  | 12877                    | 12927                    | USGS        |
| 4904105215 | 41.31693  | -110.63675  | 1086 | 105  | 5854  | -3  | 3050 | 4172 | 5454  | 18979  | 7.4  | 12929                    | 12997                    | USGS        |
| 4904105218 | 41.3293   | -110.61901  | 820  | 34   | 4744  | -3  | 3540 | 4021 | 5400  | 17297  | 8.2  | 13004                    | 130092                   | USGS        |
| 4904105216 | 41.31778  | -110.6104   | 526  | 140  | 3918  | -3  | 1405 | 3876 | 4700  | 14013  | 8.2  | 6280                     | 6305                     | USGS        |
| 4904105164 | 41.27724  | -110.60089  | 945  | 75   | 3761  | -3  | 4014 | 3647 | 3650  | 15619  | 7.4  | 6277                     | 6300                     | USGS        |
| 4904105244 | 41.47508  | -110.55462  | 962  | 87   | 4693  | -3  | 1440 | 4326 | 6800  | 16764  | 7.9  | 6502                     | 6527                     | USGS        |
| 4903505746 | 42.40369  | -110.32238  | 43   | 44   | 3860  | -3  | 1830 | 4852 | 1360  | 11192  | 8.6  | 12877                    | 12927                    | USGS        |
| 4903705584 | 41.61675  | -109.1187   | 528  | -1   | 3812  | -3  | 3060 | 697  | 4522  | 12619  | NA   | 6502                     | 6527                     | USGS        |
| 4903705655 | 41.64014  | -109.10509  | 973  | 47   | 26637 | -3  | 2013 | 1267 | 41000 | 72300  | 7.6  | 5515                     | 5535                     | USGS        |
| 4903705660 | 41.64132  | -109.1009   | 622  | 101  | 3732  | -3  | 2100 | 1327 | 4952  | 12834  | NA   | 6280                     | 6305                     | USGS        |
| 4903705712 | 41.66199  | -109.09769  | 1245 | 209  | 10606 | -3  | 3550 | 1915 | 15694 | 33219  | NA   | 6339                     | NA                       | USGS        |
| 4903705622 | 41.6314   | -109.0973   | 921  | 296  | 15641 | -3  | 0    | 1977 | 23760 | 42595  | NA   | 6277                     | 6300                     | USGS        |
| 4903705395 | 41.54499  | -109.07796  | 289  | 65   | 5612  | 0   | 3050 | 2647 | 6831  | 15918  | 7.7  | 6217                     | 6247                     | USGS        |
| 4903705377 | 41.53696  | -109.06119  | 386  | 80   | 2347  | -3  | 1740 | 3974 | 594   | 8237   | NA   | 5339                     | NA                       | USGS        |
| 4903720724 | 41.198330 | -108.827640 | 283  | 47   | 37646 | -3  | 5514 | 3746 | 50000 | 101685 | 7.2  | NA                       | NA                       | USGS        |
| 4903720384 | 41.372060 | -108.757740 | 3410 | 68   | 4328  | -3  | 1840 | 2398 | 11100 | 21871  | NA   | 6543                     | 6485                     | USGS        |
| 4903720385 | 41.398810 | -108.738500 | 6860 | 35   | 5570  | -3  | -3   | 2765 | 20500 | 33003  | NA   | NA                       | NA                       | USGS        |
| 4900720209 | 41.36678  | -107.65288  | 369  | 60   | 266   | 5   | 744  | 650  | 330   | 2046   | 6.7  | 10865                    | 10913                    | USGS        |
| 4900705066 | 41.28998  | -107.60412  | 98   | 99   | 8788  | 573 | 2093 | 2706 | 11219 | 25675  | 8.28 | 10224                    | 10244                    | USGS        |
| 4903721115 | 42.25761  | -107.58083  | 464  | 66   | 3183  | 138 | 793  | 3100 | 3300  | 10642  | 6.7  | 6624                     | 6700                     | WOGCC       |
| 4903705994 | 42.23582  | -107.5789   | 31   | 15   | 3919  | -3  | 4404 | 3    | 3580  | 9717   | 7.6  | 5163                     | 5575                     | USGS        |
| NA         | 42.259    | -107.5775   | 2975 | 1613 | 3204  | 180 | 281  | 1380 | 13900 | 23392  | 6.7  | 6204                     | 6244                     | USGS        |
| 4903706285 | 42.2593   | -107.57647  | 292  | 51   | 4571  | 210 | 1074 | 3400 | 4800  | 13858  | 8.1  | 7625                     | 7807                     | USGS        |
| 4903706012 | 42.23924  | -107.57218  | 332  | 75   | 3283  | -3  | 1167 | 3903 | 2314  | 10481  | 7.4  | 6583                     | 6633                     | USGS        |
| 4903706156 | 42.24645  | -107.5718   | 362  | 34   | 7474  | 60  | 1183 | 3750 | 8900  | 21169  | 8.2  | 5635                     | 6015                     | USGS        |
| 4903706108 | 42.24382  | -107.57079  | 560  | 140  | 11636 | 795 | 878  | 3240 | 17200 | 34009  | 7.8  | 6106                     | 6138                     | USGS        |
| 4903706018 | 42.23984  | -107.56592  | 520  | 79   | 4884  | 450 | 952  | 2494 | 6700  | 15596  | 7.1  | 5420                     | 5530                     | USGS        |
| 4903706281 | 42.25765  | -107.56243  | 309  | 36   | 1968  | 146 | 493  | 1790 | 1785  | 6277   | 7.6  | 5205                     | 5666                     | WOGCC       |

| Well API   | LATITUDE | LONGITUDE  | Ca    | Mg  | Na    | к    | НСО3 | <b>SO</b> 4 | Cl    | TDS   | рН   | Upper<br>Depth<br>(feet) | Lower<br>Depth<br>(feet) | Data source |
|------------|----------|------------|-------|-----|-------|------|------|-------------|-------|-------|------|--------------------------|--------------------------|-------------|
| 4903706218 | 42.24999 | -107.55919 | 447   | 99  | 4570  | 287  | 842  | 3185        | 5550  | 14553 | 7.6  | 5270                     | 5585                     | USGS        |
| 4903705997 | 42.2374  | -107.55742 | 507   | 105 | 3644  | -3   | 813  | 2423        | 4565  | 11644 | 7    | 4500                     | NA                       | USGS        |
| 4903705968 | 42.23192 | -107.55583 | 324   | 60  | 3295  | -3   | 752  | 2818        | 3313  | 10179 | 7.2  | NA                       | NA                       | USGS        |
| 4903705985 | 42.23404 | -107.55514 | 503   | 22  | 1384  | 34   | 1318 | 1625        | 1160  | 5378  | 7.2  | 5445                     | 5487                     | USGS        |
| 4903706087 | 42.24272 | -107.55483 | 423   | 79  | 1644  | -3   | 605  | 1828        | 1813  | 6392  | NA   | 5262                     | 6449                     | USGS        |
| 4903706146 | 42.24461 | -107.55245 | 377   | 83  | 3114  | 275  | 1976 | 3150        | 2550  | 10534 | 6.8  | 6812                     | 6916                     | USGS        |
| NA         | 42.25    | -107.5517  | 387   | 87  | 9404  | 760  | 2684 | 4981        | 10900 | 27841 | 7.9  | NA                       | NA                       | USGS        |
| 4903705961 | 42.2246  | -107.55002 | 608   | 61  | 1847  | -3   | 560  | 3378        | 1285  | 7456  | 7.6  | 7081                     | 7164                     | USGS        |
| 4903706273 | 42.25647 | -107.54728 | 403   | 202 | 2731  | 240  | 1354 | 2380        | 3200  | 9825  | 7.3  | 7209                     | 7270                     | USGS        |
| 4903706228 | 42.25027 | -107.54411 | 1387  | 594 | 8962  | 805  | 2538 | 5850        | 13000 | 33146 | 7.2  | 7239                     | 7291                     | USGS        |
| 4903706470 | 42.26008 | -107.54    | 1620  | 836 | 1055  | 60   | 708  | 1240        | 5660  | 10820 | 6.4  | 7142                     | 7176                     | USGS        |
| 4903706222 | 42.25007 | -107.5389  | 948   | 431 | 8950  | 620  | 1769 | 3950        | 13400 | 29178 | 7    | 6904                     | 7058                     | USGS        |
| 4903706238 | 42.25169 | -107.52964 | 386   | 56  | 5433  | -3   | 2390 | 5473        | 3800  | 16329 | 7    | NA                       | NA                       | USGS        |
| 4903706214 | 42.24955 | -107.52744 | 175   | 32  | 1908  | -3   | 675  | 2568        | 1058  | 6416  | NA   | 6130                     | NA                       | USGS        |
| 4903706245 | 42.25249 | -107.52452 | 357   | 137 | 4433  | 258  | 1977 | 3892        | 4131  | 15112 | 7.07 | 6180                     | 6280                     | USGS        |
| 4903706130 | 42.24441 | -107.52314 | 410   | 126 | 4813  | 380  | 2147 | 4100        | 4600  | 15488 | 7.6  | 6270                     | 6464                     | USGS        |
| 4900706007 | 42.25174 | -107.52058 | 432   | 119 | 6348  | -3   | 2850 | 4742        | 5746  | 20237 |      | 6000                     | 6336                     | USGS        |
| 4900705990 | 42.24263 | -107.51721 | 354   | 100 | 3623  | -3   | 1905 | 3280        | 2980  | 11275 | 7.6  | 6022                     | 6193                     | USGS        |
| 4900705985 | 42.24163 | -107.51541 | 587   | 134 | 2441  | -3   | 2087 | 2746        | 1956  | 8891  | 7.6  | 5869                     | 5883                     | USGS        |
| 4900705987 | 42.24197 | -107.51359 | 444   | 104 | 4000  | -3   | 2380 | 3436        | 3340  | 12496 | 7.4  | 6043                     | 6140                     | USGS        |
| NA         | 42.2489  | -107.5122  | 71    | 29  | 6767  | -3   | 6686 | 101         | 6686  | 16946 | 7.8  | NA                       | NA                       | USGS        |
| 4900705982 | 42.24115 | -107.5103  | 24    | 11  | 4808  | -3   | 6167 | 32          | 3882  | 11795 | 8.1  | 5754                     | 6103                     | USGS        |
| 4900705978 | 42.23911 | -107.5102  | 467   | 92  | 3404  | -3   | 1995 | 3084        | 2909  | 10937 | 7.2  | 5757                     | 6044                     | USGS        |
| 4900720034 | 41.58719 | -107.50512 | 150   | 92  | 15617 | 1700 | 4453 | 3494        | 21000 | 44246 | 7.7  | 10505                    | 10546                    | USGS        |
| 4900705950 | 42.21707 | -107.46766 | 304   | 56  | 574   | -3   | 241  | 1661        | 220   | 2932  | 7.2  | 6966                     | 7320                     | USGS        |
| 4900705945 | 42.21548 | -107.46491 | 335   | 58  | 347   | 9    | 156  | 1490        | 242   | 2558  | 7.6  | NA                       | NA                       | WOGCC       |
| 4900705776 | 42.13147 | -107.42624 | 411   | 78  | 381   | -3   | 185  | 1551        | 289   | 2895  | NA   | 4966                     | NA                       | USGS        |
| 4900705673 | 41.99278 | -107.40684 | 344   | 44  | 1542  | -3   | 260  | 1728        | 1690  | 5476  | 7.5  | 4776                     | NA                       | USGS        |
| 4900705746 | 42.09028 | -107.38749 | 406   | 79  | 564   | -3   | 100  | 1556        | 612   | 3317  | NA   | 5047                     | NA                       | USGS        |
| 4900705671 | 41.99527 | -107.38253 | 466   | 60  | 1581  | -3   | 175  | 1675        | 2100  | 5968  | 7.3  | 3778                     | 3796                     | USGS        |
| 4900705682 | 42.01304 | -107.36344 | 421   | 39  | 1758  | -1   | 317  | 2318        | 1697  | 6556  | 7.69 | 3857                     | 3887                     | USGS        |
| 4900705680 | 42.00689 | -107.35221 | 654   | 81  | 1505  | -3   | 255  | 3217        | 1191  | 6773  | NA   | 3404                     | NA                       | USGS        |
| 4900705860 | 42.18321 | -107.34484 | 584   | 122 | 221   | -3   | 420  | 1898        | 85    | 3330  | NA   | 4408                     | 4532                     | USGS        |
| 4900705860 | 42.18321 | -107.34484 | 573   | 121 | 173   | 0    | 354  | 1757        | 132   | 2930  | 7.2  | 4410                     | 4532                     | USGS        |
| 4900705861 | 42.18396 | -107.34036 | 494   | 113 | 1164  | -3   | 65   | 2567        | 1067  | 5470  | NA   | 4293                     | 4505                     | USGS        |
| 4900705867 | 42.18661 | -107.34009 | 718   | 217 | 492   | -3   | 420  | 2671        | 447   | 4965  | NA   | 4346                     | 4536                     | USGS        |
| 4900720385 | 42.18205 | -107.33771 | 573   | 174 | 1129  | 150  | 342  | 2250        | 1285  | 5730  | 7.9  | NA                       | NA                       | WOGCC       |
| 4900705866 | 42.18644 | -107.33535 | 858   | 272 | 765   | -3   | 150  | 2016        | 1915  | 5976  | NA   | 4351                     | NA                       | USGS        |
| 4900705841 | 42.1796  | -107.3349  | 556   | 125 | 761   | -3   | 240  | 2270        | 708   | 4660  | NA   | 4300                     | 4445                     | USGS        |
| 4900705845 | 42.18046 | -107.33224 | 494   | 129 | 245   | -3   | 178  | 1833        | 172   | 2961  | 7.4  | 4324                     | 4433                     | USGS        |
| 4900705280 | 41.64793 | -107.27317 | 232   | 58  | 1808  | -3   | 780  | 3123        | 608   | 6054  | 7.55 | 6122                     | 6176                     | USGS        |
| 4900705311 | 41.6551  | -107.27303 | 226   | 22  | 1771  | -3   | 1110 | 1885        | 1160  | 5611  | 7.1  | 5750                     | 5935                     | USGS        |
| 4900705338 | 41.6598  | -107.27299 | 198   | -1  | 2575  | -3   | 1475 | 1646        | 2250  | 8144  | 7.3  | 5784                     | 6072                     | USGS        |
| 4900705357 | 41.66259 | -107.27299 | 78    | 36  | 4147  | -3   | 1755 | 1771        | 4200  | 11192 | 8.4  | 5855                     | 6084                     | USGS        |
| 4900705893 | 42.19006 | -107.26478 | 303   | 66  | 389   | -3   | 295  | 1530        | 29    | 2612  | NA   | 4447                     | NA                       | USGS        |
|            |          |            | . ( . | 70  | 220   | 0    | 250  | 1554        | 24    | 2442  | NA   | 4302                     | NA                       | USGS        |
| 4900705893 | 42.19006 | -107.26478 | 341   | 70  | 330   | 0    | 250  | 1554        | 21    | 2772  | INA  | 4,502                    | 1971                     | 0363        |

| Well API   | LATITUDE | LONGITUDE  | Ca   | Mg  | Na   | К  | НСО3 | SO4  | Cl   | TDS  | рН  | Upper<br>Depth<br>(feet) | Lower<br>Depth<br>(feet) | Data source |
|------------|----------|------------|------|-----|------|----|------|------|------|------|-----|--------------------------|--------------------------|-------------|
| 4900705892 | 42.18991 | -107.26178 | 530  | 105 | 47   | -3 | 115  | 1680 | 10   | 2487 | NA  | 4274                     | 4316                     | USGS        |
| 4900705036 | 41.05145 | -107.24339 | 130  | 17  | 381  | 19 | 146  | 950  | 100  | 1669 | 7.8 | 7642                     | 7670                     | USGS        |
| 4900705036 | 41.05145 | -107.24339 | 131  | 12  | 463  | 23 | 110  | 1150 | 90   | 1979 | 7.7 | 7642                     | 7670                     | USGS        |
| 4900705414 | 41.67365 | -107.23027 | 484  | 69  | 2053 | -3 | 660  | 4123 | 800  | 7854 | 7.4 | 8176                     | 8208                     | USGS        |
| 4900720110 | 41.59113 | -107.21124 | 170  | 34  | 1203 | 17 | 329  | 2200 | 468  | 4421 | 7.7 | 5216                     | 5287                     | USGS        |
| 4900705722 | 42.08136 | -107.17306 | 524  | 97  | 1022 | -3 | 307  | 2306 | 851  | 4999 | 8.6 | 6383                     | 6454                     | USGS        |
| 4900705722 | 42.08136 | -107.17306 | 772  | 139 | 1171 | -3 | 476  | 3502 | 630  | 6399 | 8.2 | 6301                     | 6316                     | USGS        |
| 4900705745 | 42.08972 | -107.14401 | 433  | 85  | 1063 | -3 | 367  | 2030 | 945  | 4737 | 7   | 6602                     | 6648                     | USGS        |
| 4900706036 | 41.9638  | -107.10584 | 593  | 86  | 1447 | -3 | 842  | 2185 | 1430 | 6156 | 8.1 | 8871                     | 8939                     | USGS        |
| 4900705753 | 42.09259 | -107.09661 | 475  | 83  | 838  | -3 | 236  | 1613 | 1048 | 4173 | 7.9 | 6891                     | 7002                     | USGS        |
| 4900705572 | 41.82907 | -107.08697 | 1035 | 55  | 2115 | -3 | 3123 | 3794 | 640  | 9177 | 7.9 | 4808                     | 4840                     | USGS        |
| 4900706031 | 41.76378 | -107.01976 | 528  | 10  | 2440 | -3 | 342  | 5514 | 460  | 9120 | 8.2 | 3885                     | 3987                     | USGS        |

### Madison Limestone:

| Well API   | LATITUDE  | LONGITUDE   | Ca   | Mg  | Na    | К    | HCO<br>3 | SO4  | a     | TDS   | рН   | Upper<br>Depth<br>(feet) | Lower<br>Depth<br>(feet) | Data source |
|------------|-----------|-------------|------|-----|-------|------|----------|------|-------|-------|------|--------------------------|--------------------------|-------------|
| NA         | 41.351200 | -110.956000 | 464  | 72  | 17092 | -3   | 5185     | 3863 | 25100 | 47124 | NA   | NA                       | NA                       | USGS        |
| 4904120117 | 41.452941 | -110.908270 | 3296 | 337 | 3021  | -3   | 1232     | 2600 | 10100 | 21000 | 7.2  | 5778                     | 5880                     | USGS        |
| 4902320446 | 42.121410 | -110.718900 | 80   | 18  | 6864  | 517  | 1024     | 1926 | 1000  | 22003 | 8.5  | NA                       | NA                       | WOGCC       |
| 4904105215 | 41.316930 | -110.636750 | 816  | 337 | 6438  | -3   | 2270     | 9929 | 8181  | 20751 | 7.2  | 5778                     | 5880                     | USGS        |
| 4904120145 | 41.470000 | -110.490000 | 536  | 626 | 8081  | 590  | 1170     | 1758 | 11200 | 23719 | 6.7  | NA                       | NA                       | USGS        |
| 4903520090 | 42.312900 | -110.477840 | 577  | 135 | 113   | 2    | 268      | 1750 | 14    | 2899  | 7.4  | 2877                     | 2883                     | USGS        |
| NA         | 42.272857 | -110.340166 | 48   | 13  | 2.3   | -3   | 190      | 7465 | 3.1   | 289   | 7.1  | NA                       | NA                       | USGS        |
| 4903505746 | 42.403690 | -110.322380 | 241  | 97  | 8674  | -3   | 5100     | 2456 | 3800  | 25253 | 7.9  | 13718                    | 14033                    | USGS        |
| 4903720754 | 41.016730 | -109.153090 | 848  | 391 | 27188 | 1852 | 2635     | 1800 | 43400 | 76777 | 6.9  | 15840                    | 16097                    | USGS        |
| 4903720948 | 41.571603 | -108.412907 | 6335 | 845 | 11939 | 1755 | 378      | 1800 | 33400 | 54545 | 4.4  | NA                       | NA                       | WOGCC       |
| NA         | 42.252200 | -107.587500 | 470  | 96  | 2508  | -3   | 780      | 2180 | 2960  | 8483  | 6.8  | NA                       | NA                       | USGS        |
| NA         | 42.238700 | -107.572900 | 569  | 64  | 4447  | 430  | 866      | 2495 | 6100  | 14450 | 6.9  | 7250                     | 7630                     | USGS        |
| NA         | 42.241000 | -107.571900 | 385  | 93  | 3759  | 0    | 756      | 2432 | 4950  | 12218 | 7.6  | NA                       | NA                       | USGS        |
| 4903706108 | 42.243820 | -107.570790 | 1344 | 578 | 1514  | 130  | 549      | 1878 | 4820  | 10618 | 6.8  | 6471                     | 6487                     | USGS        |
| 4903706232 | 42.251100 | -107.567300 | 356  | 291 | 4114  | 0    | 667      | 2563 | 5504  | 13149 | 8.4  | 4794                     | 5410                     | USGS        |
| 4903706232 | 42.251850 | -107.566530 | 352  | 288 | 4073  | 0    | 660      | 2797 | 5450  | 13019 | 8.4  | NA                       | NA                       | USGS        |
| NA         | 42.248000 | -107.566000 | 400  | 97  | 3510  | -3   | 622      | 1700 | 4786  | 11115 | 7.65 | 4794                     | 5410                     | USGS        |
| 4903706258 | 42.255750 | -107.565570 | 304  | 60  | 2842  | -3   | 488      | 2456 | 3240  | 8818  | 8.1  | 5570                     | 5863                     | USGS        |
| 4903706281 | 42.257670 | -107.562430 | 278  | 88  | 3871  | -3   | 1305     | 7000 | 3800  | 11725 | 7.2  | NA                       | NA                       | USGS        |
| 4903706045 | 42.240930 | -107.562400 | 634  | 99  | 5493  | 271  | 587      | 1998 | 8465  | 17459 | 73   | 5814                     | 5841                     | USGS        |
| 4903706011 | 42.239200 | -107.562040 | 1330 | 143 | 6730  | 254  | 621      | 1998 | 13234 | 24142 | 7.4  | NA                       | NA                       | USGS        |
| 4903706253 | 42.254020 | -107.559700 | 790  | 17  | 5258  | 145  | 3404     | 1208 | 2400  | 17421 | 8.6  | 6047                     | 6122                     | USGS        |
| 4903706084 | 42.242920 | -107.557690 | 396  | 71  | 2816  | -3   | 969      | 2526 | 3215  | 8973  |      | 6120                     | NA                       | USGS        |
| 4903705985 | 42.234040 | -107.555140 | 396  | 71  | 2816  | -3   | 969      | 2506 | 3215  | 9465  | NA   | NA                       | NA                       | USGS        |
| NA         | 42.250000 | -107.551700 | 666  | 101 | 7387  | 312  | 537      | 2534 | 10750 | 22937 | 7.7  | 4986                     | 5412                     | USGS        |
| 1          | (         |             |      |     |       |      |          |      |       |       |      |                          |                          | LIGGO       |
| 4903706238 | 42.251690 | -107.529640 | 309  | 53  | 997   | -3   | -3       | 2828 | 652   | 3823  | 7.7  | 7046                     | 7102                     | USGS        |

| WellAPI    | LATITUDE  | LONGITUDE   | Ca   | Mg  | Na   | К   | HCO<br>3 | SO4  | CI   | TDS   | рН   | Upper<br>Depth<br>(feet) | Lower<br>Depth<br>(feet) | Data source |
|------------|-----------|-------------|------|-----|------|-----|----------|------|------|-------|------|--------------------------|--------------------------|-------------|
| 4903706262 | 42.255280 | -107.528260 | 257  | 56  | 2173 | -3  | 282      | 2445 | 2004 | 7074  | 7.2  | 5100                     | 5600                     | USGS        |
| 4903706262 | 42.255280 | -107.528260 | 275  | 68  | 2643 | -3  | 1724     | 1812 | 1895 | 8255  | 7    | NA                       | NA                       | USGS        |
| 4903706019 | 42.239590 | -107.522570 | 112  | 36  | 1251 | -3  | 575      | 3177 | 950  | 3888  | 8.3  | 7534                     | 7599                     | USGS        |
| 4900706001 | 42.247650 | -107.520670 | 399  | 9   | 3199 | -3  | 848      | 2528 | 3301 | 10440 | 7.9  | 6975                     | 7028                     | USGS        |
| 4900706000 | 42.246520 | -107.519240 | 432  | 87  | 3804 | -3  | 1556     | 1720 | 3971 | 12378 | 6    | NA                       | NA                       | USGS        |
| 4900705990 | 42.242630 | -107.517210 | 1251 | 134 | 1455 | -3  | 549      | 2556 | 3260 | 8090  | 7    | NA                       | NA                       | USGS        |
| 4900706003 | 42.249380 | -107.516480 | 536  | 126 | 4884 | -3  | 1730     | 1700 | 5500 | 15075 | 7.4  | 6670                     | 7028                     | USGS        |
| 4900720380 | 42.247490 | -107.515280 | 447  | 80  | 1610 | 138 | 720      | 1058 | 1960 | 6290  | 7.1  | 6838                     | 6921                     | USGS        |
| 4900705993 | 42.243640 | -107.514370 | 1278 | 131 | 4008 | -3  | 1450     | 1058 | 6000 | 14820 | 8.2  | 6450                     | 6577                     | USGS        |
| NA         | 42.238500 | -107.513200 | 437  | 88  | 3619 | 226 | 1573     | 2474 | 4015 | 12514 | 5.97 | 6750                     | 6800                     | USGS        |
| 4900705945 | 42.215480 | -107.464910 | 262  | 24  | 455  | 0   | 131      | 491  | 379  | 2242  | NA   | 6604                     | 6905                     | USGS        |
| 4900705934 | 42.205390 | -107.412120 | 262  | 24  | 455  | -3  | -3       | 1300 | 379  | 2178  | NA   | 6604                     | 6905                     | USGS        |
| 4900706932 | 42.095610 | -107.394300 | 191  | 39  | 1390 | -3  | 172      | 647  | 1996 | 4467  | 7.8  | 5935                     | 6015                     | USGS        |
| 4900705680 | 42.006890 | -107.352210 | 300  | 79  | 1779 | -3  | 195      | 1245 | 1568 | 6395  | NA   | 4059                     | 4444                     | USGS        |
| 4900705864 | 42.184780 | -107.336800 | 54   | 21  | 302  | -3  | 170      | 3423 | 162  | 1200  | NA   | 5000                     | 5259                     | USGS        |

# **Bighorn Dolomite:**

| Well API   | LATITUDE | LONGITUDE | Ca   | Mg  | Na    | К    | HCO<br>3 | SO4  | Cl    | TDS   | рН   | Upper<br>Depth<br>(feet) | Lower<br>Depth<br>(feet) | Data source |
|------------|----------|-----------|------|-----|-------|------|----------|------|-------|-------|------|--------------------------|--------------------------|-------------|
| 4120282    | 41.47328 | -110.9215 | 865  | 306 | 4712  | 2270 | 159      | 65   | 11053 | 18960 | 8.85 | NA                       | NA                       | WOGCC       |
| 4902320423 | 42.25861 | -110.1809 | 49   | 31  | 310   | 4    | 376      | 217  | 218   | 1046  | 8.4  | NA                       | NA                       | WOGCC       |
| 4902320423 | 42.25861 | -110.1809 | 45   | 29  | 616   | 6    | 323      | 276  | 636   | 1845  | 8.7  | NA                       | NA                       | WOGCC       |
| 4902320423 | 42.25861 | -110.1809 | 172  | 1   | 25157 | 92   | 1067     | 6900 | 32600 | 66198 | 9.6  | NA                       | NA                       | WOGCC       |
| NA         | 42.40369 | -110.3224 | 386  | 35  | 145   | 0    | 1330     | 183  | 100   | 1504  | 6.6  | 15000                    | 15025                    | USGS        |
| NA         | 42.40369 | -110.3224 | 1251 | 202 | 610   | 0    | 4270     | 1395 | 230   | 5791  | 73   | 15095                    | 15125                    | USGS        |
| NA         | 42.40369 | -110.3224 | 938  | 81  | 10708 | 0    | 5750     | 3214 | 12700 | 30473 | 7.2  | 15266                    | 15280                    | USGS        |